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Besov Spaces and Hausdorff Dimension
For Some Carnot-Carathéodory
Metric Spaces

Leszek Skrzypczak

Abstract. We regard a system of left invariant vector fieldsX = {X1, . . . ,Xk} satisfying the Hörmander

condition and the related Carnot-Carathéodory metric on a unimodular Lie group G. We define Besov

spaces corresponding to the sub-Laplacian ∆ =
∑

X2
i both with positive and negative smoothness.

The atomic decomposition of the spaces is given. In consequence we get the distributional characteri-

zation of the Hausdorff dimension of Borel subsets with the Haar measure zero.

The theory of Hausdorff dimension of subsets of metric spaces has come to play

an important role in many different areas of mathematics. One encounters the Haus-
dorff dimension in geometric measure theory, calculus of variations, fractal geome-
try, dynamical systems theory and others fields of mathematics. On the other hand in
recent years there has been great interest in the study of Carnot-Carathéodory spaces.

These are the metric spaces whose distance is generated by the sub-unit curves related
to a family of vector fields of Hörmander type. There exists also the growing liter-
ature in the corresponding sub-elliptic analysis in particular the relevant PDEs, cf.

e.g. [4] and [28]. The Carnot-Carathéodory Hausdorff measures and the Hausdorff

dimensions seems to be still not well understood. The paper is a step in shedding
some light on the problem.

We regard Carnot-Carathéodory metric ρ on a unimodular Lie group G defined
by system of left invariant vector fields X = {X1, . . . ,Xk}. It is assumed that the

vector fields are linearly independent and satisfy the Hörmander condition. Our aim
is to give distributional characterization of the Hausdorff dimension of Borel subsets
of G with the Haar measure zero. To make it possible we should classify the distri-
bution with respect to some “smoothness”. For this purpose we used Besov spaces

Bs
p,q(G,X), s ∈ R, 1 ≤ p ≤ ∞, corresponding to the system X of the vector fields.

The spaces are defined in terms of a heat semi-group related to the sub-Laplacian
∆ =

∑

i X2
i . Function spaces of Sobolev-Besov type for subelliptic operators were

studied by many authors, cf. [2], [3], [5], [7], [16]. The authors regard the spaces

of positive smoothness. We need also the spaces with negative smoothness therefore
we develop the theory in this direction. The definitions and facts concerning the sys-
tems of vector fields, the Carnot-Carathéodory metrics and Besov spaces are given in
Section 1.

The main tool use in the paper is the technic of atomic decompositions. We extend
the approach developed for the function spaces related to Beltrami-Laplace operator
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Besov Spaces and Hausdorff Dimension 1281

of a Riemannian manifold, cf. [19]. This method is a somewhat modified version of
the Frazier-Jawerth approach, cf. [9], [10]. But it should be mentioned that atomic

decompositions in non-Euclidean setting has been developed since the 70’s. Coifman
and Weiss book [1] on harmonic analysis on homogeneous spaces can be regard as a
source of the theory, cf. also [12]. The atomic decomposition theorem is proved in
Section 2, cf. Theorem 1. Using the decomposition one can easily prove elementary

embeddings for the function spaces, cf. Corollary 1, and can compare the elliptic and
subelliptic Besov spaces, cf. Corollary 2.

Let F be a subset of G. The Hausdorff s-dimensional measure Hs(F) of F is defined

in the following way

Hs(F) = sup
ε>0

Hs
ε(F), Hs

ε(F) = inf
∑

Ui∈U

diam(Ui)
s,

where the infimum is over all countable covers U of F such that diam(U i) ≤ ε for
each i. If σ > s and Hs(F) is finite, then Hσ(F) = 0. The last property allows to
define the Hausdorff dimension of the set F with respect to the metric ρ

dim
ρ
H F = inf{s : Hs(F) = 0}.

On the other hand a distributional dimension of a closed subset F of G of the Haar
measure 0 can be defined in terms of the Besov spaces Bs

∞,∞(G,X). We put

Bs,F
∞,∞(G,X) = { f ∈ Bs

∞,∞(G,X) : f (ϕ) = 0 if ϕ ∈ C∞o (G) and ϕ|F = 0}.

Definition The distributional dimension dimX
D F of F is

dimX
D F = sup{δ ∈ R : B−d+δ,E

∞,∞ (G,X) 6= {0} for some compact E ⊂ F}.

The distributional dimension dimX
D F of a set F with Haar measure zero describes

the ability of the set F to carry non-trivial singular distributions as smooth as possible
whereas the Hausdorff dimension dim

ρ
H F describes the massiveness of the set F. The

distributional dimension in Euclidean setting was introduced in [27].

The main result of the paper reads as follows.

Theorem Let F be a Borel subset of G with the Haar measure 0. Then

dim
ρ
H F = dimX

D F.(1)

The measure theoretical methods usually allow to prove inequalities dim
ρ
H F ≤ s,

whereas the distributional dimension can be easier estimated from the below. Thus
the above theorem is helpful in calculating the Hausdorff dimension. A proof of the
theorem can be found in Section 3.
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1 Preliminaries

1.1 Subelliptic Operators on Lie groups

Let G be a connected n-dimensional unimodular Lie group endowed with a Haar
measure dx and a system X = {X1, . . . ,Xk} of left invariant vector fields, satisfying
the Hörmander condition. We assume that the vectors X1(e), . . . ,Xk(e) are linearly

independent.
The Carnot-Carathéodory distance corresponding to X is defined in the following

way. Let AX be the family of all absolutely continuous paths γ : [0, 1]→ G such that
γ̇(t) =

∑

ai(t)Xi

(

γ(t)
)

, for almost every t ∈ [0, 1]. Put

|γ| =
∫ 1

0

(

k
∑

i=0

a2
i (t)
) 1/2

dt.

Since X satisfies the Hörmander condition any two points of G can be joined by such
a path. So we can put

ρX(x, y) = ρ(x, y) = inf{|γ| : γ ∈ AX, γ(0) = x, γ(1) = y}.

The function ρ is a left invariant distance on G which induces the topology of G. To
simplify the future notation we put also ρ(x) = ρ(e, x).

If the vectors X1(e), . . . ,Xk(e) span TeG than the distance ρ coincide with Rieman-
nian distance given by the left invariant Riemannian metric with X1(e), . . . ,Xk(e),
n = k, as an orthogonal basis. Otherwise we deal with sub-Riemannian metric on G,
cf. [24] for the basic facts of the sub-Riemannian geometry.

If G is a left-invariant Riemannian metric on G such that the vectors X1(e), . . . ,
Xk(e) form an orthonormal system then the sub-Riemannian structure is given by
the restriction of Gx to Sx = span

(

X1(x), . . . ,Xk(x)
)

. The Riemannian distance
ρG = ρ̃ and the sub-Riemannian distance always satisfy the following inequality

ρ̃(x, y) ≤ ρ(x, y).
The metric space (G, ρ) is complete since the Riemannian manifold (G,G) is com-

plete, cf. [24, Theorem 7.4]. In that case any two point of G can be joined by length
minimizing sub-Riemannian geodesic, cf. Theorem 7.1 in [24].

For a multi-index I = (i1, . . . , im) with i j ∈ {1, . . . , k} we put

XI =

[

Xi1

[

Xi2
, . . . , [Xim−1

,Xim
] · · ·

]

]

and XI
= Xi1

Xi2
, . . . ,Xim

.

