
ANZIAM J. 58(2017), 350–358
doi:10.1017/S1446181117000062

ISOLATED SCATTERING NUMBER OF SPLIT GRAPHS AND
GRAPH PRODUCTS

FENGWEI LI) 1, QINGFANG YE1 and XIAOYAN ZHANG2

(Received 20 June, 2016; accepted 16 October, 2016; first published online 12 April 2017)

Abstract

Computer or communication networks are so designed that they do not easily get
disrupted under external attack. Moreover, they are easily reconstructed when they
do get disrupted. These desirable properties of networks can be measured by various
parameters, such as connectivity, toughness and scattering number. Among these
parameters, the isolated scattering number is a comparatively better parameter to
measure the vulnerability of networks. In this paper we first prove that for split graphs,
this number can be computed in polynomial time. Then we determine the isolated
scattering number of the Cartesian product and the Kronecker product of special graphs
and special permutation graphs.
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1. Introduction

A communication network is composed of processors and communication links. Cuts,
node interruptions, software errors or hardware failures, and transmission failures at
various points can interrupt the service for long periods of time; this causes a loss
of effectiveness. We speak of the vulnerability of communication networks: the
vulnerability of a communication network measures the resistance of the network to
the disruption of its operation after the failure of certain processors or communication
links. Network designers give importance to the vulnerability of a network; they aim
to design networks with less vulnerability or more reliability. Thus, communication
networks must be constructed to be as stable as possible, not only with respect to the
initial disruption, but also with respect to the possible reconstruction of the network.
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The communication network often has as considerable an impact on a network’s
performance as the processors themselves. Performance measures for communication
networks are essential to guide the designers in choosing an appropriate topology. In
order to measure the performance, we are interested in the following performance
metrics (there may be others): (1) the number of elements that are not functioning;
(2) the number of remaining connected sub-networks; and (3) the size of a largest
remaining group within which mutual communication can still occur.

The communication network can be represented as an undirected and unweighted
graph, where a processor (station) is represented as a vertex, and a communication link
between processors as an edge between corresponding vertices. If we use a graph to
model a network, based on the above three quantities, a number of graph parameters,
such as connectivity, toughness [7], scattering number [12], integrity [3], tenacity [8],
rupture degree [16], isolated rupture degree [14, 15] and their edge analogues, have
been proposed for measuring the vulnerability of networks.

Throughout this paper, we use Bondy and Murty’s [4] terminology and notation,
and only consider finite simple undirected graphs. The vertex set and edge set of a
graph G are denoted by V and E, respectively. For S ⊆ V(G), letω(G − S ) and i(G − S )
denote, respectively, the number of components and the number of components which
are isolated vertices in G − S . Let u be a vertex in G; the open neighbourhood of
u is defined as N(u) = {v ∈ V(G) | (u, v) ∈ E(G)}. Analogously, we define the open
neighbourhood N(S ) =

⋃
u∈S N(u) for any S ⊆ V(G). Let κ(G) denote the connectivity

of graph G. A vertex set S ⊆ V(G) is a cut-set of G, if either G − S is disconnected or
G − S has only one vertex. Let C(G) denote the set of all cut-sets of G.

One of the vulnerability parameters noted above is the scattering number, which
takes into account the quantities (1) and (2). Introduced by Jung [12] in 1978, the
scattering number of an incomplete connected graph G is defined as

s(G) = max{ω(G − S ) − |S | | S ∈ C(G), ω(G − S ) > 1}.

Motivated by Jung’s scattering number, by replacing ω(G − S ) with i(G − S ) in the
definition of s(G), Wang et al. [20] introduced the isolated scattering number, isc(G),
as a new parameter to measure the vulnerability of networks.

Definition 1.1 [20]. The isolated scattering number of an incomplete connected graph
G is defined as

isc(G) = max{i(G − S ) − |S | | S ∈ C(G)},

where the maximum is taken over all the cut-sets of G; in particular, we define
isc(Kn) = 2 − n.

Definition 1.2. A cut-set S of G is called an isc-set of G, if isc(G) = i(G − S ) − |S |.

