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LOOPS AS INVARIANT SECTIONS IN GROUPS, 
AND THEIR GEOMETRY 

Karl Heinrich Hofmann zum 60. Geburstag in Verehrung gewidmet. 

PÉTER T. NAGY AND KARL STRAMBACH 

ABSTRACT. We investigate left conjugacy closed loops which can be given by 
invariant sections in the group generated by their left translations. These loops are 
generalizations of the conjugacy closed loops introduced in [13] just as Bol loops 
generalize Moufang loops. The relations of these loops to common classes of loops 
are studied. For instance on a connected manifold we construct proper topological left 
conjugacy closed loops satisfying the left Bol condition but show that any differentiable 
such loop must be a group. We show that the configurational condition in the 3-
net corresponding to an isotopy class of left conjugacy closed loops has the same 
importance in the geometry of 3-nets as the Reidemeister or the Bol condition. 

0. Introduction. The development of the theory of loops has shown that there are 
particularly fruitful connections to the foundation of geometry and to the theory of groups; 
both theories have delivered methods for studying loops. From a group theoretical point 
of view the groups G generated by left or right translations of a loop have played an 
important role since the time of Albert's work (cf. e.g. [1]). A loop can be seen as a 
certain section in the group G (cf. e.g. [14], p. 216) and the investigation of loops can 
be transported to the study of these sections. Hence, for the same reason as loops with 
weaker associativity conditions have been considered one can study loops such that the 
corresponding sections have nice properties in the group G. From this point of view 
significant classes are loops with the left inverse property, left Bol loops, A -loops (cf. [6] 
and [14], pp. 222-223) and conjugacy closed loops (cf. [13]). 

The class of conjugacy closed loops is given by two conditions: the set of left 
translations is invariant in the group generated by left translations, and the same holds 
for the set of right translations in the group generated by the right translations. Another 
situation in which a class of loops is defined by two dual properties occurs for instance in 
the case of Moufang loops which are given by two dual Bol conditions. This motivated 
us to introduce the class of left conjugacy closed loops which contains the class of 
conjugacy closed loops properly but lies in the class of left A-loops. In contrast to the 
class of conjugacy closed loops (which are G-loops) the loops isotopic to a left conjugacy 
closed loop are not necessarily left conjugacy closed. Hence, from a geometric point of 
view, we are justified in introducing the subclass of universal conjugacy closed loops 
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which is closed with respect to isotopisms. This class is really wide in contrast to 
Theorem 1 in [24]. 

Any class of loops which is defined by algebraic identities and which is closed with 
respect to isotopisms can be characterized by configurational conditions in its associated 
3-net. It turns out that the configurational conditions determining 3-nets associated with 
left or right conjugacy closed loops, respectively, play an outstanding role in the theory 
of configurations. Together with the Reidemeister and Bol conditions, these are the only 
configurations which can be characterized by certain sets £ of projectivities of length 
< 6 of a line onto itself such that every projectivity of £ having a fixed point is already 
the identity. In contrast to the Bol conditions our configurational conditions with respect 
to two different families of parallel lines do not imply the condition with respect to the 
third family. 

From a group theoretical point of view, we have found very often that for a left 
conjugacy closed loop L the group G of left translations contains one or more (abelian or 
non-abelian) normal subgroups operating sharply transitively on L. If L is a differentiate 
left conjugacy closed loop then G is a Lie transformation group on L which contains 
a normal subgroup N operating also sharply transitively on L such that TV and the 
submanifold of left translations have the same tangent space at 1. 

An interesting subclass of left conjugacy closed loops are the loops which also satisfy 
the left Bol identity; we call them Burn loops. We want to stress that every connected 
differentiable Burn loop is a group but we have examples of proper differentiable Burn 
loops living on a manifold with two connected components. 

In the first section we clarify the relations between the class of left conjugacy closed 
loops and other classes of loops: Bol and Moufang loops, commutative loops, loops with 
inverse property, conjugacy closed loops, left A-loops and G-loops. We show that the 
class of universal left conjugacy closed loops is smaller than the class of left conjugacy 
closed loops. 

The second section is devoted to the study of differentiable left A-loops, left conjugacy 
closed loops, Burn loops and to the Lie groups generated by the left translations of these 
loops. 

In the third section we study the class of Burn loops L such that every loop isotopic 
to L is a Burn loop. We characterize such loops by configurational conditions and by 
properties of the left and middle nucleus. 

In Section 4 we give a complete classification of configurational conditions which 
are related to sets of projectivities of small length of a line onto itself. In addition we 
show that there exist conjugacy closed loops having neither the left nor the right inverse 
property, but for which corresponding configurational conditions hold in the associated 
3-net for all three families of lines. 

NOTATION. For elements JC, y of a quasigroup one defines y \ x := A"1* and x/y := 
p~lx, where Xy:x i—• yx and py:x \—• xy denote the left and the right translation by y 
respectively. An autotopism of a quasigroup is an isotopism onto itself. Often we call 
lines in a 3-net parallel to indicate that they belong to the same family. 
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1. Left conjugacy closed loops, Burn loops and extra loops. 

