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m-DIMENSIONAL SCHLOMILCH SERIES 

ALLEN R. MILLER 

ABSTRACT. By using the principle of mathematical induction a simple algebraic 
formula is derived for an w-dimensional Schlômilch series. The result yields a count-
ably infinite number of representations for null-functions on increasingly larger open 
intervals. 

1. Introduction. In 1900 Nielsen [ 1 ] derived the following summation formula for 
a one-dimensional (ID) Schlômilch series: 

(i. i) g ( - i ) * ^ r ^ = - — ^ — + ^ ^ YXJ? ~{k- i /2)Vr1 /2 

where Rei />—1/2, x > 0 and/? is a non-negative integer such that (p — 1 /2)TT <x < 
(p+1 /2)7r. Recently, motivated by a conjecture of Henkel and Weston [2], Miller [3] and 
Grosjean [4] using different methods derived a summation formula for the 2D Schlômilch 
series: 
(1.2) 

oo oo ,M2xy/k2+n2) 
£ E(-i)*+"* , , , , ., 

Jt" . ID f - " A ^ •> . . , ~ o , . . . .„•> ->..._! 

-5xr?o+^)55 , , ,-<-I /2 , ,"J-*-I /? lWr 

where Re 1/ > 0, x > 0. Here/? and u(s) are the largest integers such that 

P<~ + 2 ^ 

" ( 5 ) < 2 + M 
l\2 x ( l \ 

^ - l 5 - 2 J -
Note that if 0 < x < it/y/l, then/? < 1, and the double sum over s, t in the right hand 
side of equation (1.2) vanishes. 

When v = 1 /2 , equation (1.2) reduces to the trigonometric lattice sum 

gg(_lf,sin(WFT?) = _» 0 < 1 < „ / V 5 
k=\n=o \jkl + nl L 
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which occurs in finite-size scaling of the three-dimensional spherical model of ferromag-
netism [5]. 

From equations (1.1) and (1.2) respectively we easily obtain for Re v > — 1 /2 , x > 0 

LT^M (xkY IY1 +v) 171 2 +1/) V4x2/ ± ^ V TT2 / s odd 

and for Re v > 0, x > 0 
(1.4) 

jfc=_oo n=-oo (xVk2 + ft2)" 

1 167r-1/7r2A^^$r/^/4;c2
 0 0 \ - 1 

+ r(i + i/) ro 

where the summation indicies s and £ are positive integers and a prime next to a summa
tion means that the summation index is never zero. 

In the present paper we shall generalize equations (1.3) and (1.4) to m-dimensional 
Schlômilch series. We shall then be able to obtain representations by Schlômilch series 
for null-functions on increasingly larger open intervals. 

2. m-dimensional series. Following Allen and Pathria [6], let q(m) denote the vec
tors whose m components range over all integers (positive, negative and zero). A prime 
next to a summation will now mean that q(w) ^ 0. Also let T(m) denote the constant 
vector whose m components have the value 1 /2 . The length of the vector q(m) is denoted 
by q = |q(/w)|. With this notation equations (1.3) and (1.4) may be written respectively 
for m = 1,2 as 
(2.1) 

where Re z/ > m/2 — 1, x > 0 and the m components of the vector £(m) range over odd 
positive integers subject to the condition £2 < 4x2/ir2. 

Since 

n ~ JJ& _ o ^ R l + ^ - z 2 ] 
( ' z» ~ r(i+!/) 

equation (2.1) may also be written for x > 0 

-m/2 

where Rez/ > m/2 — 1. We note that since both sides of equations (2.1) and (2.3) are 
even functions of x, these results are actually valid for x ^ 0. 
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In fact equation (2.3) is true for all positive integers m for we shall assume it is true 
for an arbitrary integer m and show it is also true for m + 1. Thus by the principle of 
mathematical induction (see e.g. [7, p. 42]), equation (2.3) and hence also equation (2.1) 
are valid for all positive integers m. 

3. The inductive proof. Call the left-hand side of equation (2.3) S(m). In order to 
compute S(m + 1) we shall need a special case of the addition theorem for generalized 
hypergeometric functions (see i.e. [8, p. 24]), namely: 

where all the parameters may be complex numbers. This result is sometimes called the 
addition theorem for Bessel functions of the first kind (see also [9, p. 129]). 

Letting the integer I denote any (fixed) component of the vector q(m + 1), it is easy 
to see from equation (3.1) that 

Jv(2xq{m+\)) oo (-^^yj^lxqjm)) 
( } faOH+l))" h r\ (xq(m)Y+r ' 

Thus we write 

^ / .jJ2xq(m+l)) 
5(w+l)= E cos(27rq(m + l)-T(m+l)) / / J 

q(m+i) [xq{m + 1)J 

(3.3) = . £ cos(27rq(m + 1) • r(m + 1)) £ ± > - \ ^ J 
q(w+i) r=o r- [xq(m)j 

= E (-1) E Ij E cos(27rq(m) • r(m)) v +/ 
£=_oo r=0 r i q(m) (X#(m)J 

where the later two summations have been interchanged. Now by using the induction 
hypothesis equation (2.3) with v replaced by v + r we obtain 

/ . / 7T2 \^^ 2 < 4 j c 2 / 7 r 2 /4x 2 W"-
s<™+1>=4"'""/2(5) | , (^ -< 2 ) 

-m/2 

• ^ » èor (^ + I / ) (^+z / ) r r ! -

Noting equation (2.2) we rewrite this as 

v—m/2 

^ + i )=4-^(^) E (£-?) 
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In order to evaluate the bilateral sum over the summation index £, we use equa
tion (1.3) with the prime next to the summation removed (which is just equation (2.3) 
for the case m = 1), x replaced by yjx2 — 7r2£2/4, and v replaced byi/ — m/2. Thus, for 
Re v > (m — l ) /2 we have 

S»+l) = 4",r-/2(JL E * . _ ^ 

47T-'/2 

i r ( i ^ + i / ) 
*2+€2<4jC2/7T2

r 4 

4 (X 2 -TT 2 £ 2 / 4 ) J 

v—m/2 

v—m/2 

£ ^ - ^ / 4 ) - ^ 
- i i / - m / 2 - l / 2 ) 

5 odd 

^ - H ^ - a Ç i ^2 „ ^2<4%2/TT2 *2+C2<4X2/TT2
 4 J C 2 

r(i=*+i/)V4?) £ S ^ 
w+l 

2 „ 2 ) ' 2 

T 
which simplifies to 

Hence comparing this with equation (3.3) we see that equation (2.3) is valid for all pos
itive integers m by induction. 

4. Null-functions. Recalling that the vectors (j(/w), r(m) are defined for m = 
1,2,3,...by 

where the Sj are odd positive integers, we have 

£ 2 = ^ + 5 2 + . . . + ^ i2=m/4. 

Hence if 0 < x < iry/m/2, equations (2.1) and (2.3) give respectively 

Y, cos(27rq • T) + = 0 (4.1) 
q(w) (jc^y r ( i +1/) 

£cos(27rq-T)^F=° 
q(ro) VX(d) 

where Re v > m/2 — 1 and x is in the open interval (0, 7TT). 
Allen and Pathria, who derived equation (4.1) in [6] using their previous results in 

[10], have noted that the importance of equation (4.1) lies in the fact that it provides 
representations for null-functions over the increasingly larger intervals (0, iry/m/2). 
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In conclusion, we remark that a different approach (via L. Schwartz's distributions) 
to the summation of Schlômilch series may be found in [ 11 ]. 

ACKNOWLEDGEMENT. The author thanks the referee for several comments used to 
clarify the presentation. 
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