This parameter is of particular interest, because it is considered to be a reasonable
measure for the vulnerability of graphs. The scattering number and isolated scattering
number differ in how they represent the vulnerability of networks. This can be shown
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Figure 1. Two graphs with the same scattering number but with different isolated scattering numbers.

as follows. Consider the graphs G1 and G2 in Figure 1. It is not difficult to check that
s(G1) = s(G2) = 5, but isc(G1) = 1 , 5 = isc(G2).

Hence, the isolated scattering number is a reasonable parameter for distinguishing
the vulnerability of these graphs. Note that the smaller the isolated scattering number
of a network, the more stable it is considered to be. Wang et al. [20] gave formulas
for the isolated scattering number of joint graphs and some bounds of the isolated
scattering number, and they also developed a recursive algorithm for computing the
isolated rupture degree of trees. In this paper, first we prove that for split graphs,
this number can be computed in polynomial time. Then we give the exact values of
the isolated scattering numbers of the Cartesian product and the Kronecker product
of special graphs. Finally, we determine the isolated scattering number of special
permutation graphs.

2. Isolated scattering number for split graphs

In this section we fix our attention on the isolated scattering number of split graphs.

Definition 2.1 [9]. A graph G = (V, E) is called a split graph if its vertex set V can be
partitioned into a clique C and an independent set I.

Usually, the split graph G is denoted by G = (C, I, E). To avoid trivialities, assume
that G is connected, C , ∅, and I , ∅. If N(I) , C, then by choosing a vertex
v ∈ C − N(I), and replacing C by C − {v} and I by I ∪ {v}, G can be expressed as
G = (C − {v}, I ∪ {v}, E), in which N(I ∪ {v}) = C − {v}. Hence, in the following, we
always assume that N(I) = C for any split graph G = (C, I, E).

By rewriting the problem of computing the toughness of a split graph as
minimization of a submodular function, Woeginger [21] proved that the problem
can be solved in polynomial time. Zhang et al. [23] showed that the problem of
computing the scattering number of a split graph can be solved in polynomial time.
Here, we prove that the isolated scattering number of a split graph can be computed in
polynomial time by modifying their method [23].
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Let I be a finite set. A function f : 2I → R is called submodular [11] on 2I if

f (X) + f (Y) ≥ f (X ∩ Y) + f (X ∪ Y)

holds for all X, Y ⊆ I. The problem of finding the minimum of f (U) has been studied
by several authors. Schrijver [19] provided a strongly polynomial-time algorithm to
solve this problem.

A family< of subsets of I is called a crossing family [11] if

X,Y ∈ <, X ∩ Y , ∅, X ∪ Y , I =⇒ X ∩ Y ∈ <, X ∪ Y ∈ <.

It was shown that minimizing a submodular function on a crossing family can be easily
reduced to |I|(|I| − 1) problems of minimizing submodular functions on 2I [11]. At the
same time, it is easy to check that all the nonempty proper subsets of I form a crossing
family. So if f is a submodular function on 2I − {I, ∅}, then min{ f (U) | U , ∅,U ⊂ I}
can also be computed in polynomial time.

Lemma 2.2 [20]. Let G be an incomplete connected graph of order n. Then 3 − n ≤
isc(G) ≤ n − 2.

Theorem 2.3. The isolated scattering number of an incomplete connected split graph
of order n can be computed in polynomial time.

Proof. Let G = (C, I, E) be an incomplete connected split graph of order n. For an
integer s with 3 − n ≤ s ≤ n − 2, our first goal is to decide whether there exists a cut-
set S ∗ of G for which i(G − S ∗) − |S ∗| > s holds. If such an S ∗ exists, we may assume
without loss of generality that S ∗ ⊆ C; otherwise, replace S ∗ by S ∗ ∩C. This dose not
increase |S ∗| and cannot decrease i(G − S ∗). We present two cases.

Case 1. Let S ∗ = C. Then i(G − S ∗) = |I| holds, and this case is trivial to check.