The Hörmander condition implies the existence of N ∈ N such that {0} = K0 ⊂
K1 ⊂ · · · ⊂ KN = TeG, where Ki = span {XI(e) : |I| ≤ i}. The integer

d = dim K1 + 2(dim K2 − dim K1) + · · · + N(dim KN − dim KN−1)(2)

is called a local dimension of (G,X), cf. [28, Chapter V]. Since both, the Carnot-
Carathéodory distance and the Haar measure are left invariant, a volume of balls is
independent of centers and depend only on the radius. We will denote the volume
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of the balls of radius t by V (t). For balls with small radius we have the following
estimates:

∃d ∈ N ∃C > 0 ∀t ∈ (0, 1] C−1td ≤ V (t) ≤ Ctd,(3)

cf. [28, Theorem V.4.1].
A stratified group is a nilpotent Lie group G, with the Lie algebra g admitting a

vector space decomposition g =
⊕N

1 V j such that [V1,V j] = V j+1 for j < m and
[V1,VN] = {0}. We define a one-parameter family δs of automorphisms of g, called

dilations, by the formula δs(
∑N

1 Y j) =
∑ j

r Y j . The dilations induce automorphisms
of G, still called dilations. Let X be a basis of V1. The Carnot-Carathèodory metric
generated by the family X is equivalent to the metric defined by homogeneous norm
x→ |x| on G given by

∣

∣

∣
exp
(

N
∑

1

Y j

)
∣

∣

∣
=

(

j
∑

r

|Y j |2N!/ j
e

) 1/(2N!)

.

Here | · |e denotes the Euclidean norm.

The sub-Laplacian

∆ =

d
∑

i=1

X2
i(4)

is a hypoelliptic, symmetric operator. The operator −∆ is a positively defined, es-
sentially self-adjoint with domain C∞o (G). Its Friedrichs extension is a infinitesimal
generator of the symmetric markovian semigroup Ht = et∆ that is called the heat

semigroup associated with ∆. The semigroup acts on the Lp spaces, 1 ≤ p ≤ ∞.

Thanks to the left invariance of∆, Ht admits a right convolution kernel ht

Ht f (x) = f ∗ ht(x) =

∫

G

ht (y−1x) f (y) dy.

The function R+×G 3 (t, x) 7→ ht (x) is a positive smooth solution of ( d
dt
−∆)u = 0

and ‖ht‖1 = 1. Thus Ht is a semigroup of contractions in any Lp spaces.
The following estimates of the heat kernel are important for us:
1. the Harnack inequality: ∀0 < t1 < t2 <∞, ∀I ∈ I(k) and ∀m ∈ N, there exists

C > 0 such that ∀x ∈ G and ∀s ∈ (0, 1]

sup
y∈B(x,

√
s)

∣

∣

∣
XI
( ∂

∂t

)m

hst1
(y)
∣

∣

∣
≤ Cs−m−|I|/2 inf

y∈B(x,
√

s)
|hst2

(y)|,(5)

cf. [28, Theorem V.4.2],
2. the gaussian bounds: there exists C, c > 0 such that, for all t ∈ (0, 1) and all

x ∈ G

C−1V (
√

t)−1 exp
(

−c−1ρ(x)2/t
)

≤ ht (x) ≤ CV (
√

t)−1 exp
(

−cρ(x)2/t
)

,(6)
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cf. [28, Theorem V.4.3].
To deal with function spaces of negative smoothness we need a counterpart of

Schwartz space of distribution. Let Ṽ (r) denote a volume of a geodesic ball of radius
r with respect the left invariant Riemannian metric G on G. The volume Ṽ (r) can be
estimates in the following way

Ṽ (r) ≤ Crneκr, n = dim G,

for suitable constants C > 0 and κ ≥ 0. We define the seminorms |ψ|m,k, m, k ∈ N

by

|ψ|m,k = sup
x∈G, j≤k

|∇ jψ(x)|
(

1 + ρ̃(e, x)
)−m

e−κρ̃(e,x).(7)

A space of rapidly decreasing functions S(G) is a vector space of functions ψ ∈
C∞(G) such that |ψ|m,k < ∞ for any m and k. The space S(G) is a Fréchet space

and C∞0 (G) is a dense subspace of S(G). In consequence the space S ′(G) dual to
S(G) can be identified with the subspace of the space of distributions. The functions
belonging to S(G) are p-integrable, 1 ≤ p <∞. Moreover, it follows from the above
estimates of the heat kernels that any regarded heat kernel ht (x) is an element of S(G).

The standard argument with the heat semigroup give as the following decomposition
of integrable function f

f (x) = f ∗ hm,0 +
1

(m− 1)!

∫ 1

0

tm f ∗ hm
t

dt

t
with hk

t =
dk

dtk
ht and hm,0 =

m−1
∑

`=0

1

`!
h`1.

(8)

This formula can be extended to f ∈ S ′ if the convergence of the integral in (8) is

understood in the weak sense.
If α > 0 then the integral

Jα(x) = Γ
( α

2

)−1
∫ ∞

0

t
α
2
−1e−tht (x) dt

converges absolutely for any x 6= e to a positive function such that
∫

Jα(x) dx = 1.
So we can define the Bessel potential (I −∆)−α/2 by

(I −∆)−α/2 f (x) =

∫

G

f (y) Jα(y−1x) dy.(9)

It is straightforwards to verify that:

‖(I −∆)−α/2 f ‖p ≤ ‖ f ‖p, if 1 ≤ p ≤ ∞ and α > 0,(10)

(I −∆)−α/2(I −∆)−β/2
= (I −∆)−(α+β)/2, α, β > 0,(11)

(I −∆)k(I −∆)−α/2
= (I −∆)−(α−2k)/2, α > 2k.(12)

The definition coincides with the definition via spectral theorem for L2.
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1.2 Besov spaces with positive smoothness.

Besov spaces with positive smoothness defined on Lie Groups have been investigated
by several authors. The spaces were first treated on stratify groups, cf. [8] and [16],
then in more general setting for semi-groups generated by sub-Laplacian in [2] and

[5]. In contrast to the above mentioned papers we are interested in the spaces with
negative smoothness. But in this section we recall the basic facts about spaces with
positive smoothness. We adapt the approach via the heat semi-group presented in
[5]. This approach can be easily extended to negative smoothness, therefore we for-

mulate a general definition from the very beginning.

Definition 1 Let s ∈ R, 1 ≤ p, q ≤ ∞ and m > |s|
2

.

Bs
p,q(G,X) =

{

f ∈ S ′ : ‖ f |Bs
p,q(G,X)‖ = ‖ f ∗ hm,0‖p

+
(

∫ 1

0

t (m−s/2)q‖ f ∗ hm
t ‖

q
p

dt

t

) 1/q

<∞
}

Remark 1 1. The norms depend on the chosen m, but the definition of the Besov
space is independent of m up to norm equivalence. This is the direct consequence of
Proposition 1 if s > 0, and the atomic decomposition theorem if s ≤ 0. The atomic
decomposition theorem is proved in Section 2.

2. If s > 0 then one can use ‖ f ‖p instead of ‖ f ∗ hm,0‖p in the definition of the
norm. Indeed, the inequality ‖ f ∗hm,0‖∞ ≤ C‖ f ‖∞ is clear. On the other hand using
the formula (8), the Minkowski inequality for integrals and the Hölder inequality we
get

‖ f ‖p ≤ ‖ f ∗ hm,0‖p +
1

(m− 1)!

(

∫ 1

0

tq ′s/2 dt

t

) 1/q ′(
∫ 1

0

tq(m−s)/2‖ f ∗ hm
t ‖

q
p

dt

t

) 1/q

≤ C

(

‖ f ∗ hm,0‖p +
(

∫ 1

0

tq(m−s)/2‖ f ∗ hm
t ‖

q
p

dt

t

) 1/q
)

.

3. If the vectors X1(e), . . . ,Xk(e) span TeG, i.e. if k = n, then the spaces Bs
p,q(G,X)

coincides with the spaces Bs
p,q(G) defined on G by H. Triebel in terms of the left in-

variant Riemannian metric, cf. [26]. In that case the spaces Bs
p,q(G,X) are indepen-

dent of the given system X such that k = n, so they will be denoted by Bs
p,q(G).

4. To simplify the notation we will write ‖ f |Bs
p,q‖ instead of ‖ f |Bs

p,q(G,X)‖ if it
does not lead to misunderstanding.

