
Glasgow Math. J. 46 (2004) 323–334. C© 2004 Glasgow Mathematical Journal Trust.
DOI: 10.1017/S0017089504001806. Printed in the United Kingdom

ON TOPOLOGICAL INVARIANTS ASSOCIATED WITH A
POLYNOMIAL WITH ISOLATED CRITICAL POINTS

NICOLAS DUTERTRE
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1. Introduction. Let F = (F1, . . . , Fk) : �n → �k be a polynomial mapping and
let W = F−1(0). Let G1, . . . , Gl be polynomials. An interesting problem is the
computation of χ (W ) and χ (W ∩ {G1 ≥ 0, . . . , Gl ≥ 0}) in terms of the polynomials
Fi and Gj.

When W is compact, Szafraniec [17] and Bruce [4] proved that there exists a
polynomial P : �n+1 → � with an algebraically isolated critical point at the origin
such that

χ (W ) = 1
2

((−1)n − deg0∇P),

where deg0∇P is the topological degree at the origin of the gradient of P. The study of
the case of W non-compact has been done in [6, 18, 19], but only when 1 ≤ k < n and
W is a smooth manifold of dimension n − k. In [18], Szafraniec constructs a polynomial
map H : �n+k → �n+k. He proves that H−1(0) ⊂ Bn+k

R , where Bn+k
R is a ball in �n+k

centered at the origin with sufficiently big radius R, and that χ (W ) = (−1)kdeg h, where
h = H/||H|| : Sn+k−1

R → Sn+k−1 and Sn+k−1
R = ∂Bn+k

R . In [6], the authors consider a
polynomial algebra A and they prove, assuming dim�A < +∞, that

χ (W ) ≡ dim�A mod 2. (1)

This latter formula is refined in [19], where it is proved that there exist two bilinear
symmetric forms � and �M on A such that

if n − k is odd χ (W ) = (−1)ksignature �,

if n − k is even χ (W ) = signature �M .
(2)

In [8], we started the investigation of the case in which W admits a finite number
of singularities. We generalize first formula (1) above and we obtain

χ (W ) + �µ ≡ dim�A mod 2,
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where �µ is the sum of the Milnor numbers at the singularities of W . Then we generalize
formulae (2) but only in the cases of curves (k = n − 1) and of odd-dimensional
hypersurfaces (k = 1 and n is even).

The first aim of this paper is to solve the case of even-dimensional hypersurfaces
with isolated singularities. Actually we give a new method that works for both parities.
We consider a polynomial f : �n → � with a finite number of critical points, some
of them possibly lying in the fibre f −1(0). We make the additional assumption that
f (0) > 0. Taking (x, λ) = (x1, . . . , xn, λ) as a coordinate system for �n+1, we define four
polynomial mappings H, K , L1 and L2 in the following way : H(x, λ) = (λx + ∇f, f ),
K(x, λ) = (λx + ∇f, λf ), L1(x, λ) = (∇f, λf − 1) and L2(x, λ) = (∇f, λf 2 − 1). Here ∇f
denotes the gradient vector of f . We prove, in our Theorem 5.10, that the zero sets of
these applications are compact and that, if n is even, then

χ (f −1(0)) = deg H + deg ∇f − deg L2,

χ ({f ≥ 0}) − χ ({f ≤ 0}) = 1 − deg K − deg L1,

and if n is odd, then

χ (f −1(0)) = deg K − deg L1,

χ ({f ≥ 0}) − χ ({f ≤ 0}) = 1 − deg H − deg ∇f + deg L2.

By deg H, which we call the total degree of H, we mean the topological degree of the
map H

‖H‖ : Sn
R′ → Sn, where Sn

R′ = ∂Bn+1
R′ and H−1(0) � Bn+1

R′ .
These formulae are global polynomial versions of a result due to Khimshiasvili on

the Euler characteristic of the real Milnor fibre. It states that, if g : (�n, 0) → (�, 0) is
an analytic function-germ with an isolated critical point at the origin, then

χ
(
g−1(δ) ∩ Bn

ε

) = 1 − sign (−δ)ndeg0∇g,

for any regular value δ of g, 0 < |δ| � ε � 1. Here deg0∇g is the topological degree
of ∇g

‖∇g‖ : Sn−1
ε → Sn−1. A proof of this can be found in [1], [10], [14] or [21].