1.1. Loops as invariant sections. 

THEOREM 1.1.1. Let Lbe a loop and let G be the group generated by the left trans
lations \g\ L —• L, g E L. For the loop L the following conditions are equivalent: 

(i) the set {\g, g E L} is invariant under the inner automorphisms ofG; 
(ii) x\(yz) =x\(yx) -x\zforallx,y,z E L; 

(Hi) x • yz = (xy)/x • xzfor allx,y,z E L; 
(iv) the triples (X~l QX, X~l, A"1 ) are autotopisms of L for all x E L; 
(v) the triples (Q~1 XX1XX1 XX) are autotopisms of L for all x EL. 

PROOF. If we put (xy)/x = u and xz = v we obtain the equivalence of the conditions 
(ii) and (iii). By the definition of an autotopism of L the conditions (ii) and (iv) respectively 
(iii) and (v) are equivalent. 

If we have the condition (i) then for any x,y E L there exists an element z E L such that 
AjcAyÂ 1 = Xz. It follows XxXyX~](x) =xy = zx and z = (xy)/x or XxXyX~x{u) = X^i^u). 
With z = X~l u the last relation implies x • yz = (xy)/x • xz. From the identity (iii) we get 
immediately (i). • 

The condition (i) motivates the following: 

DEFINITION 1.1.2. A loop L is called left conjugacy closed if L satisfies one of the 
conditions of Theorem 1.1.1. 

The class of left conjugacy closed loops generalizes in a natural way the class of 
conjugacy closed loops in which both of the sets of left and right translations are 
invariant under the groups generated by the left and the right translations, respectively. 
These loops are characterized for example by the identity (iv) and the dual identity 
(zy)/x = z/x • (xy)/x for all x, y, z. 

Conjugacy closed loops were introduced by E. G. Goodaire and D. A. Robinson in 
[13] as examples of loops all of whose isotopes are isomorphic; such loops are called 
G-loops. In contrast to conjugacy closed loops there exist left conjugacy closed loops 
which are isotopic but not isomorphic. In the class of finite left Bol loops there are 
many left conjugacy closed loops having non-isomorphic isotopes. Already the six non-
isomorphic proper Bol loops of the smallest order 8 are left conjugacy closed, since the 
sets of left translations consist of unions of conjugacy classes in the left translation group 
{cf. the opposite right Bol loops given by the right translation in [7], p. 382, and the proof 
of the Corollary on p. 384 or [9], p. 71). These 6 non-isomorphic left conjugacy closed 
Bol loops form two isotopy classes ([7], p. 385); representatives of the isotopy classes 
of the corresponding opposite loops are given by the following sets of permutations: 

(a) p, = id, p2 = (1234)(5678), p3 = pl p4 = fo p5 = (1537)(2648), p6 = 

(1638)(2547), p7= Pi, p8 = pg; 
(b) Pl = id, p2 = (1234)(5678), p3 = fa p4 = p\9 p5 = (1537)(2648), p6 = 

(16)(25)(38)(47), Pl = p3, p8 = (18)(27)(36)(45). 
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It is clear that the group G of the right translations is generated in the first case by 

P2, P5, P6, and in the second case by P2, Ps, P6 and p8 . 
Among these generators we obtain in the first case the following relations: 

P6]P2P6=P21, P5P2=P2P5, P6p5 = P5p6, p\ = Ps = Pô' 

Hence the non-abelian group G contains the abelian normal subgroup A = (ps) x 

(P5P2) since for the involution p$p2 one has p^x(psp2)p6 = Psp2~X • The group A is the 

direct product of a cyclic group of order 4 with a group of order 2. Since p6 commutes 

with p5 the group G is the direct product of the dihedral group D of order 8 and the cyclic 

group (ps) with identified subgroups (p\) and (p2
5) (cf. [17], p. 349). Since any subgroup 

of the group G containing the commutator subgroup Gf = (p2) is a normal subgroup of 

G, the group G has the following normal subgroups, which operate sharply transitively 

on the loop L: the abelian group A and the group (p2, PÔ)-

In the second case we have the following relations: 

P5P2 = p2p5, p\ = Ph P6]P2P6 = P^ = Ps* P2P&, 

P6P5P6 = Pj] = P$P5PSI P6PS = PSP6-

Hence the non-abelian group G contains the normal subgroup A = (pi) x (pops)-

From this it follows that G is the direct product (p2, Pô) x (p6Ps) (cf. [17], p. 349), since 

G is not metacyclic. As G' = (p^), the group G has the following normal subgroups 

which operate sharply transitively on the loop L: the abelian group A and the dihedral 

group (p2,Pô). 