By C(G) we denote the set of all complex-valued bounded and uniformly-

continuous functions on G equipped with the sup-norm. Furthermore, if j ∈ N,
we define a space

C j(G,X) = { f ∈ C(G) : XI f ∈ C(G) for all |I| ≤ j}

endowed with the norm

‖ f |C j(G,X)‖ =
∑

I:|I|≤ j

‖XI f ‖∞.
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Let T(g) denote a left-translation with respect to element g ∈ G, i.e. T(g) f (x) =
f (gx). The left regular representation G 3 g 7→ T(g) is strong continuous in Lp(G)

if 1 ≤ p < ∞, and weak∗ continuous if p = ∞. The heat-semigroup Ht is a strong
continuous (weak∗ continuous if p = ∞) semigroup generated by the closure of
the subelliptic operator (4). The semigroup is exponentially decreasing, cf. (6), and
holomorphic, cf. Corollary 4.17 in [15].

We put

ω(m)
t f = sup

{∥

∥

(

I − T(g1)
)

· · ·
(

I − T(gm)
)

f ‖p : g1, . . . , gm ∈ Gρ(gi) ≤ t
}

,

and regard the following norms

‖ f ‖(1) = ‖ f ‖p +
(

∫ 1

0

t (m−s/2)q‖(I −Ht )
m f ‖q

p

dt

t

) 1/q

,(13)

‖ f ‖(2) = ‖ f ‖p +
(

∫ 1

0

t (m−s/2)q‖∆mHt f ‖q
p

dt

t

) 1/q

,(14)

‖ f ‖(3) = ‖ f ‖p +
(

∫ 1

0

(t−sω(m)
t f )q dt

t

) 1/q

.(15)

The following proposition is a special case of the results proved in [5], cf. Theo-
rem 3.1, Theorem 3.2 and Corollary 3.4.

Proposition 1 Let s > 0, 1 ≤ p, q ≤ ∞ and m > s
2
. Then

Bs
p,q(G) = { f ∈ Lp(G) : ‖ f ‖(1) <∞} = { f ∈ Lp(G) : ‖ f ‖(2) <∞}

= { f ∈ Lp(G) : ‖ f ‖(3) <∞}.

Moreover, the norms
∥

∥ ·|Bs
p,q(G,X)

∥

∥ , ‖ · ‖(1), ‖ · ‖(2), ‖ · ‖(3) are equivalent.

Remark 2 If p = q = ∞ we get the Hölder-Zygmund spaces Cs(G,X) =
Bs
∞,∞(G,X). If j < s ≤ j + 1 then C j+1(G,X) ⊂ Cs(G,X) ⊂ C j(G,X).

2 Atomic Decomposition and Besov Spaces

In this section we prove the atomic decomposition theorem. To formulate the de-
composition we need some coverings of the group G by Carnot-Carathéodory balls.
We recall that a covering is called uniformly locally finite if any element of the group

belongs to at most C balls of the coverings. The smallest possible constant C is called
a multiplicity of the covering.

Let r j , j = 0, 1, 2 . . . be a sequence of positive numbers decreasing to zero. Let
(

B j = {B(x j,i , r j)}∞i=0

)∞
j=0

be a sequence of uniformly locally finite coverings of G

by balls of radius r j . The supremum of multiplicities of coverings B j , j = 0, 1, . . . , is
called the multiplicity of the sequence B j . The sequence B j is called uniformly locally

finite if its multiplicity is finite and the balls B(x j,i , r j/2) and B(x j,k, r j/2) have empty
intersection for any possible j, i, k, i 6= k.
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Lemma 1 Let G be a connected unimodular Lie group equipped with the Carnot-

Carathéodory metric. For every sufficiently small r0 > 0 there exists a uniformly

locally finite sequence (B j) of coverings of G by balls of radius r j = 2− jr0, B j =

{B(x j,i , r j)}i∈N, j = 0, 1, . . . . Moreover, if l ∈ N and l · r < r0 then the multiplic-

ity of the sequence (B(l)
j ) j=0,1,..., B

(l)
j = {B(x j,i , lr j)}i∈N, is also finite.

The proof of the above lemma is the same as the proof of Lemma 4 in [19] there-
fore it is omitted here. To simplify the notation we will assume that r0 = 1.

Definition 2 Let s ∈ R and 0 < p ≤ ∞. Let L and M be integers such that L ≥ 0
and M ≥ −1.

(a) A smooth function a(x) is called an 1L-atom centered at B(x, r) if

supp a ⊂ B(x, 2r),(16)

sup
y∈X

|XIa(y)| ≤ C for any |I| ≤ L.(17)

(b) A smooth function a(x) is called an (s, p)L,M-atom centered at B(x, r) if

supp a ⊂ B(x, 2r),(18)

sup
y∈X

|XIa(y)| ≤ rs−|I|− d
p , for any |I| ≤ L,(19)

∣

∣

∣

∫

G

a(y)ψ(y) dy
∣

∣

∣
≤ rs+M+1+d/p ′

∥

∥ψ|CM+1
(

B(x, 2r)
)
∥

∥(20)

holds for any ψ ∈ C∞0
(

B(x, 3r)
)

.
If M = −1 then (20) means that no moment conditions are required.

Theorem 1 Let G be a connected unimodular Lie group equipped with the Carnot-

Carathéodory metric. Let
(

B j = {B(x j,i , 2
j)}i∈N

)

be a uniformly locally finite se-

quence of coverings of G.

Let s ∈ R, 1 ≤ p, q ≤ ∞. Let L and M be fixed integers satisfying the following

condition

L ≥ ([s] + 1)+ and M ≥ max([−s],−1).(21)

(a) each f ∈ Bs
p,q(G,X) can be decomposed as follows

f =

∞
∑

j=0

∞
∑

i=0

s j,ia j,i (convergent in S ′)(22)

with
( ∞
∑

j=0

(

∞
∑

i=0

|s j,i |p
) q/p

) 1/q

<∞.(23)

where a0,i is a 1L-atom centered in B(x0,i , 1) and a j,i , j > 0, is a (s, p)L,M-atom

centered in B(x j,i , 2
− J).
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(b) Conversely, suppose that f ∈ S ′ can be represented as in (22) and (23). Then

f ∈ Bs
p,q(G,X).

Furthermore, the infimum of (23) with respect to all admissible representations (for fixed

sequence of coverings and fixed integers L, M) is an equivalent norm in Bs
p,q(G,X).

Proof

Step 1 First we prove some auxiliary inequalities. Let Mo denote a local maximal
function i.e. Mo f (x) = supr≤c V (r)−1

∫

B(x,r)
f (y) dy. Mo is a bounded operator in

Lp(G), 1 < p ≤ ∞. Let Φ be a nonnegative radial function defined on G supported
in B(e, 1). If Φ is decreasing in radial directions then there is a positive constant C

such that the inequality

|Φ ∗ f (x)| ≤ C

∫

X

Φ(y) dy(Mo| f |)(x)(24)

holds for any locally integrable function f . The last inequality can be proved in the
same way as the similar inequality in [20, page 57], confer also [18, Proof of Theo-
rem 2].

We choose ε > 1. Let χ̃ j,i denote the characteristic function of the ball

Ω(x j,i , ε2− j). If we put χ̃
(p)
j,i = 2

jd
p χ̃ j,i , then the following elementary inequality

Mo(χ̃
(p)
j,i )(x) ≤ C

(

Mo(χ̃
(p)w
j,i )

) 1/w
(x)(25)

holds for any 0 < w < 1 with the constant C independent of j. The inequalities

(24)–(25) and the estimates of the heat kernel, cf. (5)–(6) imply

tm
∣

∣

∣

∞
∑

i=0

s j,iχ̃
(p)
j,i

∣

∣

∣
∗ |hm

t |(x) ≤
∫

|y|≤
√

t

+

∫

√
t≤|y|≤1

+

∫

|y|≥1

≤ CMo

(

∞
∑

i=0

|s j,i |χ̃(p)
j,i

)

(x) + Ch ∗
(

∞
∑

i=0

|s j,i |χ̃(p)
j,i

)

(x),(26)

where h is a fixed integrable function.
For future use we need two positive constants b and δ. We choose these con-

stants in such a way that the following identities are satisfied b − δ2
=

b
16

and

b − δ = b
4
. Such constants exist and both b and δ are greater then 1. Let Q j,i =

(b4− j−1, b4− j) × Ω(x j,i , 2
− j). Then the Harnack-Moser inequality for subsolutions

of parabolic equations implies

sup
(t,x)∈Q j,i

|hm
t ∗ f (x)| ≤ C2 jd/w

(

∫

Ω(x j,i ,δ2− j )

∫ b4− j

b4− j−2

|hm
t ∗ f (x)|w dt

t
dx
) 1/w

,(27)

whereC is the constant depending only on d, b, δ and w, 0 < w <∞, cf. Theorem 5.1
in [17].
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Let {ψ j,i} be the smooth resolution of unity corresponding to the covering
{Ω(x j,i , ε2

− j)}. We may assume that for every positive m there is a constant bm such

that the inequality

∣

∣

∣

∂|γ|

∂Hγ
ψ j,i ◦ expx j,i

(H)
∣

∣

∣
≤ bm2− j|γ|(28)

holds for every j, i and every H ∈ Tx j,i
X and every multi-index γ such that |γ| ≤ m.