The proof of our main theorem is based on Morse theory for manifolds with
corners. Putting ω(x) = 1

2 (x2
1 + · · · + x2

n), we study the critical points of Morse
perturbations of ω|f −1(δ)∩Bn

R
, ω|{f ≥δ}∩Bn

R
and ω|{f ≤δ}∩Bn

R
, where δ is a regular value of f

close to 0. These critical points are in bijection with non-degenerate zeros of H̃δ and K̃δ,
two appropriate perturbations of H and K , and their Morse indices are related to the
local degree of H̃δ and K̃δ at those zeros. This gives a link between χ (f −1(δ) ∩ Bn

R) and
χ ({f ≥ δ} ∩ Bn

R) − χ ({f ≤ δ} ∩ Bn
R) and the topological degrees of H and K . Then we

relate χ (f −1(0)) (respectively χ ({f ≥ 0}) − χ ({f ≤ 0})) to χ (f −1(δ) ∩ Bn
R) (respectively

χ ({f ≥ δ} ∩ Bn
R) − χ ({f ≤ δ} ∩ Bn

R)).
In Section 2, we recall some facts about Morse theory for manifolds with corners.

In Section 3, we give methods for the computation of the total degree of a polynomial
mapping. These methods will be useful in the application of our theorems to concrete
examples. Section 4 is devoted to some technical lemmas : we relate a Morse index to
a local topological degree. Finally we prove our degree formulae in Section 5.

Some computations are given at the end of the paper. They have been done with
a program written by Andrzej Lecki. The author is very grateful to him and Zbigniew
Szafraniec for giving him this program.
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2. Morse theory for manifolds with corners. We generalize the notion of correct
critical points and Morse correct functions, defined for manifolds with boundary in
[13], to the case of manifolds with corners. Then we relate the Euler characteristic of a
manifold with corners to the indices of correct critical points.

Let us start with some basic facts on manifolds with corners. Our reference is [5].
A manifold with corners M is defined by an atlas of charts modelled on open subsets of
�n

+. We write ∂M for its boundary. We shall make the additional assumption that the
boundary is partitioned into pieces ∂iM, themselves manifolds with corners, such that
in each chart, the intersections with the coordinate hyperplanes xj = 0 correspond to
distinct pieces ∂iM of the boundary. For any set I of suffices, we write ∂I M = ∩i∈I∂iM
and we make the convention that ∂∅M = M \ ∂M.

Any n-manifold M with corners can be embedded in an n-manifold M+ without
boundary so that the pieces ∂iM extend to submanifolds ∂iM+ of codimension 1 in
M+. We shall assume that M+ is provided with a Riemannian metric.

Let M be a manifold with corners and ω : M+ → � a smooth map. We consider
the points P that are critical points of ω|∂I M+ .

DEFINITION 2.1. A critical point P is correct (respectively Morse correct) if, taking
I(P) := {i |P ∈ ∂iM}, P is a critical (respectively Morse critical) point of ω|∂I(P)M+ , and
is not a critical point of ω|∂J M+ for any proper subset J of I(P).

Note that a 0-dimensional corner point P is always a critical point because in this
case ∂I(P)M+ = {P}, which is a 0-dimensional manifold.

DEFINITION 2.2. The maps ω with all critical points Morse correct are called Morse
correct.

PROPOSITION 2.3. The set of Morse correct functions is dense and open in the space
of all maps M+ → �.

