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Abstract

Pooling designs are a very helpful tool for reducing the number of tests for DNA library screening.
A disjunct matrix is usually used to represent the pooling design. In this paper, we construct a new family
of disjunct matrices and prove that it has a good row to column ratio and error-tolerant property.
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1. Introduction

The basic problem of group testing is to identify the set of defective items in a
large population of items. Group testing algorithms can roughly be divided into two
categories: combinatorial group testing (CGT) and probabilistic group testing (PGT).
In CGT, it is often assumed that the number of positives among n items is equal to
or at most d for some given positive integer d. In PGT, we fix some probability p of
having a positive. Group testing strategies can also be either adaptive or nonadaptive.
A group testing algorithm is nonadaptive if all tests must be specified without knowing
the outcomes of other tests. A nonadaptive testing algorithm is useful in many areas
such as DNA library screening. A pooling design based on clone library screenings
is an experimental strategy to find clones with special nucleotide strings; it is also an
algorithm of combinatorial group testing. A group testing algorithm is error tolerant
if it can detect some errors in test outcomes.

A binary incidence matrix, sometimes called a disjunct matrix, with a row
corresponding to an experiment and a column corresponding to a clone, is usually
used to represent the pooling design. Kautz and Singleton [6] were first to propose
the concept of a d-disjunct matrix. Macula [7] proposed a novel way of constructing
d-disjunct matrices based on the containment relation of subsets in a finite set. As a
generalization of Macula’s construction, Zhao [10] constructed a family of disjunct
matrices and discussed its error-tolerant property.
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However, when there are errors in the test outcomes, the design no longer works. To
deal with this case, Macula [8] proposed a de-disjunct matrix which is a mathematical
model of error-tolerance design. D’yachkov et al. [2] proved that a de-disjunct matrix
can detect e − 1 errors and correct b(e − 1)/2c errors. D’yachkov et al. [3] discussed
the error-tolerant property of Macula’s construction. Ngo and Du [9] proposed a
family of d-disjunct matrices based on matchings of the complete graph K2m. Bai et al.
[1] generalized Ngo and Du’s construction, and obtained two families of de-disjunct
matrices based on the substructures of Johnson graphs and Grassmann graphs. Huang
and Weng [5] generalized Ngo and Du’s constructions to pooling spaces, and proved
that a d2e-disjunct matrix is e-error-correcting in [4].

The rest of this paper is organized as follows. Section 2 presents basic notations and
related works. Section 3 proposes a new construction of disjunct matrix based on an n-
partite complete graph Gm,m,...,m and discusses its row to column ratio and error-tolerant
property.

2. Preliminaries

In this paper, for any positive integer v we shall use [v] to denote {1, 2, . . . , v}. Also,
given any set X and integer k,

(
X
k

)
denotes the collection of all k-subsets of X.

For a 0–1 matrix M, a row corresponds to a test (pool) and a column corresponds
to a clone. If Mi j = 1 then clone j is contained in pool i. The weight of a row or
a column is the number of 1s it has. For t + 1 distinct columns of M, namely C0,
C1, . . . ,Ct, if C0 ≤C1 + · · · + Ct (the ‘+’ represents Boolean summation: 0 + 0 = 0,
0 + 1 = 1 + 0 = 1 + 1 = 1), it is said that C0 is covered by C1, . . . ,Ct.

D 2.1 [6]. We say M is d-disjunct if the union of any d columns does not
contain another column.

L 2.2 [9]. The matrix M is d-disjunct if and only if for any set of d + 1 distinct
columns C j0, C j1, . . . ,C jd with one column (say, C j0) designated, C j0 has a 1 in some
row where all C jk, 1 ≤ k ≤ d, contain 0s.

Let S (d, n) denote the set of all subsets of n items (or columns) with size at most d,
called the set of samples. For s ∈ S (d, n), let P(s) denote the union of all columns
corresponding to s, that is, P(s) =

⋃
i∈s Ci. A pooling design is e-error-detecting

(correcting) if it can detect (correct) up to e errors in test outcomes. In other words,
if a design is e-error-detecting then the test outcome vectors form a v-dimensional
binary code with minimum Hamming distance at least e + 1. Similarly, if a design
is e-error-correcting then the test outcome vectors form a v-dimensional binary code
with minimum Hamming distance at least 2e + 1. The following remarks are simple
to see, and will be useful later on.