Since principal isotopic loops have the same left translation groups G (cf. [21], p. 65) 

for each Bol loop of order 8 the group G contains an abelian and a non-abelian sharply 

transitive normal subgroup. 
For any n 6 N , / i > 2 , R . R Burn (cf. [8], pp. 446-447) found in the group 

G8n = (a , /3,7) with ccln=p2=l2 = (a/3)2 = 1, oTf = 7 a , f3l = 7/3, 

suitable unions of conjugacy classes which are sets of right translations of right-isotopic 

right Bol loops of cardinality 2n but do not satisfy the Moufang identity. If n is even then 

these loops have exactly three non-isomorphic principal isotopes; if n is odd then they 

have exactly two non-isomorphic principal isotopes. In all these cases the group G%n is 

the group generated by the right translations. From the construction of these loops, it 

follows immediately that the abelian subgroup ( a , 7 ) and the dihedral subgroup (a,/?) 

are sharply transitive normal subgroups of Ggn. 

The loops considered by R. P. Burn are right conjugacy closed but not conjugacy 

closed. Hence the opposite loops (L, *) with x * y = yx of these loops are left conjugacy 

closed but not conjugacy closed. 

It is well known (cf. [21], p. 65) that every loop isotopic to a loop L is isomorphic to 

a loop L* which is a principal isotope of L and in which the multiplication (x, y) i—• x * y 

is given by 
x *y = x/a • b\y, 
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where a, b are fixed elements in L. 
The loops with multiplication x * y = x/a • y or x * j = x • fr \ y are said to be fe/if or 

ngfa isotopic to L, respectively. Clearly every principal isotopism is a composition of a 
left and a right isotopism. 

REMARK 1.1.3. The class of left conjugacy closed loops is closed with respect to left 
isotopisms. Moreover, the left translations are isomorphisms between left isotopic left 
conjugacy closed loops. 

PROOF. Let L be a loop which is left isotopic to the loop L. Then the left translations 
\x of L are given by Xx = Xxja for some fixed a E L. Hence the set {A*, x E L} of left 
translations of L coincides with the set {\x,x E L} of left translations of L. 

The multiplication y o z = y/x • z which defines a loop left isotopic to L is related 
to the multiplication of L by the isomorphism y i—• xy because of the identity in Theo
rem 1.1.1 (iii). • 

M. Kikkawa (cf. [18]) introduced the notions of left A-loops and homogenous loops 
as follows: 

DEFINITION 1.1.4. A loop L is called a leftA-loop if every map hXjy = A ,̂1 XxXy: L —• L 
(JC, y E L) is an automorphism of L. If a left A-loop has the left inverse property then it 
is called a homogenous loop. 

The class of left A-loops is characterized by the property that the set {\x,x E L} of 
left translations of L is invariant under the conjugations with the elements hx^y (x, y E L) 
(cf. [14], p. 223). Hence every left conjugacy closed loop is a leftA-loop. The existence 
of conjugacy closed loops which are not groups contradicts Theorem 1 in [24], since 
they are G-loops. 

DEFINITION 1.1.5. A loop L is called an extra loop if it satisfies the identity 

x • (yx)z = xy • xz. 

A loop L is an extra loop if and only if it is a Moufang loop in which for every x E L 
the element x2 lies in the nucleus of L ([11], Theorem 1). 

THEOREM 1.1.6. A loop L with the inverse property is left conjugacy closed if and 
only if it is an extra loop. In particular, such a loop is conjugacy closed. 

PROOF. The identity x \ (yz) = x\ (yx) • x \ z for a loop with the inverse property is 
equivalent to JC-1 -yz = (x~l -yx)(x~lz). We take yx = v,x_1 = u and obtain the equivalent 
identity u • (vu)z = uv • uz. In an extra loop we have 

Putting w~l = u~lv~l we obtain z~lw~l • w~l = z~*u~l • (uw~lu~l). From [13], Theo
rem 2.1, it follows that L is conjugacy closed. • 

REMARK 1.1.7. A finite left conjugacy closed loop of odd order has the inverse 
property if and only if it is a group. 
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PROOF. This follows from Theorem 1.1.6 since the map x v—• x2 is a permutation of 
the loop. • 

THEOREM 1.1.8. A commutative loop L is left conjugacy closed if and only ifL is an 
abelian group. 

PROOF. For commutative loops the identity x \ (yz) = x\ (yx) ' x \ z is equivalent to 
x \ (zy) = x \ z - y which gives the associative identity x \ (xu • y) = uy putting x \ z = u. m 

1.2. Examples. From the classification of loops of order < 5, it follows by checking 
the sets of right translations in [9], p. 70, (cf. also [21], p. 61) that the smallest proper 
left conjugacy closed loop has order at least 6. 

Indeed, we show that there exists already a loop L of order 6 which is even conjugacy 
closed, but not a group. This loop does not satisfy any Bol identity since the smallest 
order for a proper Bol loop is 8 ([7], [8]). 

To be precise, the loop L has elements e , / , / 2 , g, gf, gf2 whose corresponding right 
translations are the permutations 

P! = identity, p2 = (123)(456), p3 = (132)(465), 

p4 = (142635), p5 = (152436), p6 = (162534) 

(cf. [1], pp. 416-419). The elements e,f,f2 form a normal subgroup N of index 2 in L 
and one has (gfl)f = gfi+j,f(gfj) = gf2i+j and (gfW) =f+2i+j for all Î J , * € Z/3Z. 