Proof. This is clear from classical Morse theory, because there is a finite number
of pieces ∂I M+. �

The index λ(P) of ω at a Morse correct point P is defined to be that of ω|∂I(P)M+ . If
P is a correct critical point of ω, i ∈ I(P), and J is formed from I(P) by deleting i, then
in a chart at P with ∂JM mapping to �

p
+ and ∂I(P)M to the subset x1 = 0, the function

ω is non-critical, but its restriction to x1 = 0 is. Hence ∂ω/∂x1 �= 0.

DEFINITION 2.4. We say that ω is inward at P if, for each i ∈ I(P), we have
∂ω/∂x1 > 0.

REMARK 2.5. By our convention, if I(P) = ∅, then ω is inward at P.

THEOREM 2.6. If M is compact and ω is Morse correct, then

χ (M) =
∑ {

(−1)λ(P) | P is an inward Morse critical point
}
.
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Proof. This is a consequence of stratified Morse theory [11, 12]. A good summary
of the results we use can be found in [3, Section 2].

The manifold with corners M is a compact Whitney stratified set of M+, with
stratum the ∂I M. The function ω : M → � is easily seen to be a Morse function in the
sense of [11] and so

χ (M) =
∑

{α(ω, P) | P correct critical point},

where

α(ω, P) = 1 − χ (ω−1(ω(P) − δ) ∩ B(P, ε)),

with 0 < δ � ε � 1. Here B(P, ε) is the ball centered at P of radius ε in the Riemannian
manifold M+. If P belongs to ∂∅M then α(ω, P) is exactly (−1)λ(P). If P belongs to ∂I M,
I �= ∅, then α(ω, P) = (−1)λ(P).αnor(ω, P), where αnor(ω, P) is the normal index of ω at
P. It is defined as follows. Choose a normal slice V at P; that is, a closed submanifold
of M+ of dimension n − dim ∂I M, that intersects ∂I M in P orthogonally. We obtain

αnor(ω, P) = 1 − χ (ω−1(ω(P) − δ) ∩ B(P, ε) ∩ V ).

Let us compute this normal index. We can assume that ω(P) = 0. Also we can choose a
local chart (x1, . . . , xn) centered at P such that ∂I M is given by {x1 = . . . = xk = 0} and
V is given by {xk+1 = . . . = xn = 0}, k < n. Locally M is the set {x1 ≥ 0, . . . , xk ≥ 0}.
Furthermore, since P is a correct point, ∂ω/∂xj(P) �= 0 for each j ∈ {1, . . . , k} and, by
an appropriate change of coordinates, the restriction of ω to V is just the linear form

k∑
j=1

∂ω

∂xj
(P)xj.

It is then straightforward to see that αnor(ω, P) = 1 if ∂ω/∂xj(P) > 0, for all j ∈
{1, . . . , k}, and αnor(ω, P) = 0 otherwise. This proves the theorem. �

3. Total degree of a polynomial mapping. We study the topological degree on a
big sphere of a polynomial mapping. Let (x1, . . . , xN) be a coordinate system in �N . Let
F = (F1, . . . , FN) : �N → �N be a polynomial mapping such that F−1(0) is compact.
There is R � 0 such that F−1(0) � BN

R . Recall that deg F stands for the topological
degree of F

‖F‖ : SN−1
R → SN−1. We give two methods due to Szafraniec for computing

deg H. The first one [18] enables us to reduce this computation to the computation
of a local degree at the origin. Let I : �N \ {0} → �N \ {0} be the inversion defined by
I(x) = x/‖x2‖, let di denote the degree of the polynomial Fi for each i ∈ {1, . . . , N}
and let

F ′(x) = (‖x‖2d1 · F1 ◦ I(x), . . . , ‖x‖2dN · FN ◦ I(x)
)

for x �= 0.

Then F ′ can be extended to a polynomial map �N → �N such that 0 is isolated in
F ′−1(0). Let r = 1/R ; the map

SN−1
r → SN−1

R
x �→ I(x)
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is of degree +1. Clearly, the maps F ′ : Sr → �N \ {0} and F ◦ I : Sr → �N \ {0} are
homotopic, and so, if r is small and if deg0F ′ is the degree of F ′

‖F ′‖ around SN−1
r , then

deg F = deg0F ′.