The Theorem III.1.5 in [28] the scaling method, cf. Section V.3 ibidem, imply that
the inequality

|∇khm
t ∗ f (x)| ≤ C2 j(k+d)

∫

Q j,i

|hm
t ∗ f (y)|dt

t
dy.(29)

holds for any (t, x) ∈ [εb4− j−1, εb4− j]× Ω(x j,i , ε2
− j).

Step 2 We assume that s > 0. Let

f =

∞
∑

j=0

∞
∑

i=0

s j,ia j,i with

( ∞
∑

j=0

(

∞
∑

i=0

|s j,i |p
) q/p

) 1/q

<∞.

We prove that ‖ f |Bs
p,q‖ can be estimated from above by the atomic norm. The esti-

mate of ‖ f ∗ h0,m‖p is almost immediate,

∥

∥

∥

∞
∑

j,i=0

s j,ia j,i ∗ hm,0

∥

∥

∥

p
≤ ‖hm,0‖1

∞
∑

j=0

∥

∥

∥

∞
∑

i=0

s j,ia j,i

∥

∥

∥

p

≤ C

∞
∑

j=0

2− j(s− d
p

)
∥

∥

∥

∞
∑

i=0

s j,iχ j,i

∥

∥

∥

p

≤ C

( ∞
∑

j=0

(

∞
∑

i=0

|s j,i |p
) q/p

) 1/q

.(30)

To estimate the second part of the norm we divide it into two sums

(

∫ 1

0

t (m−s/2)q
∥

∥

∥

∞
∑

j,i=0

s j,ia j,i(x) ∗ hm
t

∥

∥

∥

q

p

dt

t

) 1/q

≤
( ∞
∑

k=0

∫ 2−k

2−k−1

t (m−s/2)q
(

[k/2]
∑

j=0

∥

∥

∥

∞
∑

i=0

s j,ia j,i ∗ hm
t

∥

∥

∥

p

) q dt

t

) 1/q

(31)

+

( ∞
∑

k=0

∫ 2−k

2−k−1

t (m−s/2)q
(

∞
∑

j=[k/2]

∥

∥

∥

∞
∑

i=0

s j,ia j,i ∗ hm
t

∥

∥

∥

p

) q dt

t

) 1/q

.(32)
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We put J = min(m, [ L
2

]). If j ≤ [k/2] then (2 j− k)(2 J− s) is a nonpositive number.
We choose also w < 1 such that p

w
> 1. By the definition of atoms the sum (31) is

less or equal to

( ∞
∑

k=0

( [k/2]
∑

j=0

√
2

(2 j−k)(2 J−s)
∥

∥

∥
tm− J

∞
∑

i=0

|s j,i |χ̃(p)
j,i ∗ |hm− J

t |
∥

∥

∥

p

) q
) 1/q

≤ C

( ∞
∑

j=0

∥

∥

∥

∥

(

Mo

(

∞
∑

i=0

|s j,i |wχ̃(p)w
j,i

)

) 1/w∥
∥

∥

∥

q

p

) 1/q

+ C

( ∞
∑

j=0

∥

∥

∥

(

∞
∑

i=0

|s j,i |χ̃(p)
j,i

)

∗ h
∥

∥

∥

q

p

) 1/q

(33)

≤ C

( ∞
∑

j=0

∥

∥

∥

(

∞
∑

i=0

|s j,i |χ̃(p)
j,i

)
∥

∥

∥

q

p

) 1/q

≤ C

( ∞
∑

j=0

(

∞
∑

i=0

|s j,i |p
) q/p

) 1/q

,(34)

where the first inequality follows from (25)–(26) and the second by boundedness of
the local maximal operator.

Now let k− 2 j ≤ 0. In this case we have,

( ∞
∑

k=0

∫ 2k

2−k−1

t (m−s/2)q
(

∞
∑

j=[k/2]

∥

∥

∥

∞
∑

i=0

s j,ia j,i ∗ hm
t

∥

∥

∥

p

) q dt

t

) 1/q

≤ C

( ∞
∑

j=0

∥

∥

∥

∥

(

Mo

(

∞
∑

i=0

|s j,i |wχ̃(p)w
j,i

)

) 1/w∥
∥

∥

∥

q

p

) 1/q

+ C

( ∞
∑

j=0

∥

∥

∥

(

∞
∑

i=0

|s j,i |χ̃(p)
j,i

)

∗ h
∥

∥

∥

q
) 1/q

≤ C

( ∞
∑

j=0

(

∞
∑

i=1

|s j,i |p
) q/p

) 1/q

.

Thus we have proved that the following inequality

‖ f |Bs
p,q(G,X)‖ ≤ C

( ∞
∑

j=0

(

∞
∑

i=0

|s j,i |p
) q/p

) 1/q

(35)

holds if s > 0.

Step 3 We prove that the inequality (35) holds also for s ≤ 0. Now the moment
condition is of the great importance. In particular, the moment condition and the
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Harnack inequality imply

tm|a j,i ∗ hm
t (x)| = tm

∣

∣

∣

∫

G

a j,i(y)hm
t (y−1x) dy

∣

∣

∣

≤ tm2− j(s+M+1+d/p ′)
∥

∥hm
t (x−1·)|CM+1

(

B(x j,i , 2− j+2)
)
∥

∥

≤ C2− j(s+M+1+d/p ′)
√

t
−M−1

inf
y∈B(x j,i ,2− j+2)

h2t (x−1·).

Thus

tm
∥

∥

∥

∞
∑

i=0

s j,ia j,i ∗ hm
t

∥

∥

∥

1
≤ C2− j(s+M+1)

√
t
−M−1

∞
∑

i=0

|s j,i |
∫

G

h2t (x−1)x j,i dx

≤ C2− j(s+M+1)t−M−1
∞
∑

i=0

|s j,i |

and

tm
∥

∥

∥

∞
∑

i=0

s j,ia j,i ∗ hm
t (x)

∥

∥

∥

∞
≤ C2− j(s+M+1+d)

√
t
−M−1

sup
i

|s j,i |

× sup
x

∞
∑

i=0

2 jd

∫

B(x j,i ,2− j+2)

h2t(x−1 y) dy

≤ C2− j(s+M+1)t−M−1 sup
i

|s j,i |.

By interpolation we get

tm
∥

∥

∥

∞
∑

i=0

s j,ia j,i ∗ hm
t (x)

∥

∥

∥

p
≤ C2− j(s+M+1)

√
t
−M−1

(

∞
∑

i=0

|s j,i |p
) 1/p

.(36)

We divide the integral
∫ 1

0
into two parts as in (31)–(32). The first part can be

estimates in the same way as above. To estimates the second one can used (36). From

the moment condition and the Harnack inequality we conclude also that

∥

∥

∥

∞
∑

j,i=0

s j,ia j,i ∗ hm,0

∥

∥

∥

p
≤
∞
∑

j=0

∥

∥

∥

∞
∑

i=0

|s j,i | |a j,i ∗ hm,0|
∥

∥

∥

p

≤ C

∞
∑

j=0

2− j(s+M+1+d/p ′)
∥

∥

∥

∞
∑

i=0

|s j,i | inf
y∈B(x j,i ,2)

h2(x−1 y)
∥

∥

∥

p

≤ C

∞
∑

j=0

2− j(s+M+1)
(

∞
∑

i=0

|s j,i |p
) 1/p

≤ C

( ∞
∑

j=0

(

∞
∑

i=0

|s j,i |p
) q/p

) 1/q
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Thus the inequality (35) holds also for nonpositive s.