R 2.3 [9]. Suppose that M has the property that for any s, s′ ∈ S (d, n), s , s′,
P(s) and P(s′) viewed as vectors have Hamming distance k or greater. In other words,
|P(s) ⊕ P(s′)| ≥ k where ⊕ denotes the symmetric difference. Then M is (k − 1)-error-
detecting and b(k − 1)/2c-error-correcting.
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D 2.4 [8]. We say M is de-disjunct if given any d + 1 distinct columns with
one designated, there are e + 1 rows with a 1 in the designated column and 0 in each
of the other d columns.

Obviously, a de-disjunct matrix with e = 0 is said to be d-disjunct. For a de-disjunct
matrix, the smaller the row to column ratio, the better the design; and the larger e
is, the better the design is. So the basic problem of pooling designs is to construct a
disjunct matrix such that its row to column ratio is small and e is large.

In the following, we give some related work about constructions of disjunct matrices
over graphs.

Macula [7] proposed a novel way of constructing a family of d-disjunct matrices of
order

(
n
d

)
×

(
n
k

)
with row weight

(
n−d
k−d

)
and column weight

(
k
d

)
.

D 2.5 [7]. For positive integers 1 ≤ d < k < n, let M(d, k, n) be the binary
matrix with row (respectively, column) indexed by

(
[n]
d

)
(respectively,

(
[n]
k

)
) such that

M(A, B) = 1 if and only if A ⊆ B and 0 otherwise.

Ngo and Du [9] constructed a g(m, d) × g(m, k) d-disjunct matrix M(m, k, d) with
row weight g(m − d, k − d) and column weight

(
k
d

)
, where g(m, l) =

(
2m
2l

)
(2l)!/2ll!.

Furthermore, M(m, m, d) is dd-disjunct and can detect d errors and correct bd/2c errors.
A matching of size l (that is, it has l edges) is called an l-matching and the matrix of
Ngo and Du is constructed as follows.

D 2.6 [9]. For positive integers 1 ≤ d < k ≤ m, let M(m, k, d) be the 0–1
matrix whose rows are indexed by the set of all d-matchings on K2m, and whose
columns are indexed by the set of all k-matchings on K2m. All matchings are to be
ordered lexicographically. Then M(m, k, d) has a 1 in row i and column j if and only
if the ith d-matching is contained in the jth k-matching.

Zhao [10] generalized Macula’s construction and constructed a
(

n
d

)
md ×

(
n
k

)
mk

d-disjunct matrix with row weight
(

n−d
k−d

)
mk−d and column weight

(
k
d

)
. Let G denote

the n-partite complete graph Gm,m,...,m and Gk denote the set of all complete subgraphs
of G on k vertices.

D 2.7 [10]. For positive integers 1 ≤ d < k < n, let M(d, k, n; m) be the binary
matrix with row (respectively, column) indexed by Gd (respectively, Gk) such that
M(D, K) = 1 if and only if D ⊆ K and 0 otherwise.

3. Main results

The research summarized in the previous section stimulated us to construct a new
family of disjunct matrices based on the complete subgraphs of a multipartite complete
graph.

Let G denote the n-partite complete graph Gm,m,...,m and Kn denote a complete
subgraph of G on n vertices. Recall that two graphs are disjoint if they have no vertices
in common. Let Hl denote a set of l pairwise disjoint complete subgraphs of G on n
vertices.
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D 3.1. For positive integers 1 ≤ d < k ≤ m, let M(d, k, m; n) be the binary
matrix whose rows (respectively, columns) are indexed by the set of all Hd
(respectively, Hk). Then M(d, k, m; n) has a 1 in row i and column j if and only if
the ith Hd is contained in the jth Hk.

T 3.2. Let h(m, l) =
(

m
l

)n
(l!)n−1. Then M(d, k, m; n) is an h(m, d) × h(m, k)

d-disjunct matrix with row weight h(m − d, k − d) and column weight
(

k
d

)
.