LEMMA 3.1. deg F = deg0F ′.

Using the Eisenbud-Levine-Khimshiashvili’s formula [9, 14], the computation
of deg H reduces to the problem of calculating a signature of an appropriate
bilinear symmetric form. Unfortunately the formula of the above lemma is difficult
to implement because it involves polynomials with a large number of monomials.
However, if we add the assumption that the polynomial factor algebra AF = �[x1,...,xN ]

(F1,...,FN )
is finite dimensional as a vector space over �, then we can use the following more
effective method. Let φ : AF → � be the Kronecker symbol or global residue on AF .
A description of this residue can be found in [2, 7, 16, 19, 20]. It is a linear functional
with which we can define the following bilinear symmetric form � :

� : AF × AF → �, �(f, g) = φ(fg).

THEOREM 3.2. The form � is non-degenerate and

deg F = signature �.

Proof. See [20, Theorem 1.5]. �
Now we assume that F−1(0) is a finite set, which is realized if dim�AF < +∞. Let

q1, . . . , qt be the zeros of F and for all i ∈ {1, . . . , t}, let degqi F be the degree of F
‖F‖

around a small sphere centered at qi. Let P : �N → � be a polynomial. We wish to
compute

t∑
i=1

sign P(qi) · degqi
F.

We write (x, λ) = (x1, . . . , xn, λ) for a coordinate system in �N+1 and we define G :
�N+1 → �N+1 by G(x, λ) = (F, λP − 1).

LEMMA 3.3. The set G−1(0) is finite and
∑

i

sign P(qi) · degqi
F = deg G.

Proof. A point (x, λ) belongs to G−1(0) if and only if F(x) = 0 and P(x) �= 0. Hence

G−1(0) =
{(

qi,
1

P(qi)

) ∣∣∣∣ P(qi) �= 0
}

and

deg G =
∑

i|P(qi)�=0

deg(qi,
1

P(qi ) )G.

Changing F if necessary, we can assume that qi is a non-degenerate zero of F . It is then
a simple determinant computation to see that (qi,

1
P(qi)

) is a non-degenerate zero of G
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and that

deg(qi,
1

P(qi ) )G = sign P(qi) · degqi
F. �

4. An index computation. We characterize a Morse correct critical point of an
analytic function defined on an analytic manifold with boundary. We relate its Morse
index to a local topological degree.

Let f : �n → � be an analytic function and let p ∈ f −1(0) be such that ∇f (p) �=
0. From the implicit function theorem, f −1(0) is a smooth (n − 1)-manifold in the
neighborhood of p. Let ω : (�n, p) → (�, ω(p)) be an analytic function defined around
p. Let H : �n+1 → �n+1 be given by

H(x, λ) = (λ∇ω(x) + ∇f (x), f (x)) .

We shall study the situation at the point p.

LEMMA 4.1. The function ω|{f ∗0} (∗ is either ≤ or ≥) admits a correct critical point
at p if and only if there exists λ �= 0 such that H(p, λ) = 0. Furthermore λ is uniquely
determined.

Proof. A point p ∈ f −1(0) is a critical point of ω|{f ∗0} if and only if there exists
µ such that ∇ω(p) + µ∇f (p) = 0. Moreover it is correct if and only if µ �= 0. The
number λ sought is thus 1/µ. If there is λ′ �= λ with H(p, λ′) = 0 then ∇ω(p) = 0,
which contradicts the fact that p is correct. �

LEMMA 4.2. The function ω|{f ∗0} admits a Morse correct critical point at p if and
only if there exists λ �= 0 such that H(p, λ) = 0 and JH(p, λ) �= 0, JH being the Jacobian
determinant of H. Furthermore, if s is the Morse index of ω|f −1(0) at p then

(−1)s = sign λn × sign JH(p, λ).