By an easy computation we obtain that N is the nucleus of L. Theorem 3.1 in [13] im
plies that L is a conjugacy closed loop such that any loop isotopic to L is even isomorphic 
to L; in particular L is an A-loop ([6], Theorem 4.7) and hence a counterexample to Theo
rem 2 in [24]. Let G be the group generated by the right translations of L. Then the nucleus 
N is a normal subgroup of G (cf. [1], p. 416). Since we have p\ = p\ = p\ = (123)(465) 
and P4/95 = psp6 = P6P4 = (132) and p$p4 = p^ps = P4P6 = (456) the commutators 
P41 pjl P4P5, p^lp£lp5p6 andp^1p4~1P6P4 are elements of the normal subgroup N. Hence 
the factor group G/N is an abelian group. 

We want to show that the group G/N is a cyclic group of order 6 generated by 
the element Np^. First, we notice that P3P4 = p\p$ and hence Np\p$ = Np\. Since 
P6 = P4P5P4"1 and the element Np$ is contained in the group generated by Np4 and 
Nplps = Np\ the group G/N is generated by the element 7Vp4 of order 6. The group 
G has order 18 and contains precisely one normal subgroup 0 of order 6, namely the 
semidirect product of TV with the involution p\. This normal subgroup 0 is isomorphic 
to the symmetric group S3 and hence operates on L sharply transitively. Consequently, 
for the opposite loop L* with the multiplication x *y = yx the group generated by the left 
translations has a sharply transitive normal subgroup. 

This loop L just considered of order 6 is a special case of conjugacy closed loops 
constructed by V. D. Belousov [3] (cf. also [13], p. 669). If we take F = GF(3) to be the 
field with 3 elements, denote by F* the multiplicative group of F and define on F x F* 
the multiplication by 

(x, 0 0 s fj) = (*y, (x - \)(y - 1) + & + 77) 
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then we obtain L, with e = (1,0),/ = (1,1) and g = (-1,0). 
Any conjugacy closed loop L is power-associative and power-commutative, that is 

(jdnxn)^ = xm(xnxp) and J W 1 = xnxm for all x E L and m,n,p E Z, since it is true already 
for A-loops (cf. Theorem 2.4 in [6]). Now, we present a wide class of left conjugacy 
closed loops which contains non-power-associative examples. 

THE LOOP L(f). Let V and W be abelian groups and/: V x V —• W be a mapping 
with/(x, 0) =/(0,x) = 0 for any x E V. Then the multiplication o on V x W given by 

(*, 0°(y,*i) = (x + y,£ + r9 +/(*, 30) 

defines a loop with the identity (0,0). Indeed, if (*, Ç) o (y, TJ) = (z, 0 then we have 

(^) = fcOMi) = (z-^-i-/fe-M)), 
(y,r?) = (x ,0 \ (z,0 = (z - x , C - i -f(x,z-xj). 

Such a loop which we will denote by L(f) is a left conjugacy closed loop if and only 
if (cf. Theorem 1.1.1 (iii)) 

(*, O o [(y, r/) o (Z,0] = {[(x, O o (y, rj)]/^, 0 } o [(*, 0 o fo Q], 

for all JC, y, z E V and Ç , Î | , ( G W . This identity is equivalent to the relation 

(0) /(y, z) +/(*, y + z) =/(*, y) - / ( y , *) +/(*, z) +/(y, * + z) 

for all ;c,y, z E V. In particular if/(jc, .): ^ —* W is a homomorphism of abelian groups 
for any fixed x E V then L(f) is a left conjugacy closed loop. If V and W are abelian Lie 
groups and/ is an analytical (differentiable) function satisfying (0) L(f ) is an analytical 
(differentiable) left conjugacy closed loop. 

THE LOOP L(<2, /?, r). Let /T be a commutative field and let V and W be vector spaces 
over K. Let <r. V x V —• W and /?, r. V x V x V —• W be mappings with the following 
properties: 

a is bilinear and skew-symmetric (a(x,x) - O), 
p is trilinear and symmetric in the first two variables, 
r is trilinear and symmetric in all three variables if the characteristic of K is ̂  2; 

otherwise symmetric in the last two variables. 
On V 0 W we define a loop L(<3,p, r) by 

(*> O ° (y, l) •={x + y,t + ,n + a(x,y) + p(x,x,y) + K ^ J ^ ) ) -

Defining/(jc, y) = <?(JC, y) +/?(JC, JC, y)+r(jc, y, y), we note that the relation (0) is satisfied. 
Hence L(f) = L(a,/7, r) is a left conjugacy closed loop. 

In the loop L(a, p, r) one has the identity (x, £)2 ° (•*> 0 = (•*? 0 ° (*> O2 if a nd only if 
2/?(JC, JC, JC) = 2r(jc, JC, JC) for all JC E V. If for some x E V this condition is not fulfilled then 
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the loop L(a,/?, r) is not power-associative. Consequently such examples are not A-loops 
and therefore not conjugacy closed {cf. [6], Theorem 2.4). 