Step 4 Now we decompose any distribution from Bs
p,q(G,X), s > 0, into a sum of

atoms. For this part of proof it is convenient to change the formula (8) a bit and to

write it down in the following form

f = f ∗ h̃m,0 + C

∫ εb

0

tm f ∗ hm
t

dt

t
,(37)

where b is the positive constant used in inequality (29) and h̃m,0 =
∑m−1

`=0
(εb)`

`! hl
εb.

Using the above resolutions of unity and (37) we get the following decomposition
of f

f (x) = f ∗ h̃m,0 + C

∫ εb

0

tm f ∗ hm
t

dt

t

= f ∗ h̃m,0 +

∞
∑

j=1,i=0

ψ j,i

∫ εb2− j

εb4− j−1

tm f ∗ hm
t

dt

t
=

∞
∑

j,i=0

s j,ia j,i ,

where

a j,i(x) = C2−2 jms−1
j,i ψ j,i(x)

∫ εb4− j

εb4− j−1

tm f ∗ hm
t (x)

dt

t
for j ≥ 1,(38)

a0,i(x) = s−1
i ψ0,i(x) f ∗ h̃m,0(x),(39)

s j,i = 2 j(s− n
p
−2m)

∑

`∈I j,i

sup
x∈Q j,`

|ht ∗∆m f |(x) for j ≥ 1,(40)

s0,i =

(

∫

B(x0,i ,2)

| f ∗ h̃m,0(x)|p dx
) 1/p

,(41)

and

I j,i = {` ∈ N : B(x j,`, 2
− j) ∩ B(x j,i , 2

− j) 6= ∅}.

It follows from the inequalities proved in the first step that a j,i are (s, p)-atoms cf.

(27)–(29). On the other hand one can use the standard estimates for hypoelliptic
operators, cf. [28, Corollary III.1.3], and invariance of the vector fields with respect

to the left translations to prove that the functions a0,i are 1L atoms. Using the same
inequalities one can proved that the atomic norm (23) can be estimated from above
by C‖ f |Bs

p,q(G,X‖ with the constant C independent of f . We recall that one can use

‖ f ‖p instead of ‖ f ∗ hm,0‖p since s > 0.

Step 5 Let s ≤ 0. Let k ∈ N be such that 2k + s > 0. We prove that (I − ∆)k is a
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isomorphism of Bs+2k
p,q (G,X) onto Bs

p,q(G,X). Let f ∈ Bs+2k
p,q (G,X). Then

‖(I −∆)k f ∗ hk,0‖p +
(

∫ 1

0

t (k−s/2)q‖(I −∆)k f ∗ hk
t ‖

q
p

dt

t

) 1/q

≤ C‖ f ‖p + C

k
∑

l=0

(

∫ 1

0

t (k+l−(s+2l)/2)q‖ f ∗ hk+l
t ‖

q
p

dt

t

) 1/q

.

If s < 0 then k + l > k + s
2

for any possible l so every summand in the last sum is less

than or equal to ‖ f |Bs+2k
p,q ‖. If s = 0 then k + l > k + s

2
for l = 1, . . . , k so there same

argument does not work only for l = 0. In this case we have

(

∫ 1

0

tkq‖ f ∗ hk
t ‖

q
p

dt

t

) 1/q

≤
(

∫ 1

0

t (k−σ/2)q‖ f ∗ hk
t ‖

q
p

dt

t

) 1/q

≤ C‖ f |Bσp,q‖ ≤ C‖ f |B2k
p,q‖,

where 0 < σ < 2k. In consequence

‖(I −∆)k f |Bs
p,q(G,X)‖ ≤ C‖ f |Bs+2k

p,q (G,X)‖.(42)

Now we assume that f ∈ Bs
p,q(G,X). Using the method due to E. Stein, one can

prove that

(−∆)k(I −∆)−k f ∗ hk
t = f ∗ hk

t +
∑

cm(I −∆)−m f ∗ hk
t ,

with
∑

|cm| <∞, cf. [21, p. 133]. Since 2k > s+2k
2

we have

(

∫ 1

0

t (2k−(s+2k)/2)q‖(I −∆)−k f ∗ h2k
t ‖

q
p

dt

t

) 1/q

≤ C‖ f |Bs
p,q‖ + C

(

∫ 1

0

t (k−s/2)q
∥

∥

∥

∑

cm(I −∆)−m f ∗ hk
t

∥

∥

∥

q

p

dt

t

) 1/q

≤ C‖ f |Bs
p,q‖.

Let f ∈ Bs
p,q(G,X). We choose k ∈ N such that 2k + s ≥ 1. Then there exists

g ∈ Bs+2k
p,q (G,X) such that f = (I −∆)kg. Let

g =

∞
∑

j=0

∞
∑

i=0

s j,ia j,i ∈ Bs+2k
p,q (G,X).

be the atomic decomposition with of g with (s + 2k, p)L,−1-atoms, L > 2k. Then

f =

∞
∑

j=0

∞
∑

i=0

s j,ib j,i with b j,i = (I −∆)ka j,i .
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We prove that b j,i are (s, p)L−2k,2k−1-atoms after the suitable normalization. We have

|XIb j,i(x)| ≤ |XI(I −∆)ma j,i(x)| ≤ C2− j(s−|I|− d
p

),

and by the self-adjointness of∆

∣

∣

∣

∫

G

b j,i(y)ψ(y) dy
∣

∣

∣
≤ C2− jd2− j(s+2k− d

p
)
∥

∥ψ|C2k
(

B(x, 2r)
)
∥

∥ .

This finishes the proof of the theorem.

Corollary 1

(1) The definition of the space Bs
p,q(G,X) is independent of m.

(2) Let 1 ≤ p1 ≤ ∞, 1 ≤ q, q1 ≤ ∞ and s, σ ∈ R then

Bs
p,q(G,X) ⊂ Bs

p,q1
(G,X) if q ≤ q1,(43)

Bs
p,q(G,X) ⊂ Bσp,q1

(G,X) if s > σ,(44)

Bs
p,q(G,X) ⊂ Bσp1,q

(G,X) if s− d

p
= σ − d

p1
,(45)

S(G) ⊂ Bs
p,q(G,X).(46)

Moreover C∞0 (G) is a dense subspace of Bs
p,q(G,X) if p, q <∞.

(3) The operator (I −∆)k defines an isomorphism of Bs
p,q(G,X) onto Bs−2k

p,q (G,X).

Proof The proof is standard. The first point is a direct consequence of the last theo-
rem. The first embedding of the point (2) follows from the monotonicity of the `q-
spaces, the second embedding from definition of atoms, the above mention mono-

tonicity if q ≤ q1 or Hölder inequalities if q > q1. If s − d
p
= σ − d

p1
then any

(s, p)-atom is also (σ, p1)-atom. This implies the third embedding. If f ∈ S(G) then
we put

s0,i = sup{x ∈ B(x0,i , 1) : | f (x)|}

a0,i = s−1
0,i ψ0,i f if s0,i 6= 0,

f =
∑

i

ψ0,i f =
∑

i

s0,ia0,i ,

The last formula is a decomposition of f onto the sum of 1L atoms. Moreover

(

∑

i

|s0,i |p
) 1/p

≤ C‖ f |Lp‖ ≤ C| f |m,0
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for sufficiently large m, cf. (7).
If a j,i is an (s, p)-atom then

|X J(I −∆)ka j,i | ≤ C 2− j(s−2k−| J|− d
p

)

and the constant C is independent of j, p, s, J and the given atom a j,i . So the func-

tions b j,i = (I −∆)ka j,i are (s− 2k, p) atoms up to the new normalization constant
C . This proves the corollary.