P. It is easy to see that h(m, l) is the number of all distinct Hl of G. Thus,
M(d, k, m; n) is an h(m, d) × h(m, k) matrix with row weight h(m − d, k − d) and
column weight

(
k
d

)
.

To show that M(d, k, m; n) is d-disjunct, we recall Lemma 2.2. Consider d + 1
distinct columns C j0, C j1, . . . ,C jd of M(d, k, m; n). Since these d + 1 columns are
indexed by d + 1 distinct Hk, for each i ∈ [d] there exists a Ki

n of G such that Ki
n ∈

C j0 \C ji. Hence, there exists a H′d ⊆C j0 which contains all Ki
ns. If |{Ki

n : i ∈ [d]}| < d,
we simply add more Kn in C j0 to {Ki

n : i ∈ [d]} to form H′d. Furthermore, since H′d *C ji

for all i ∈ [d], C j0 has a 1 in row H′d where all other C ji contain 0. �

Obviously, when n = 1, M(d, k, m; n) is Macula’s construction. When n ≥ 2,
compared with Macula’s construction,

h(m, d)
h(m, k)

/(mn
d

)(
mn
k

) =
(mn − d)(mn − d − 1) · · · (mn − k + 1)
(m − d)n(m − d − 1)n · · · (m − k + 1)n

< 1.

Compared with Ngo and Du’s construction,

h(m, d)
h(m, k)

/
g(mn/2, d)
g(mn/2, k)

=
(mn − 2d)(mn − 2d − 1) · · · (mn − 2k + 1)

(2m − 2d)n(2m − 2d − 2)n · · · (2m − 2k + 2)n
< 1.

Compared with Zhao’s construction,

h(m, d)
h(m, k)

/(n
d

)
md(

n
k

)
mk

=
mk−d

(m − d)n(m − d − 1)n · · · (m − k + 1)n
< 1.

Thus the row to column ratio of M(d, k, m; n) is much smaller than that of the disjunct
matrices in [7, 9, 10].

T 3.3. Let 1 ≤ s ≤ d < k ≤ m and e =
(

k−s
k−d

)
− 1, Then M(d, k, m; n) is

se-disjunct.

P. Let C j0, C j1, . . . ,C js be any s + 1 distinct columns of M(d, k, m; n). For each
i ∈ [s], there exist a Ki

n ∈C j0 \C ji. Let J = {K1
n , K

2
n , . . . , K

s
n}. Then |J| ≤ s and J is

a subset of C j0, which is not a subset of C ji for each i ∈ [s]. If |J| = j, the number
of d-subsets of C j0 containing J is

(
k− j
d− j

)
=

(
k− j
k−d

)
. Since

(
k− j
k−d

)
≥

(
k−s
k−d

)
whenever j ≤ s,

the number of d-subsets of C j0 that are not subsets of C ji is at least
(

k−s
k−d

)
. Therefore

M(d, k, m; n) is an se-disjunct matrix. �
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An se-disjunct matrix is called fully se-disjunct if it is not de′-disjunct whenever
d > s or e′ > e. D’yachkov et al. [3] discussed the error-correcting property of
Macula’s construction.

T 3.4 [3]. Suppose that 1 ≤ s ≤ d < k < n and e = e(s) =
(

k−s
k−d

)
− 1. Then

M(d, k, n) is fully se-disjunct.

For a binary matrix M of order N × T , let B(D) denote the Boolean sum of
those columns indexed by elements of D ⊆ [T ], and let dH(B(D), B(D′)) denote the
Hamming distance between B(D) and B(D′) where D and D′ are two distinct subsets
of [T ]. Let

es = min
|D|=|D′ |=s

dH(B(D), B(D′)).

The larger the parameter es, the better its error-correcting capacity.
D’yachkov et al. [2] gave lower bounds of es for a fully se-disjunct matrix.

T 3.5 [2]. Let M be a fully se-disjunct matrix. Then es ≥ 2(e + 1).

T 3.6. Let 1 ≤ s ≤ d < k ≤ m. Then M(d, k, m; n) is a fully se-disjunct matrix
with

e =

(
k − s
k − d

)
− 1, es = 2

(
k − s
k − d

)
.