Proof. Let H̄ : �n+1 → �n+1 be defined by

H̄(x, λ) = (∇ω(x) + λ∇f (x), f (x)) .

In [18], Szafraniec proves in Lemma 1.4 that ω|f −1(0) has a Morse critical point at p if
and only if there is a unique µ such that H̄(p, µ) = 0 and JH̄(p, µ) �= 0. In this case,
(−1)s+1 = sign JH̄(p, µ). Now

JH̄(p, µ) = det(āi,j)1≤i,j≤n+1,

where

āi,j = ∂2ω

∂xi∂xj
(p) + µ

∂2f
∂xi∂xj

(p) for (i, j) ∈ {1, . . . , n}2,

āi,n+1 = ān+1,i = ∂f
∂xi

(p) for i ∈ {1, . . . , n},
ān+1,n+1 = 0.

Then

JH̄(p, µ) = µn−1 × det(ai,j)1≤i,j≤n+1,
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where

ai,j = 1
µ

∂2ω

∂xi∂xj
(p) + ∂2f

∂xi∂xj
(p) for (i, j) ∈ {1, . . . , n}2,

and ai,j = āi,j otherwise. Putting λ = 1/µ and using the fact that −λ ∂ω
∂xi

(p) = ∂f
∂xi

(p) for

all i ∈ {1, . . . , n}, we see that JH(p, λ) = −λn−2JH̄(p, µ). �

5. Degree formulas. Recall that f : �n → � is a polynomial with isolated critical
points and that f (0) > 0. Let ω(x) = 1

2 (x2
1 + · · · + x2

n). The polynomials H, K , L1 and
L2 are defined this way : H(x, λ) = (λx + ∇f, f ), K(x, λ) = (λx + ∇f, λf ), L1(x, λ) =
(∇f, λf − 1) and L2(x, λ) = (∇f, λf 2 − 1).

By Lemma 3.3, we already know that L−1
1 (0) and L−1

2 (0) are finite. We shall describe
the set H−1(0) and K−1(0). We define �f := {∇f = 0}, �0 := �f ∩ f −1(0) and M :=
f −1(0) \ �0. It is clear that M is either empty or a smooth manifold of dimension n − 1.
The polynomial function ω|M has a finite number of critical values [15, Corollary 2.8]
which implies that the set C of critical points of ω|M is bounded.

LEMMA 5.1. A point p belongs to C if and only if there exists λ �= 0 such that
H(p, λ) = 0. Furthermore λ is uniquely determined.

Proof. Since f (0) > 0, each critical point of ω|M is a correct critical point. The
lemma is a consequence of Lemma 4.1. �

LEMMA 5.2. A point p belongs to �0 if and only if H(p, 0) = 0.

Proof. This is clear. �
Let �x : �n+1 → �n be the projection on the n first components.

COROLLARY 5.3. The set �x(H−1(0)) is C � �0.

Proof. This follows from the two previous lemmas. �
LEMMA 5.4. The set H−1(0) is compact.

Proof. We know that �x(H−1(0)) is bounded because C is and �0 is finite. Moreover
it is closed because it is the algebraic set defined by the vanishing of f and all the
2 × 2 minors of the jacobian matrix of the map (f, ω). Hence it is compact. For all
p ∈ �x(H−1(0)), there exists a unique λ(p) such that

λ(p) · p + ∇f (p) = 0.

Since p �= 0, the map of �x(H−1(0)) given by p �→ λ(p)is continuous and so H−1(0) =
{(p, λ(p)) | p ∈ �x(H−1(0))} is compact. �

LEMMA 5.5. A point p belongs to C if and only if there exists λ �= 0 such that
K(p, λ) = 0. Furthermore λ is uniquely determined.

LEMMA 5.6. A point p belongs to �f if and only if K(p, 0) = 0.

COROLLARY 5.7. The set �x(K−1(0)) equals C � �f .

LEMMA 5.8. The set K−1(0) is compact.