Corollary 2 If s > 0 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞ then

Bs
p,q(G) ⊂ Bs

p,q(G,X) ⊂ B
s/N
p,q (G).

Here N is the constant defined in (2).

Proof

Step 1 It is well known that the left invariant Riemannian distance ρ̃ and the Carnot-

Carathéodory distance ρ satisfy the inequalities

ρ̃(x, y) ≤ ρ(x, y) ≤ Cρ̃1/N(x, y)(47)

if ρ̃(x, y) ≤ C , cf. [28, III.4]. We will denote by B(x, r) a ball corresponding to the
metric ρ and by B̃(x, r) a ball corresponding to the metric ρ̃. The last inequalities

implies

B(x, r) ⊂ B̃(x, r) ⊂ B(x,Cr1/N).(48)

Let {B̃(y j,k, 2
− j)} be a locally uniformly finite sequence of coverings corresponding

to the left invariant Riemannian metric ρ. Let {B(x j,i , 2
− j)} be similar sequence for

the Carnot-Carathéodory metric ρ. We put

K j,i = {k : B̃(y j,k, 2
− j) ∩ B(x j,i , 2

− j) 6= ∅},

I j,k = {i : B(x j,i , 2
− j) ∩ B̃(y j,k, 2

− j) 6= ∅}.

Using the inequalities (47) and the properties of uniformly locally finite coverings

one can easily prove that

|K j,i | ≤ C and |I j,k| ≤ C2 j(d− d
N

) ≤ C2 j(d−n).(49)

Step 2 Let f =
∑∞

j,k=0 λ j,ka j,k ∈ Bs
p,q(G) be an atomic decomposition correspond-

ing to the full Laplacian. We put

s j,i = 2 j n−d
p sup

k∈K j,i

|λ j,k|,

b j,i(x) = s−1
j,i ψ j,i(x)

∞
∑

k=0

λ j,ka j,k(x).
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The direct calculation shows that f =
∑∞

j,i=0 s j,ib j,i is an atomic decomposition of f

into atoms corresponding to the Carnot-Carathéodory metric. Moreover

( ∞
∑

j=0

(

∞
∑

i=0

|s j,i |p
) q/p

) 1/q

≤ C

( ∞
∑

j=0

(

∞
∑

k=0

|λ j,k|p
) q/p

) 1/q

.

since every |λ j,k| appear in the sum
∑∞

i=0 supk∈K j,i
|λ j,k|p at most 2 j(d−n) times.

Step 3 Now let f =
∑∞

j,i=0 λ j,ia j,i ∈ Bs
p,q(G,X) be an atomic decomposition corre-

sponding to the X of vector fields. Let Y = {Y1, . . . ,Yn} be a family of left invariant

vector fields such that:

– Yi = Xi if 1 ≤ i ≤ k,

– the vectors Y1(e), . . . ,Yn(e) form and orthonormal basis in the space TeG

equipped with the Riemannian scalar product. Then for any multi-index I we have

Y I
=

∑

J:| J|≤N|I|
c JX

J,(50)

cf. (2). Moreover, the formula (2) implies that d
N
< n. Thus by the definition of

(s, p)-atom and (50)–(51) we get

sup
y∈X

|Y Ia j,i(y)| ≤ 2− j N
p

(n− d
N

)2−N j( s
N
−|I|− n

p
),(51)

for |I| ≤ L/N . We put

F j,k = {i : B̃(y jN,k, 2
− jN) ∩ B(x j,i , 2

− j+1) 6= ∅},

E j,i = {k : B̃(y jN,k, 2
− jN) ∩ B(x j,i , 2

− j+1) 6= ∅}.

Since B̃(y jN,k, 2
− jN) ⊂ B(y jN,k, 2

− j), cf. (47), the cardinalities of the sets F j,k are
uniformly bounded. We define

s jN,k = 2− j N
p

(n− d
N

) sup
i∈F j,k

|λ j,i |,

b jN,k(x) = s−1
jN,kψ̃ jN,k(x)

∞
∑

i=0

λ j,ia j,i(x),

where {ψ̃ jN,k} is a resolution of unity corresponding to the covering

{B̃(y jN,k, 2
− jN )}. Now the inequality (51) implies that b jN,k is an ( s

N
, p)-atom cen-

tered at B̃(y jN,k, 2
− jN). Direct calculations show that f =

∑∞
j,k=0 s jN,kb jN,k is an

atomic decomposition of f in the Besov space corresponding to the full Laplacian.
We recall that the constant L is at our disposal. By the properties of coverings
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|E j,i | ≤ C2 jN . Therefore any λ j,i can appear at most C2 jN times in the sum
∑∞

k=0 supi∈F j,k
|λ j,i |p . Thus

( ∞
∑

j=0

(

∞
∑

k=0

|s jN,k|p
) q/p

) 1/q

≤ C

( ∞
∑

j=0

(

∞
∑

k=0

2− jN(n− d
N

) sup
i∈F j,k

|λ j,i |p
) q/p

) 1/q

≤ C

( ∞
∑

j=0

(

∞
∑

i=0

2− jN(n− d
N
−1)|λ j,i |p

) q/p
) 1/q

.

But the formula (2) implies

N
(

n− d

N

)

=

N−1
∑

i=1

dim Ki ≥ N.

In consequence 2− jN(n− d
N
−1) ≤ 1. This proves the corollary.

3 Hausdorff and Distributional Dimensions

We refer to [6] for basic properties of Hausdorff measures and the Hausdorff dimen-
sion. We recall that the Hausdorff dimension of the metric space (G, ρ) is equal to

the local dimension d, cf. [14, Theorem 2]. In this section we want to give the distri-
butional characterization of the Hausdorff dimension of Borel subsets of (G, ρ). In
the Euclidean case such characterization was given by Triebel and Winkelvoß, cf. [25,
Section 17] and [27].

Let F be a closed subset of G of the Haar measure 0. We put

Bs,F
∞,∞(G,X) = { f ∈ Bs

∞,∞(G,X) : f (ϕ) = 0 if ϕ ∈ C∞o (G) and ϕ|F = 0}.

Definition 3 Let F be a non-empty Borel subset of G with the Haar measure 0. The
distributional dimension dimX

D F of F is

dimX
D F = sup{δ ∈ R : B−d+δ,E

∞,∞ (G,X) 6= {0} for some compact E ⊂ F}.

Remark 3 1. The definition becomes obvious if we note that the Dirac distribution
at identity δe is an element of B−d

∞,∞(G,X). This is the direct consequence of the
definition of the Besov spaces and the upper Gauss estimates. On the other hand the

lower gaussian estimates imply that δe is not an element of Bs
∞,∞(G,X) if s > −d.

By left translations invariance of the spaces the same is true for the Dirac distribution
at any point of G. Thus the distributional dimension of a one point set is zero. In
consequence

0 ≤ dimX
D F ≤ d.(52)

2. The distributional dimension dimX
D F is monotone with respect to F. So, if F is

compact then

dimX
D F = sup

{

δ ∈ R : B−d+δ,F
∞,∞ (G,X) 6= {0}

}

.
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The above characterization holds also if F is a closed set, cf. [27].
3. The distributional dimension dimX

D F of a set F with Haar measure zero de-

scribe the ability of the set F to carry non-trivial singular distributions as smooth as
possible whereas the Hausdorff dimension dim

ρ
H F describe the massiveness of the set

F.
4. Suppose that there is a sequence of covers of the set F {U j : j = 1, 2, . . . } such

that the diameters of the covers go to zero and lim j→∞
∑

Ui∈U j
diam(Ui)

s
= 0. Then

from the definition of the Hausdorff dimension dim
ρ
H F ≤ s. On the other hand it

is sufficient to find a nonzero distribution f ∈ B−d+s,F
∞,∞ (G,X) in order to prove that

dimX
D F ≥ s. Thus if dimX

D F = dim
ρ
H F, then one can use the both characterizations

to calculate the Hausdorff dimension, cf. Example 1.