If /?(x, JC, x) = 0 and r(x,;c,x) = 0 for all x E V then the loop L(a,p,r) is clearly 
power-associative. Such a loop L(<2,/?, r) has the left inverse property 

(-*, - 0 o ((*, £) o (y, 77)) = (y, 77) 

if and only if 2/?(x, JC, y) = 2r(x, JC, y) for all JC, y E V. 
If AT is a field of characteristic different from 2 then the map (JC, £) 1—+ (x, £)2 = (2x, 2 0 

is surjective and if in the loop L(tf,/?, r) every square is contained in the left nucleus then 
L coincides with its left nucleus, that is L is a group. From Theorem 1.4.4 it will follow 
that in case of Char K / 2 a loop L(a,/?, r) is a left Bol loop if and only if it is a group. 

If we choose for K the field of real or complex numbers then any loop L(a, /?, r) is 
analytical. 

The left translation \x&
 m L(a,p, r) is the mapping 

(y, r/) !—• (x + y, g + 77 + a(x, y) + p(x, x, y) + r(x, y, y)). 

The mapping y »—• a(x,y) +/?(;c, x, y) is a linear map Ax: V —• W. The mapping 
y t—• r(x, y, y) is a quadratic map and can be represented by a symmetric tensor Mx such 
that y 1—• r(x, y, y) = Mx(y, y). Hence the group G generated by the left translations of the 
loop L(tf,/?, r) is a subgroup of the transformation group T consisting of the mappings 

(y,r))^(y + hr)+T + My) + Mt(y, y)) 

where t E V, r E W, A is a linear map V —> W and Mt is a symmetric tensor on V such 
that the correspondence t \—• M, is a homomorphism from V into the space of symmetric 
2-tensors on V with values in W. The mappings 

7(r,r): (y,r])>->(t + y,T + ri + a(t, y) + r(f, t + y, y)) 

form a sharply transitive normal subgroup N of G. Namely, a straightforward calculation 
shows that 

7(5,<T)7(r,T) =^7(, , f f )(r ,r)? 

and this means that the multiplication (f,r) * (y, rf) := 7(/,r)()Srç) is associative. The 
normality of N in T I) G we can see if we put 

(f(y,ri) = (y + b,ri + (3 + A(y) + r(b,y,yj) 

and verify 

</^V)</>-1 0>, T?) = (y + f, 17 + r + « + fl(f, y) + r(>, f + y, y)) 

with a suitable vector K, E W. 
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1.3. Universal properties. 

THEOREM 1.3.1. All loops isotopic to a loop L are left conjugacy closed if and only 
if for all r , x , y , z6L one of the following identities is satisfied: 

(1) [rx] • [r \ (yz)] = [(rx • r \ y)/x] • [r \ (rx • z)l 

(2) r(x\yz) = {r[x\(y • r\x)]} • (x\rZ), 

(3) r.x\(yr\(xz)] = [r.x\(y.r\x)]z. 

PROOF. First we observe that a loop L satisfies the identity (1) with r = 1 if and only 
if L is left conjugacy closed (cfi Theorem 1.1.1 (iii)). Since the class of left conjugacy 
closed loops is closed with respect to left isotopisms, it is sufficient to investigate loops 
L* which are right isotopic to L. In any such loop L* the multiplication (x, y) H—•> x * y is 
given by x * y - x • r \ y for a fixed r E L. The loop L* is left conjugacy closed if and 
only if u * (y * v) = [(u *y)/*u] * (w * v) for all w, y, v E L* (c/ Theorem 1.1.1 (iii)). This 
is equivalent to 

u[r\(yr\v)] = [(u-r\y)/(r\u)]'[r\(wr\v)]. 

Putting r\u = x and r \ v = zwe obtain the equivalent identity (1). 
From the identity x \* (y * z) = x \* (y * x) * (x \* z) analogously we obtain 

r[x\(y-r\z)] = {r[x \ (y • r\x)]} -x\z. 

Replacing the variable z by rz we have the identity (2). 
Similarly, replacing the variable z by r \ (xz) in the identity (2) we obtain (3). • 

DEFINITION 1.3.2. A loop L is called universal left conjugacy closed if every loop 
isotopic to L is left conjugacy closed. 

A loop L is universal left conjugacy closed if and only if L satisfies one of the identities 
of Theorem 1.3.1. 

Any Bol loop of order 8 and the Bol loops of order In with the left translation 
groups Gsn (n > 2), the opposite loops of those mentioned following Theorem 1.1.1, are 
universal left conjugacy closed loops since these loops are left conjugacy closed and any 
isotopic loop belongs to the same class. 