P. Note that the maximum size of E can be obtained in Theorem 3.3, which
implies that M(d, k, m; n) is fully se-disjunct.

By Theorem 3.5, es ≥ 2
(

k−s
k−d

)
, so we only need to prove es ≤ 2

(
k−s
k−d

)
.

For all i, j ∈ [k + 1], i , j, Ki
n ∩ K j

n = ∅. Suppose that Q = {K1
n , K

2
n , . . . , K

k
n} and

J = {K1
n , K

2
n , . . . , K

k+1
n } = {K1, K2, . . . , Kk+1}. Let

D0 = {K̂1, K̂2, . . . , K̂s−1, K̂k+1}, D′0 = {K̂1, K̂2, . . . , K̂s−1, K̂k},

where K̂i = J − {Ki}. Then∣∣∣∣∣∣
{

R

∣∣∣∣∣∣ R ∈

(
Q
d

)
, R * K̂1, K̂2, . . . , K̂s−1, K̂k

}∣∣∣∣∣∣ =

(
k − s
d − s

)
=

(
k − s
k − d

)
.

By symmetry, we have that dH(B(D0), B(D′0)) = 2
(

k−s
k−d

)
, so es ≤ 2

(
k−s
k−d

)
. �

D 3.7. Let C j0, C j1, C j2, . . . ,C jd denote any d + 1 distinct columns of
M(d, k, m; n). An Hd is said to be private for C j0 with respect to C j1, . . . ,C jd if
Hd ⊆C j0 \

⋃
i∈[d] C ji. Let p(C j0; C j1, . . . ,C jd) denote the number of private Hd of

C j0 with respect to C j1, . . . ,C jd.

L 3.8 [9]. Given integers m > d ≥ 1 and any labeled simple graph G with
|V(G)| = m and |E(G)| = d, then the number of vertex covers of size d (or d-covers,
for short) of G is at least d + 1.
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T 3.9. For any d + 1 distinct columns C j0, C j1, . . . ,C jd of M(d, m, m; n), then
p(C j0; C j1, . . . ,C jd) ≥ d + 1.

P. Through the construction of M(d, k, m; n), we know that when k = m,
|C j0 \C ji| ≥ 2 for each i ∈ [d].

For each i ∈ [d], choose arbitrarily Ei ⊆C j0 \C ji so that |Ei| = 2. Suppose that
C j0 = {K1

n , K
2
n , . . . , K

m
n } and each Kt

n, t ∈ [m] is viewed as a vertex. Let G be the graph
with V(G) = C j0, E(G) = {E1, E2, . . . , Ed}. Then G is a simple graph with m vertices
and at most d edges. Also, |E(G)| ≤ d because the Ei are not necessarily distinct. For
arbitrary i, any d-subset R of C j0 such that R ∩ Ei , ∅ is a private Hd of C j0 with
respect to C j1, . . . ,C jd. Note that R is nothing but a d-cover of G. To show that
p(C j0; C j1, . . . ,C jd) ≥ d + 1, we shall show that the number of d-covers of G is at least
d + 1. Since adding more edges into G can only decrease the number of d-covers, we
can safely assume that G has exactly d edges and apply Lemma 3.8. �

So when k = m, M(d, k, m; n) is de-disjunct (e = d). According to [9], we also have
the following theorem.

T 3.10. Given integers m > d ≥ 1:

(i) M(d, m, m; n) is d-error-detecting and bd/2c-error-correcting;
(ii) if the number of positives is known to be exactly d, then M(d, m, m; n) is (2d + 1)-

error-detecting and d-error-correcting.

P. For any s, s′ ∈ S (d, n), s , s′, we can assume without loss of generality that
there exists C j0 ∈ s \ s′. Theorem 3.9 implies that |P(s) ⊕ P(s′)| ≥ d + 1, hence
Remark 2.3 shows (i). If the number of positives is exactly d, we need only consider
|s| = |s′| = d; hence there exist C j0 ∈ s \ s′ and C′j0 ∈ s′ \ s. This time, Theorem 3.9
implies |P(s) ⊕ P(s′)| ≥ 2d + 2. Again, Remark 2.3 yields (ii). �
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