Proof. It is the union of H−1(0) and {(x, 0) | x ∈ �f }. �
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The expressions deg H and deg K do make sense. We choose R > 0 such that
C ∪ �f ⊂ Bn

R. This implies that f −1(0) ∩ Bn
R (respectively {f ∗ 0} ∩ Bn

R, ∗ ∈ {≤,≥}) is a
deformation retract of f −1(0) (respectively {f ∗ 0}). Let us write �f = {q1, . . . , qt} with
�0 = {q1, . . . , qr} (r ≤ t). We need the following lemma.

LEMMA 5.9. If δ is a small regular value of f , then

χ
(
f −1(δ) ∩ Bn

R

) = χ (f −1(0)) − sign (−δ)n
r∑

i=1

degqi
∇f,

χ
({f ≥ δ} ∩ Bn

R

) − χ
({f ≤ δ} ∩ Bn

R

)

= χ ({f ≥ 0}) − χ ({f ≤ 0}) + sign (−δ)n+1
r∑

i=1

degqi
∇f.

Proof. The first item is proved in exactly the same way as Khimshiasvili’s formula
mentioned in the introduction. We refer to [1, 10, 14, 21] for a proof.

In order to prove the second equation, for δ > 0, we use the facts that

χ
({f ≥ 0} ∩ Bn

R

) = χ
({f ≥ δ} ∩ Bn

R

) + χ
({0 ≤ f ≤ δ} ∩ Bn

R

) − χ
(
f −1(δ) ∩ Bn

R

)
,

and

χ
({f ≤ δ} ∩ Bn

R

) = χ
({f ≤ 0} ∩ Bn

R

) + χ
({0 ≤ f ≤ δ} ∩ Bn

R

) − χ
(
f −1(0) ∩ Bn

R

)
,

and that {0 ≤ f ≤ δ} ∩ Bn
R retracts to f −1(0) ∩ Bn

R. Applying this to −f gives the result
for δ < 0. �

THEOREM 5.10. If n is even, then

χ (f −1(0)) = deg H + deg ∇f − deg L2,

χ ({f ≥ 0}) − χ ({f ≤ 0}) = 1 − deg K − deg L1.

If n is odd, then

χ (f −1(0)) = deg K − deg L1,

χ ({f ≥ 0}) − χ ({f ≤ 0}) = 1 − deg H − deg ∇f + deg L2.

Proof. Let us choose R′ > 0 such that H−1(0) � Bn+1
R′ and K−1(0) � Bn+1

R′ . Since
�x(K−1(0)) ⊂ C ∪ �f , we can choose R′ ≥ R. Let δ �= 0 be a small regular value of f .
We construct two appropriate deformations Hδ and Kδ of H and K in the following
way:

Hδ(x, λ) = (λx + ∇f (x), f (x) − δ),

Kδ(x, λ) = (λx + ∇f (x), λ(f (x) − δ)).

We study first the topological degree of Kδ

‖Kδ‖ around Sn
R′ . Let

m = min
{‖K(x, λ)‖ | (x, λ) ∈ Sn

R′
}
.

On Sn
R′ , ‖K − Kδ‖ = λδ and, if we take δ such that |δR′| < m

2 , then ‖Kδ‖ > m
2 on Sn

R′ .
This implies that this degree is well defined. We denote it by deg(Kδ, R′).
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If there is a point (p, λ) ∈ Sn
R′ such that K(p, λ) and Kδ(p, λ) point in opposite

directions, then λp + ∇f (p) = 0, for K and Kδ have the same n first components. Hence
λf (p) and λ(f (p) − δ) have opposite signs. This can happen only if |f (p)| < |δ|. But in
this case ‖K(p, λ)‖ < |δR′| < m

2 , a contradiction. We have proved that deg(Kδ, R′) =
deg K . Similarly, deg(Hδ, R′) = deg H.