Now we look for the shape of the identity (1) in the class of loops L(f ). A straightfor
ward computation shows that the identity 

Kr,p)U,0]{(r,P)\[(y,î?)feO]} 

= ({[(r, P)(x, 0] ' Kr, P) \ (y, f/)]}/(*, 0 ) ' ((r, p) \ {[(r, p)(x, 0] ' feO}) 

is equivalent to the identity 

f(y,z) ~f(r,y +z - r) +/(r + x,y + z - r) 

=f(r,x) -f(r,y- r) +/(r + x,y - r) -f(y,x) +f(r + x,z) -f(r,x + z) +f(y,x + z) 
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for all r,Jt,;y,z E V. For r - 0 this identity is reduced to the identity (0). From this 
identity, it follows that the function W(JC, V, z) =/(JC, .y + Z) —/(A:, y) — /(JC, z) is symmetric 
with respect to the variables JC, y and z. Using this fact we can reduce the previous identity 

[f(y,z)+f(y,x)-f(y,x + z)] + \f(r + x,y-r + z)-f(r + x,y-r)-f(r + x,z)] 

- \f(r,y-r + z) -f(r,y - r) -f(r,z)] + \f(r,x + z) -f(r,x) -f(r,z)] 

= —w(y, *, z) + w(r + x, y — r, z) - w(r, y — r,z) + w(r, x,z) = 0 

to the trivial identity 

0 = —w(z,y,*) + w(z, r + x,y - r) - w(z, r,y — r) + w(z, r,*) 

= ~[f fo y + *) - / ( z , j ) - / ( z , *)] + [f(z,x + y) - / ( z , r + x) -f(z, y - r)] 

- [ffo y) ~ / (z , r) - / ( z , y - r)] + [f(z, r + x) - / ( z , r) - / ( z , x)] = 0. 

Hence we obtain: 

PROPOSITION 1.3.3. If the loop L(f) is left conjugacy closed, then L(f) is universal 
left conjugacy closed. 

Now we show that a slight modification of a loop constructed by V. D. Belousov 
(cf. [3], p. 184) and investigated by E. G. Goodaire and D. A. Robinson [13] as a 
conjugacy closed loop gives a new class of universal left conjugacy closed loops. 

THE LOOP L(F, <X, i/>). Let F be a commutative field and F* its multiplicative group. 
We define on F* x F a loop L = L(F, a, i/>) by 

(*,0 o(y,ri) = (xy,fZ + V(*>» + (V>« - D(y° ~ D), 

where <r. F* —• F* is an endomorphism of F* and i/> is any function F* —• F* satisfying 
i/>(l) = 1. Clearly (1,0) is the identity of L and one has 

(*, 0 \ feO = (*~^ V>(*)_1 [C ~ *~V€ - (i/;(x) - l ) ( x - V - 1)]), 

and 

(z,Q/(y,ri) = [zy-\y-a[C-^(zy^)ri - (tMzy-1) - l ) ( / - l ) ] ) . 

We verify the identity (3) in Theorem 1.3.1. Indeed, we have on the left side 

(r, p) • (x, 0 \ [(y, 77) • (r, p) \ ((*, Ofc C)) ] 

= (yz, (A~"zff - t/)(xrV(y)'-"Vztr)p + i>(r)^(xrlr"^z''v 

+ (</>«-' VOOz" - V(r)V<Jcry r~V)C + M X + MOz* - M ) 

- ^ C W C O ' V + ^{x)-^{y)rax',za - W)^T^ r-°x°z° 

+ xp(r)ip(x)-]yar-''za - yar-"z° + l ) . 
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Putting (z, 0 = (1,0) we obtain 

(r ,p)-( jc ,0\[(y,T?)-(r ,p) \ (^01 

- i)(r)il)(xTx r~axa + ^ ( r ^ t o - 1 / ^ - / 7 " V + 1V 

Now, we multiply this expression by (z,£) from the right and obtain the identity (3). 
A direct computation shows that in contrast to the example of Belousov, the loop 

L(F, cr, xfj) is conjugacy closed if and only if 1/;: F* —• F* is an endomorphism, which is 
satisfied if and only if the loop L(F, <r, i/>) is a group. 

It is easy to see that the group generated by the left translations of the loop L(F, a, I/J) 
is a subgroup of the group consisting of the mappings 

(*,0»-*(û*,ûuf+ 0É + 7) 

where a, f} E F* and a, 7 G F. 
Now we consider a construction given in [23]. Let G,// be groups and/ a mapping 

from G into the automorphism group AutH of / / with/(l) = id. On GxH one can define 
a multiplication ((*, £), (y, 77)) 1—> (x, £) o (y, 77) = (jty, £ 'f{x)r]\. With this multiplication 
G x H is a loop L = L(G, / / , / ) with identity (1,1) such that 

(^0\feO = (^"1z,/W"1(r10) 

and 

feO/(y,î?) = (^"1 ,C-/(^"1)(î/"1))-

This loop L is left universal conjugacy closed if and only if the identity (3) of 
Theorem 1.3.1 is satisfied: 

(r, p)o(*, £)\{(y, ry)o(r, p)\[(*, 0°feC)]} = {(r, p)o(x, Q\[(y, 77)0(7-, p)\(*, 01}ofo0-

This is equivalent to the relation 

rx-xyr-lxz, ? 'f(r)f(xyl ( r ' • r? - / W W " 1 (p"1 • £ •/(*)«)))) 

= ( r ^ V " 1 ^ , p -f(r)f(xTx ( r 1 ' r] • f(yWTl<jTl • 0 ) -/(r*" V " 1 * * ) 

for all r,x,y,z G G,p , ( , ? ] , (6 / / . 
Hence L is universal left conjugacy closed if and only if the mapping/: G —• Aut// 

satisfies the identity 

(4) f(r)f(x)-lf(y)f(rrlf(x) = f(rx'lyr
lx). 
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In particular L is left conjugacy closed if and only if this identity is satisfied for r = 1 ; 
this means 
(5) f{xTxf{y)f{x) =f(x-]yx). 