Case 2. If S ∗ ⊂ C, then i(G − S ∗) equals the number of vertices v ∈ I with N(v) ⊆ S ∗.
We claim that if |I| − |C| ≤ s, then there exits a cut-set S ∗ ⊂ C of G satisfying

i(G − S ∗) − |S ∗| > s if and only if there exists a U∗ ⊂ I satisfying |N(U∗)| − |U∗| < −s.
Suppose that there exists a cut-set S ∗ ⊂ C satisfying i(G − S ∗) − |S ∗| > s. Set U∗ = {u |
u ∈ I,N(u) ⊆ S ∗}. Then |N(U∗)| ≤ |S ∗| and i(G − S ∗) = |U∗| hold. So |U∗| − |N(U∗)| > s,
that is, |N(U∗)| − |U∗| < −s.

Conversely, if there exists a U∗ ⊂ I satisfying |N(U∗)| − |U∗| < −s, set S ∗ = N(U∗),
then i(G − S ∗) ≥ |U∗| holds. So we have i(G − S ∗) − |S ∗| ≥ |U∗| − |N(U∗)| > s. Hence,
our problem boils down to whether there exists U∗ ⊂ I such that |N(U∗)| − |U∗| < −s.

Let f (U) = |N(U)| − |U | be a function defined on 2I − {I, ∅}. Notice that f (U)
is a submodular function on the crossing family 2I − {I, ∅}. Then from our
analysis on submodular functions above, min{ f | f (U) , ∅,U ⊂ I} can be computed
in polynomial time by using the combinatorial algorithm presented by Grötschel
et al. [11]. Consequently, we can decide whether there exists a cut-set S ∗ ⊂ C such that
i(G − S ∗) − |S ∗| > s in polynomial time.

It follows from Lemma 2.2 that s is bounded by 3 − n and n − 2. Then we
can enumerate all these s, and check whether isc(G) > s in polynomial time. This
completes the proof. �
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3. Isolated scattering number of graph products

In this section we determine the isolated scattering number of the Cartesian product
and the Kronecker product of special graphs and special permutation graphs.

Definition 3.1 [3]. A subset S of V is called an independent set of G if no two vertices
of S are adjacent in G. An independent set S is called a maximum independent set if
G has no independent set S ′ with |S ′| > |S |. The independence number of G, α(G), is
the number of vertices in a maximum independent set of G.

The Cartesian product of two graphs G1 and G2, denoted by G1 ×G2, is defined as
V(G1 ×G2) = V(G1) × V(G2), and two vertices (u1, u2) and (v1, v2) are adjacent if and
only if u1 = v1 and u2v2 ∈ E(G2) or u1v1 ∈ E(G1) and u2 = v2. The Cartesian product
of n graphs G1,G2, . . . ,Gn, denoted by G1 ×G2 × · · · ×Gn, is defined inductively as
the Cartesian product of G1 × G2 × · · · × Gn−1 and Gn. In particular, the Cartesian
product of k copies of K2, denoted by Qk, is called a hypercube of dimension k.
The Cartesian product Pn1 × Pn2 × · · · × Pnk is called a grid, where n1, n2, . . . , nk are k
integers not less than 2. It is clear that hypercubes are grids. The Cartesian product
Cn1 ×Cn2 × · · · ×Cnk is called a torus.

It is well known that Cartesian products like hypercubes, grids and tori are highly
recommended for the design of interconnection networks in multiprocessor computing
systems. Hence, there is a lot of study of the vulnerability of these graphs in the
literature [18, 22]. The aim of the following is to determine the isolated scattering
number of grids, and that of the hypercubes as a special case.

The following lemmas will be used later.

Lemma 3.2. Let H be a spanning subgraph of an incomplete connected graph G. Then
isc(H) ≥ isc(G).

Lemma 3.3 [20]. Let G be a connected graph of order n. Then isc(G) ≥ 2α(G) − n. The
equality holds if G is a connected bipartite graph of order n.

Lemma 3.4 [20]. The isolated scattering number of Km,n(m ≥ n > 1) is isc(Km,n) =

m − n.

Lemma 3.5 [20]. Let Pn be be a path of order n. Then

isc(Pn) =

0 if n is even,
1 if n is odd.