Let (p, λ) ∈ H−1
δ (0) ∩ Bn+1

R′ . By Lemma 4.1, p is a critical point of ω|f −1(δ) and
‖p‖ ≤ R′. Since on {R ≤ ‖x‖ ≤ R′}, ω|f −1(0) does not admit critical points, ω|f −1(δ) does
not admit critical points on {R ≤ ‖x‖ ≤ R′}, for δ sufficiently small. Hence ‖p‖ ≤ R.
Conversely, if p is a critical point of ω|f −1(δ)∩Bn

R
, then there exists λ such that Hδ(p, λ) = 0.

Taking δ small enough, p is close to C ∪ �0 and so, by continuity, (p, λ) is close to
H−1(0). Hence (p, λ) ∈ Bn+1

R′ . We have proved that �x(H−1
δ (0) ∩ Bn+1

R′ ) is exactly the set
of critical points of ω|f −1(δ)∩Bn

R
that we denote by Cδ. Similarly �x(K−1

δ (0) ∩ Bn+1
R′ ) =

Cδ � �f .
Let us compute deg(H, R′). We choose a function ω̃ : �n → � that uniformly

approximates ω in the Whitney C2-topology and such that ω̃|f −1(δ)∩Bn
R

is Morse correct.
One notices that, since the gradient of ω is outward pointing along f −1(0) ∩ Sn−1

R ,
ω̃|f −1(δ)∩Bn

R
is not inward at any critical point lying in f −1(δ) ∩ Sn−1

R . Let {p1, . . . , pm}
be the set of critical points of ω̃|f −1(δ)∩Bn

R
lying in {‖x‖ < R} and let {s1, . . . , sm} be the

set of their respective indices. Since f (0) > 0, ω|{f ≥δ} and ω|{f ≤δ} are correct and so are
ω̃|{f ≥δ} and ω̃|{f ≤δ}.

By Lemma 4.1, for all j ∈ {1, . . . , m} there exists λj �= 0 such that λj∇ω̃(pj) +
∇f (pj) = 0. By Lemma 4.2, each (pj, λj) is a non-degenerate zero of H̃δ, that is defined
by

H̃δ(x, λ) = (λ∇ω̃(x) + ∇f (x), f − δ),

and

(−1)sj = sign λn
j × sign JH̃δ(pj, λj).

Summing over all the points pj and using the fact that H̃δ is close to Hδ, we obtain

deg(Hδ, R′) =
m∑

j=1

sign λn
j × (−1)sj .

We have to compute deg(Kδ, R′). First we see that, putting

K̃δ(x, λ) = (λ∇ω̃(x) + ∇f (x), λ(f − δ)),

the points (pj, λj) are non-degenerate zeros of K̃δ and

JK̃δ(pj, λj) = λjJH̃δ(pj, λj).

Hence

(−1)sj = sign λn−1
j × sign JK̃δ(pj, λj).

The points (qi, 0) are the other zeros of K̃δ. Taking a Morse approximation of f around
a point qi, if necessary, which gives us an approximation of K̃δ near (qi, 0), we prove
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that

deg(qi,0)K̃δ = sign(f (qi) − δ) × degqi
∇f.

Finally we get that

deg(Kδ, R′) =
m∑

j=1

sign λn−1
j × (−1)sj +

t∑
i=1

sign(f (qi) − δ) × degqi
∇f.

Now we relate these two degrees to Euler characteristics. By Theorem 2.6, we have

χ
(
f −1(δ) ∩ Bn

R

) =
m∑

j=1

(−1)sj ,

χ
({f ≥ δ} ∩ Bn

R

) = 1 +
∑

j|λj<0

(−1)sj ,

χ
({f ≤ δ} ∩ Bn

R

) =
∑

j|λj>0

(−1)sj .

The term 1 that appears in the second formula is the contribution of the point 0, which
is a Morse critical point of ω|{f ≥δ}∩Bn

R
. Note also that, since ∇ω is outward pointing

along Sn−1
R , no inward critical point lies on this sphere. From the two latter formulae,

we deduce that

χ
({f ≥ δ} ∩ Bn

R

) − χ
({f ≤ δ} ∩ Bn

R

) = 1 −
m∑

j=1

sign λj × (−1)sj .