Consequently if the mapping/: G —• AutH satisfies the identity (5) but does not 
satisfy the identity (4) then the loop L is left conjugacy closed but not universal left 
conjugacy closed. 

THEOREM 1.3.4. Fora loop L = L(G, H J) the following holds true: 
(i) L is left conjugacy closed if and only if in L the identity (5) is satisfied; 

(ii) L is universal left conjugacy closed if and only if in L the identity (4) is satisfied; 
(Hi) L is right conjugacy closed if and only if L is a group which is equivalent to the 

fact thatf: G —+ AutH is a homomorphism. 

PROOF. After the previous discussion we only have to prove the assertion (iii). The 
loop L is right conjugacy closed if and only if the identity 

[foOOs *?)]/(*, 0 =feO/(*,0 • [(*,0(y, */)]/(*, 0 

is satisfied. This leads to the equivalent identity 

f(z)ri -f(zyx-])Cl =f(^-l)f(x)r1 -f{vTx)f{xyx-x)ÇrK 

Since £ - 1 and 77 are arbitrary elements in //, putting £ = 1 we obtain/(z) = f(zx~l)f(x). 
Substituting u = zX~x we obtain the homomorphic property f(ux) =f(u)f(x). But iff is a 
homomorphism then a direct computation shows that the associativity law in L holds. • 

THEOREM 1.3.5. (a) There exist left conjugacy closed loops which are not universal 
left conjugacy closed. 

(b) There exist left conjugacy closed loops which are not conjugacy closed but which 
are G-loops. 

PROOF, (a) Let G be a non-commutative group and let a, /3 be two commuting 
automorphisms of H both different from id G AutH. Now we define the mapping 
/ : G —> AutH in the following way: / ( l ) = id; f(g) = a for g e G' \ {1}, where G' 
is the commutator group of G and f(g) = j3 for g G G\G'. Then we have for all 
x,y G G: f(y~lxy) = f(x) = f(y)~lf(x)f(y), since y~lxy is in G' if and only if x G G'. 
Let x,y be two elements of G such that x~ly~lxy ^ 1. Then a = f(x~ly~lxy) but 
f(x)~lf(y)~lf(x)f(y) = id since a and /3 commute. Hence the loop multiplication on 
G x H determined by the mapping/ satisfies the identity (5) but it does not satisfy the 
identity (4) for y = 1. 

(b) Let G be the multiplicative group of the Galois field GF(5) and let H be its 
additive group. We denote by k a. generator of the cyclic group G and by Xx: H —• H the 
automorphism Xxh = xh for x EG. Let 1/;: G —• G be the following function: 

V>(1) = V(*) = 1, Wk2) = ^(k3) = k2. 
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Now we consider the loop L = L(G, H J) with/(x) = A^) for x E G. Since the groups 
G and H are commutative the function/ satisfies the identity (5) and the loop L is left 
conjugacy closed. Clearly L is not associative. 

Now we have to show that L is a G-loop. We know from Remark 1.1.3 that the loops 
which are left isotopic to L are isomorphic to L. Multiplication in a loop right isotopic to 
L can be given by 

(*, 0 °(y,ri) = (*, 0 ' Kr, P) \ (y, »?)], (r, p)EGxH. 

The loop defined by this multiplication is isomorphic to L = L(G, / / , / ) with respect 
to the mapping O: (x, £) i—• (rjtTr, £ + p), where r\—>rr:G —• AutH is a homomorphism 
with n =rk2 = X\ and r* = rk3 = A_i. Indeed 

<%> 0(y, r/)) = (rxVS € +/(*)»? + P) 

and 

*(*, 0 o <D(y, 77) = (rxr% £ + p)[(r, p) \ (rf^y + p)] = (r**/' , £ + P +/(rJCT'y(r)"1 r?). 

Hence O is an isomorphism if and only if 

f(rxTr) =f(r)f(x) for all x (and any r). 

Since f(x) = A^) we have to show 

ip(rxTr) = x/j(r) • ip(x). 

This is clearly satisfied for r = 1. If r - k2 then one has \l>(k2x) = ^{k2)^{x) = k2^(x) 
because of the definition of 1/;. In the same manner we can check this relation for the 
cases r = k,k3. m 

1.4. Burn loops. Since not any left conjugacy closed loop is a Bol loop we are justified 
in introducing the following class of loops: 

DEFINITION 1.4.1. A loop L is called a Burn loop if it is a left Bol loop and left 
conjugacy closed. A Burn loop which is universal conjugacy closed we call a universal 
Burn loop. 

Now in the class of universal conjugacy closed loops L(F, <r, \jj) we want to construct 
examples of universal Burn loops which are not Moufang loops. 