The following lemma will be needed later.

Lemma 2

(a) Let s ∈ R then
(

Bs
1,1(G,X)

) ′
= B−s

∞,∞(G,X).

(b) Let F ⊂ G be a nonempty closed set of the Haar measure zero. Let B
s,F
1,1(G,X) denote

the closure of {ψ ∈ S(G) : ψ|F = 0} in Bs
1,1(G,X). If s ≤ 0 then

Bs,F
∞,∞(G,X) 6= {0} if and only if B−s,F

1,1 (G,X) 6= B−s
1,1(G,X).

Proof If f ∈ B−s
∞,∞(G) then it can be decomposed into the sum of (∞, L,M)-atoms,

f =
∑∞

j,i=0 λ j,ia j,i . We assume that s > 0. Let bk,` be a (1,M + 1,−1) atom. Let

I j,k,` = {i : B(x j,i , 2
− j+1) ∩ B(xk,`, 2

−k+1) 6= ∅}. It follows from the properties of
the covering that there is a constant C independent of j, k and ` such that |I j,k,`| ≤
C max (1, 2( j−k)d). The properties of the atoms imply

| f (bk,`)| ≤
∞
∑

j,i=0

|λ j,i | |a j,i(bk,`)|

≤
∞
∑

j≤k

∑

i∈I j,k,`

|λ j,i | |a j,i(bk,`)| +
∞
∑

j≥k

∑

i∈I j,k,`

|λ j,i | |a j,i(bk,`)|

≤ C

∞
∑

j≤k

2−(k− j)s|λ j,i | +
∞
∑

j≥k

2−( j−k)(M+1−s)|λ j,i | ≤ C sup
j,i
|λ j,i |.

In particular, if j ≥ k then the last inequality follows by the moment condition. The
similar argument works also for s ≤ 0. Thus

| f (ϕ)| ≤ ‖ϕ|Bs
1,1(G)‖.

To prove that every continuous functional is an element of B−s
∞,∞(G) we first as-

sume that s > 0. Let us put h̃m
t = tmhm

t . We prove that

‖h̃m
t |Bs

1,1(G)‖ ≤ Ct−s/2.(53)
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To prove this inequality we decompose h̃m
t into atoms. Let us choose j such that

2− j ≤
√

t < 2− j+1. We put

s j,i = 2 js inf
B(x j,i ,2− j+1)

hβt (x) and a j,i = 2− jss−1
j,i ϕ j,i h̃

m
t (x).

Then, it follows from the Harnack inequality that h̃m
t =

∑∞
i=0 s j,ia j,i is the atomic

decomposition of h̃m
t and

∑∞
i=0 s j,i ≤ 2 js. So, the inequality (53) holds.

Now let f ∈
(

Bs
1,1(G)

) ′
. Then the inequality (53) implies

| f ∗ h̃m
t (x)| =

∣

∣ f
(

h̃m
t (·x)

) ∣

∣ ≤ Ct−s/2.

In the similar way

| f ∗ hm,0(x)| =
∣

∣ f
(

hm,0(·x)
)
∣

∣ ≤ C.

Thus f ∈ B−s
∞,∞(G).

If s ≤ 0 and s + m > 0 then f ◦ (I −∆)m ∈
(

Bs+2m
1,1 (G)

) ′
. So f ∈ B−s

∞,∞(G) by

the above result and the lift property.
The point (b) follows from (a) and the Hahn-Banach theorem.

Theorem 2 Let F be a Borel subset of G of the Haar measure 0. Then

dimρ
H F = dimX

D F.(54)

Proof

Step 1 The set F is a Borel subset of a separable complete metric space therefore

dim
ρ
H F = sup{dim

ρ
H E : E compact, E ⊂ F},

cf. [13, Section 8.13]. Thus it is sufficient to prove (54) for a non-empty compact set

F.

Step 2 First we prove that dim
ρ
H F ≤ dimX

D F. We may assume that dim
ρ
H F > 0,

otherwise all is obvious. If 0 ≤ γ < dimρ
H F then HγF =∞.

By the Frostman lemma there are a Radon measure µ on F and a positive number
δ such that µ(F) > 0 and

µ(E) ≤ d(E)γ for all E ⊂ F with d(E) < δ,(55)

cf. [13, Theorem 8.17]. Here d(E) denotes the diameter of the set E.
We define f ∈ D ′(G) by

f (ϕ) =

∫

F

ϕ(x) dµ(x).
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It should be clear that f is a distribution on G and that f (ϕ) = 0 if ϕ|F = 0.

Let ϕ =
∑∞

i, j=0 s j,ia j,i ∈ Bd−γ
1,1 (G,X). Then

| f (ϕ)| ≤ C

∞
∑

i, j=0

|s j,i |
∫

F

|a j,i(x)| dµ(x) ≤ C

∞
∑

i, j=0

|s j,i |.

Thus f ∈
(

B
d−γ
1,1 (G,X)

) ′
= Bγ−d

∞,∞(G,X), cf. Lemma 2.

Step 3 Now we prove that dimX
D F ≤ dimρ

H F. We may assume that dimX
D F < d, see

(52). If dim
ρ
H F < γ < d then Hγ(F) = 0. We want to show that B−d+γ,F

∞,∞ (G,X) =

{0}. But it follows from Lemma 2 that it is sufficient to show that B
d−γ,F
1,1 (G,X) =

B
d−γ
1,1 (G,X). Using the atomic decomposition one can prove the last identity in the

similar way to the Euclidean case, cf. [27, 3.3]. We sketch the argument for com-

pleteness. For every ε > 0 there exist δ > 0 and a finite cover of F by open balls B j

centered at F with diameters less than δ such that

K
∑

j=1

(diam B j)
γ < ε.

Moreover, there exists β > 0 such that
⋃K

j=1 B j covers the closure F̄β of the set Fβ =

{x ∈ G : dist(x, F) < β}. Let {ϕ}K
j=1 be a smooth resolution of unity on F̄β related

to the cover {B j}. The functions (diam B j)
−γϕ j are a family of (d − γ, 1)-atoms,

after a suitable normalization. Thus if ϕ =
∑K

j=1 ϕ j then

‖ϕ|Bn−γ
1,1 (G,X)‖ ≤ c

N
∑

j=1

(diam B j)
γ < cε.(56)

Letψ ∈ C∞o (G) be a smooth compactly supported function. We chooseϕ1 ∈ C∞o (G)
such that ϕ1(x) = 1 if x ∈ supp ψ ∪ supp ϕ. Then ψ(ϕ1 − ϕ) ∈ C∞o (G) and
ψ(x)

(

ϕ1(x)− ϕ(x)
)

= 0 if x ∈ F. Moreover,

‖ψ − ψ(ϕ1 − ϕ)|Bn−γ
1,1 (G,X)‖ = ‖ψϕ|Bn−γ

1,1 (G,X)‖ ≤ c‖ϕ|Bn−γ
1,1 (G,X)‖ ≤ cε,

where the last but one inequality follows from the fact that ψ is a pointwise multiplier
for B

n−γ
1,1 (G,X) and the last one follows by (56). The space of test functions C∞o (G) is

dense in B
n−γ
1,1 (G,X) therefore B

n−γ
1,1 (G,X) ⊂ B

n−γ,F
1,1 (G,X). The opposite inclusion

is obvious.

As a easy consequence of the above theorem we get the following inequalities.