Theorem 3.6. Suppose that n1, n2, . . . , nk are k integers not less than 2. Then

isc(Pn1 × Pn2 × · · · × Pnk ) =

1 if all ni are odd,
0 if some ni is even.
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Proof. It is well known that if G is a bipartite graph with bipartition [A, B] and H is
bipartite graph with bipartition [C,D], then the Cartesian product of these two bipartite
graphs G and H, G × H, is a bipartite graph with bipartition [(A × C) ∪ (B × D), (A ×
D) ∪ (B ×C)]. Hence, it follows that if all ni are odd, then

Pn1 × Pn2 × · · · × Pnk ⊆ K(n1n2···nk−1)/2,(n1n2···nk+1)/2.

By Lemmas 3.2 and 3.4, we know that

isc(Pn1 × Pn2 × · · · × Pnk ) ≥ isc(K(n1n2···nk−1)/2,(n1n2···nk+1)/2) = 1.

On the other hand, it is easy to see that if a graph G contains a Hamiltonian path,
then so does graph G × Pn. So the grid Pn1 × Pn2 × · · · × Pnk has a Hamiltonian path
Pn1n2···nk . It follows from Lemmas 3.2 and 3.5 that

isc(Pn1 × Pn2 × · · · × Pnk ) ≤ isc(Pn1n2···nk ) = 1.

This completes the proof of the case where all ni are odd.
If some ni is even, then we have

Pn1 × Pn2 × · · · × Pnk ⊆ K(n1n2···nk)/2,(n1n2···nk)/2.

By Lemmas 3.2 and 3.4, we know that

isc(Pn1 × Pn2 × · · · × Pnk ) ≥ isc(K(n1n2···nk)/2,(n1n2···nk)/2) = 0.

On the other hand, it is easy to see that the grid Pn1 × Pn2 × · · · × Pnk has a Hamiltonian
path Pn1n2···nk . It follows from Lemmas 3.2 and 3.5 that

isc(Pn1 × Pn2 × · · · × Pnk ) ≤ isc(Pn1n2···nk ) = 0.

This completes the proof of the case where some ni is even. Thus, the proof is
complete. �

Corollary 3.7. The isolated scattering number of the hypercube Qk is isc(Qk) = 0.

The Kronecker product (also named direct product, tensor product and cross
product) G1 ⊗ G2 is defined as V(G1 ⊗ G2) = V(G1) ⊗ V(G2), and E(G1 ⊗ G2) =

{(u1, v1)(u2, v2) | u1u2 ∈ E(G1), v1v2 ∈ E(G2)}. Clearly the Kronecker product of two
nontrivial connected graphs is connected if and only if at least one of the factors is
not bipartite. The Kronecker product of graphs has been extensively investigated with
regard to graph colourings, graph recognition and decomposition, graph embeddings,
matching theory and stability in graphs [1, 5]. This graph product has several
applications; for instance, it can be used in modelling concurrency in multiprocessor
system [13] and in automata theory [10]. Since the Kronecker product of graphs has
been widely used to model some practical structures used in the design of certain
optimal networks [2, 10], it is significant to consider the vulnerability parameters of
this product of graphs.

We now determine the isolated scattering number for the Kronecker product of two
complete graphs. The following lemma on the components after removing a cut-set
from Km ⊗ Kn plays a key role in the proof of our main result.
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Lemma 3.8 [17]. Let m and n be integers with n ≥ m ≥ 2 and n ≥ 3, and let S be a
cut-set of G = Km ⊗ Kn. Then the following hold.

(a) Suppose that ω(G − S ) = 2 and let C1, C2 be two components of G − S . Then
either |C1| = |C2| = 2 or min{|C1|, |C2|} = 1.

(b) If ω(G − S ) ≥ 3, then every component of G − S is an isolated vertex and
|S | ≥ mn − n.

Lemma 3.9 [17]. Let m and n be integers with n ≥ m ≥ 2, n ≥ 3. Then α(Km ⊗ Kn) = n,
κ(Km ⊗ Kn) = (m − 1)(n − 1).

Theorem 3.10. Let m and n be integers with n ≥ m ≥ 2 and n ≥ 3. Then isc(Km ⊗ Kn) =

2n − mn.