Collecting all this information, we have, if n is even,

χ
(
f −1(δ) ∩ Bn

R

) = deg H, (A)

χ
({f ≥ δ} ∩ Bn

R

) − χ
({f ≤ δ} ∩ Bn

R

) −
t∑

i=1

sign(f (qi) − δ) · degqi
∇f = 1 − deg K. (B)

If n is odd, then

χ
(
f −1(δ) ∩ Bn

R

) +
t∑

i=1

sign(f (qi) − δ) · degqi
∇f = deg K, (C)

χ
({f ≥ δ} ∩ Bn

R

) − χ
({f ≤ δ} ∩ Bn

R

) = 1 − deg H. (D)

For i ∈ {1, . . . , r}, sign(f (qi) − δ) = −sign (δ) and for i ∈ {r + 1, . . . , t}, we have
sign(f (qi) − δ) = sign f (qi). Combining this with Lemma 5.9 yields, if n is even,

χ (f −1(0)) −
r∑

i=1

degqi
∇f = deg H,

χ ({f ≥ 0}) − χ ({f ≤ 0}) −
t∑

i=r+1

sign(f (qi)) · degqi
∇f = 1 − deg K.
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If n is odd, then

χ (f −1(0)) +
t∑

i=r+1

sign(f (qi)) · degqi
∇f = deg K,

χ ({f ≥ 0}) − χ ({f ≤ 0}) +
r∑

i=1

degqi
∇f = 1 − deg H.

Finally, by Lemma 3.3,

r∑
i=1

degqi
∇f = deg ∇f − deg L2

and

t∑
i=r+1

sign f (qi) · degqi
∇f = deg L1. �

EXAMPLES. (1) Let f (x1, x2) = −x2
1x5

2 + x4
1x3

2 + 5x3
2 − 5x2

1x2 − 4x2
2 + 4x2

1. The
computer gives that dim �[x1, x2]/(f, fx1 , fx2 ) = 13 so that f −1(0) may admit
singularities. Let us consider H and K : �3 → �3 given by

H(x1, x2, x3) = (x1x3 + fx1 , x3(x2 − 1) + fx2 , f ),

K(x1, x2, x3) = (x1x3 + fx1 , x3(x2 − 1) + fx2 , f x3).

Here we use the distance function ω(x1, x2) = 1
2 (x2

1 + (x2 − 1)2). Since f (0, 1) = 1 > 0,
we can apply the previous theorems. Using methods of Section 3, we find deg H = 5,
deg K = 1, deg ∇f = −4, deg L1 = −1 and deg L2 = 1. By our theorem, we have

χ (f −1(0)) = 5 + (−4) − 1 = 0,

χ ({f ≥ 0}) − χ ({f ≤ 0}) = 1 + (−1) + (−1) = −1.

(2) Let f (x1, x2, x3) = x2
1x3

2 + x1x4
2 − 2x3

1 − 2x2
1x2 − x3

2 − x1x2 + 2x1x3 + x2
3 +

2x1 + 1. First dim �[x1, x2, x3]/(f, fx1 , fx2 , fx3 ) = 6, so that f −1(0) may have singu-
larities. We find that deg H = 3, deg K = 5, deg ∇f = −2 and deg L1 = deg L2 = 0.
Hence

χ (f −1(0)) = 5 − 0 = 5,

χ ({f ≥ 0}) − χ ({f ≤ 0}) = 1 − 3 − (−2) = 0.

REMARK 5.11. Formulas given in Theorem 5.10 are still true with the weaker
hypothesis that the set of critical points of f is compact and the proof is similar to
the one we presented above. However, in that case, the maps H, K, L1 and L2 can
not admit a finite number of zeros and so their total degrees are more difficult to
compute.
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