Corollary 3 Let dim
ρ̃
H F denote the Hausdorff dimension of the set F in the metric

space (G, ρ̃). If F is a set of Haar measure zero then

max{dimρ̃
H F, d− N(n− dimρ̃

H F)} ≤ dimρ
H F ≤ min{N dimρ̃

H F, d− n + dimρ̃
H F}
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Proof We may assume that F is a compact set. The inequalities ρ̃(x, y) ≤ ρ(x, y) ≤
Cρ̃1/N(x, y), ρ̃ ≤ c, and the definition of Hausdorff dimension imply

dim
ρ̃
H F ≤ dim

ρ
H F ≤ N dim

ρ̃
H F

On the other hand by the last theorem we have

dim
ρ
H F = sup

{

δ ∈ R : B−d+δ,F
∞,∞ (G,X) 6= {0}

}

dim
ρ̃
H F = sup

{

δ ∈ R : B−n+δ,F
∞,∞ (G) 6= {0}

}

Moreover Corollary 2 and Lemma 2 imply

B−s/N
∞,∞(G) ⊂ B−s

∞,∞(G,X) ⊂ B−s
∞,∞(G).(57)

Let δ < dim
ρ̃
H F. Then B−n+δ,F

∞,∞ (G) 6= {0}. But, it follows from (57) that

B−n+δ,F
∞,∞ (G) ⊂ BN(δ−n),F

∞,∞ (G,X).

So, B−d+d+N(δ−n),F
∞,∞ (G,X) 6= {0} and

dim
ρ
H F ≥ d + N(dim

ρ̃
H F − n).

On the other hand, if δ < dim
ρ
H F then B−d+δ,F

∞,∞ (G,X) 6= {0}. But, it follows from
(57) that

{0} 6= B−d+δ,F
∞,∞ (G,X) ⊂ B−n+n−d+δ,F

∞,∞ (G).

In consequence

dim
ρ̃
H F ≥ n− d + dim

ρ
H F.

At the end we give two simple examples.

Example 1 Let G be a unimodular Lie group and X = {X1, . . . ,Xk} a system of

left invariant vector fields satisfying the Hörmander condition. We use the notation
described in Section 1.1. Let γ : 〈−1, 1〉 → G be an integral curve of a vector field
XI , XI ∈ K` \ K`−1, 1 ≤ ` ≤ N . We will calculate the Hausdorff dimension of
F = γ(〈−1, 1〉). Let V j,k = γ

(

〈k2− j , (k+1)2− j〉
)

, k = −2 j ,−2 j +1, . . . , 2 j−1, j =

0, 1, . . . . The family {V j,k}k is a cover of F. The Carnot-Carathéodory metric ρ is left
invariant therefore diameters of the sets V j,k and V j,i are the same. If we rescale every
vector field Xi by parameter τ then the vector XI is rescale by the parameter τ `. In

consequence diam V j,k ∼ 2− j/`. Now we can estimate the Hausdorff s-dimensional
measure Hs of F,

Hs(F) ≤ lim
j→∞

2 j−1
∑

k=−2 j

(diam V j,k)s
= c lim

j→∞
2 j(1−s/`)
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Thus, Hs(F) = 0 if s > `. In consequence dim
ρ
H(F) ≤ `.

To prove the converse inequality we use Theorem 2. Let µ be the image of the one
dimensional Lebesgue measure under the mapping γ : 〈−1, 1〉 → F. The measure µ
is a non-zero Radon measure on F and the above mention method of rescaling proves
that the exist a constant C > 0 such that for any r > 0 we have µ

(

B(x, r)∩F
)

≤ Cr`.

We define a distribution f supported at F by

f (ψ) =

∫

F

ψ|F dµ, ψ ∈ C∞0 (G).(58)

If ψ =
∑

j

∑

i s j,ia j,i ∈ Bd−`
1,1 (G,X) is an atomic decomposition then

| f (ψ)| ≤
∑

j

∑

i

|s j,i |
∫

F

|a j,i | dµ ≤
∑

j

∑

i

|s j,i |2 j`

∫

B(0,2− j+1)∩F

dµ(59)

≤ C
∑

j

∑

i

|s j,i |,

Thus f ∈ B−d+`
∞,∞(G,X) and by Theorem 2 dim

ρ
H F = dimX

D F ≥ `.

Example 2 Let G be a Heisenberg group H
m
= R

m × R
m × R. We will use the

standard notations:

z = (x, y, t), x, y ∈ R
m, t ∈ R,

z0 · z1 = (x0 + x1, y0 + y1, x0 y1 − x1 y0 + t0 + t1),

for z, z0, z1 ∈ H
m, and refer to chapters XII and XIII in [20] for details.

We regard the Carnot-Carathéodory space related to the Heisenberg sublaplacian
∆. In this case d = 2m + 2, n = 2m + 1 and N = 2. The Haar measure on H

m

coincides with the Lebesgue measure on R
2m+1. Moreover, the metric spaces related

to the sub-elliptic Laplacian is equivalent to the space defined by homogeneous norm

|z| =
(

(|x|2e + |y|2e )2 + t2
) 1/4

,

whereas the metric space corresponding to the full Laplacian is locally Euclidean.
Here | · |e denotes the Euclidean norm. The group is a stratified group. The corre-

sponding dilations are given by

δs(x, y, t) = (sx, sy, s2t), s ∈ R+.

The dilation and the homogeneous norm are related by the formula |δs(z)| = s|z|.
The homogeneous norm restricted to W2m = {(x, y, 0) ∈ H

m : x, y ∈ R
m} is the

euclidean norm so for any subset F of W2m its elliptic Hausdorff dimension dim
ρ̃
H F

coincides with the sub-elliptic Hausdorff dimension dimρ
H F.
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Let e1, . . . , e2m+1 be a standard basis in R
2m+1. We put

V2m+1 = span {e2m+1} = {(0, 0, t) : t ∈ R},
Vk = span {e1, . . . , ek, e2m+1}, 1 ≤ k ≤ m.

By elementary calculations we get

vol
(

B(0, r) ∩Vk

)

=

∫ r2

−r2

∫

{x∈Rk :|x|4e≤r4−t2}
dx dt ≤ Crk+2, k = 1, . . . ,m(60)

where B(0, r) is a ball in subelliptic metric space and vol is a k + 1-dimensional vol-
ume. In the similar way vol

(

B(0, r) ∩V2m+1

)

≤ Cr2.

We define a distribution f supported at Vk given by

f (ψ) =

∫

Vk

ψ d vol , ψ ∈ C∞0 (H
m).(61)

If ψ =
∑

j

∑

i s j,ia j,i ∈ Bd−k−2
1,1 (G,X) is an atomic decomposition then

| f (ψ)| ≤
∑

j

∑

i

|s j,i |
∫

Vk

|a j,i | d vol ≤
∑

j

∑

i

|s j,i |2 j(k+2)

∫

B(0,2− j+1)∩Vk

d vol(62)

≤ C
∑

j

∑

i

|s j,i |,

where the last inequality follows from (60) and the fact that the Heisenberg trans-
lations coincides on Vk with the Euclidean translations. So, (62) proves that the

distribution (61) defines a continuous functional on Bd−k−2
1,1 (G,X). That is f ∈

B−d+k+2
∞,∞ (G,X). But this and the last corollary imply

dimρ
H Vk = k + 2 = dimρ̃

H Vk + 1 = d− n + dimρ̃
H Vk.

In the similar way dim
ρ
H V2m+1 = 2 = dim

ρ̃
H V2m+1 + 1.

Remark 4 1. Obviously, the number N dim
ρ̃
H F is a relevant estimate from above

of dimρ̃
H F only near zero, i.e. if dimρ̃

H F ∈< 0, d−n
N−1

). The number d−N(n−dimρ̃
H F)

is a relevant estimate from below only near n, i.e. if dim +H ρ̃F ∈< Nn−d
N−1

, n). On the

remaining part of the interval < 0, n) we have the estimates dim
ρ̃
H F ≤ dim

ρ
H F ≤

d − n + dim
ρ̃
H F. The above examples of subsets of the Heisenberg groups show that

both inequalities can not be improved in general.

2. The notation of self-similarity can be generalized to stratified nilpotent Lie
groups, cf. [23]. One can repeat Hutchinson’s construction of self-similar fractals
for the Carnot-Carathéodory metric appointed by the sub-Laplacian. In that case
Theorem 2 implies that the self-similar dimension of the fractal is equal to its distri-

butional dimension.
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