Proof. For convenience, we use the abbreviation G = Km ⊗ Kn, and let S be an isc-set
of G. If ω(G − S ) = 2, then by Lemmas 3.8 and 3.9, we have

i(G − S ) − |S | ≤ i(G − S ) − κ(G) ≤ 1 − (m − 1)(n − 1) = m + n − mn.

If ω(G − S ) ≥ 3, then, by Lemma 3.8, we have |S | ≥ mn − n, and consequently,

i(G − S ) − |S | = (mn − |S |) − |S | = mn − 2|S | ≤ 2n − mn.

The proof comprises the following two cases.

Case 1. If m = n, then 2n −mn = (m + n) −mn, and therefore isc(G) ≤ (m + n) −mn =

2n − mn. On the other hand, in this case, by Lemma 3.9, we know that α(G) = n.
Hence, by Lemma 3.3, we get isc(G) ≥ 2α(G) − mn = 2n − mn. Thus, isc(G) =

2n − mn.

Case 2. If m , n, then m ≤ n − 1 and (m + n) −mn < 2n −mn. Hence in this case, we
have isc(G) ≤ 2n − mn. On the other hand, we know that α(G) = n, so by Lemma 3.3,
we have isc(G) ≥ 2α(G) − mn = 2n − mn. Hence, we get isc(G) = 2n − mn. �

The concept of a permutation graph was introduced by Chartrand and Harary [6].
It is well known that permutation graphs have high connectivity properties. Since then
many parameters on graphs of this kind have been determined, such as connectivity,
chromatic number and crossing number.

Definition 3.11 [6]. Let G be a graph whose vertices are labelled as v1, v2, . . . , vn and
let a permutation α ∈ S n, where S n is the symmetric group on {1, 2, . . . , n}. Then the
permutation graph Pα(G) is obtained by taking two copies of G, say Gx with vertex set
{x1, x2, . . . , xn} and Gy with vertex set {y1, y2, . . . , yn}, along with a set of permutation
edges joining xi of Gx and yα(i) of Gy (i = 1, 2, . . . , n).

Lemma 3.12. Let G be a bipartite, k-connected, k-regular graph on n vertices, k ≥ 2.
Then isc(G) = 0.

Proof. It is easy to see that α(G) = n/2. Thus, by Lemma 3.3 we have isc(G) =

2α(G) − n = 0. This completes the proof. �
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Theorem 3.13. Let G1 be a bipartite, n-regular and n-connected graph with p1
vertices, and G2 a bipartite, m-regular and m-connected graph with p2 vertices. Then
isc(G1 ×G2) = 0.

Proof. It is obvious that the graph G1 ×G2 is an (m + n)-regular and (m + n)-connected
bipartite graph with mn vertices. Then, by Lemma 3.12, we have isc(G1 ×G2) = 0. The
proof is complete. �

The following result can be directly derived from Theorem 3.13.

Theorem 3.14. Let m and n be two even positive integers. Then isc(Cn × Cm) = 0 and
isc(Cn × K2) = 0.

Theorem 3.15. Let G be a bipartite, k-regular and k-connected graph with partition
[M,N] on n vertices. Then, for a permutation α ∈ S n that satisfies

α :

Mx → Ny,

My → Nx,

we have isc(Pα(G)) = 0, where [Mx, My] is the partition of the first copy of G, and
[Nx,Ny] is the partition of the second copy of G.

Proof. It is easy to verify that the graph Pα(G) is a (k + 1)-regular and (k + 1)-
connected bipartite graph with partition [Mx ∪ My, Nx ∪ Ny]. By Lemma 3.12, we
know that isc(Pα(G)) = 0. �

4. Conclusion

Network vulnerability is an important issue in the area of distributed computing.
Network designers often build a network configuration around specific processing,
performance and cost requirements. They also identify the critical points of failure
and modify the design to eliminate them. Most of the early work in this area takes
a probabilistic approach to the problem. However, sometimes it is important to
incorporate subjective vulnerability estimates into the measure. In this paper we
discuss a comparatively better parameter, the isolated scattering number, which can
be used to measure the vulnerability of networks. We first prove that for split graphs
this number can be computed in polynomial time. Then we determine the isolated
scattering number of the Cartesian product and the Kronecker product of special
graphs and special permutation graphs.
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