PROPOSITION 1.4.2. A loop L(F, <r, V>) is a Burn loop if and only if the function 
ijj:F*—^F* satisfies the identity xjj(x2y) = \l){x)2\l)(y)for all x,y E F*. 
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PROOF. It is a straightforward calculation that 

(*, O{0s r,)[(x, OfcOl} = (xyxz, ( y W + V^MOO^C + V W ^ r j + V«2V>(JK 

+ ^(x)2^(y)za - V>(*)VO0 - M O V W 

+ t ^ W ^ K f - V>(*)*V + ^(x)xayaf - xayaza + 1V 

Putting in the previous expression (z,£) = (1,0) and multiplying the result by (z,Q 
from the right we obtain 

(xyxz,f[(*?f + ̂ {x)^{y))i + VM^rj - V«V>(y) + ^ W V ^ K 

- # t ) * * + V>(*))> V - yaxa + 1 ] + V>(jtyjt)< + V>(*y*)z* - il>(xyx) - zG + 1V 

Comparing the coefficients in the both expressions we obtain the identity i/>(x2y) = 

V>«2V>(y). • 

Let Q be the subgroup of squares in the multiplicative group F* of F. If Q ^ F* and 
\F*\ > 3 then the map I/J with ^(q) = 1 for any q E Q and V>(0 = c E F* \ {1, - 1 } for 
any t E F* \ Q is not an endomorphism of F*. For any such map i/>: F* —• F* we get a 
universal Burn loop which is not a group. None of these Burn loops is conjugacy closed, 
hence they are not Moufang loops (cf. Theorem 1.1.6). 

Certainly in this way we have constructed proper finite universal Burn loops of order 
s = pn(pn — 1) for any prime p ^ 2 and natural number n if s > 6. 

If F is the field Q of rational numbers and if x = eYl^p/ (e = ± 1 , pt > 0, 
i = 1 , . . . , m are prime numbers) is the prime power decomposition of x then we can put 
// \ ™ /•(*«•) u jr/t\ [k if& = 0mod2 

Clearly we have ^(x2y) = %jj(x2)xlj(y) but i/>(p2) - p2 i1 ^(p)^(p) = P4 for any prime 
p > 2, and the loop L(Q, a, i/;) is a universal Burn loop. 

Let Q be the subgroup of squares in the multiplicative group F* of a field F with 
|F*| > 3 and Q ^ F*. Then the map 1/; with -0(g) = q for any q £ Q and -0(f) = cf 
with c E F* \ {1, — l}for any t E F* \ Q is not an endomorphism of F*, but satisfies 
xjj(x2y) = ̂ )(x)2^(y). In particular if F is the field R of real numbers then it follows from 
this construction: 

THEOREM 1.4.3. There exist topological (even differentiable) universal Burn loops 
which are homeomorphic to the manifold R x R*. 

This information is interesting also from analytical point of view since there are no 
proper differentiable Burn loops on connected manifolds (cf Theorem 2.4). 

THEOREM 1.4.4. A left Bol loop L is a Burn loop if and only if for every x E L the 
element x2 is contained in the left nucleus ofL. 
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PROOF. The left Bol identity can be written as Â Â A* = A*.̂ . If L is left conjugacy 
closed then from the identity (ii) in Theorem 1.1.1 one has Aj1 Â A* = A ^ . Multiplying 
this identity from left by Â  we obtain A*.̂  = Â Â A* = A^A^. Taking x \ yx = u we 
have \x.xu = X2XU. In a left Bol loop one has x • xu = x2 • u and hence A ^ = Â AM which 
means (x2 • u)z =x2 - uz. 

If we have (x2 • u)z = x2 • uz for all JC, u, z E L then we obtain that L is a Burn loop by 
reversing the steps of the first part of the proof. • 

THEOREM 1.4.5. A left conjugacy closed loop L is a Burn loop if and only ifL satisfies 
the identity 

x(x • ts) = (x • xt)s for all x,t,s E L. 

PROOF. The identity x(x • ts) = (x • xt)s is equivalent to A^A, = Xx.xt. Putting t = x \ yx 
we obtain A^A.^ = A*.̂ . Since A ^ = A j^A* we obtain from the previous identity 
the Bol identity X2(X~l XyXx) = A ^ . • 

The paper [24] suggests a study of loops L such that every loop isotopic to L is a left 
A-loop, or homogenous loop, respectively. 

Bruck and Paige give in [6] an example of a commutative A-loop L which is an 
extension of a cyclic group N of order 2 by the elementary abelian group of order 4; L is 
not diassociative but every element has order 2. In this loop TV is the nucleus and hence 
every loop isotopic to L is an A-loop, too (cfi Theorem 4.7 in [6]). From Theorem 1.1.8, 
it follows that this loop is not left conjugacy closed. 

Let L be a commutative Moufang loop of nilpotency class 2 (cfi [21], p. I l l ) ; for 
example every commutative Moufang loop generated by 3 elements has this property. 
Bruck proved in [4], p. 298, that any commutative Moufang loop is an A-loop. Since L 
is nilpotent of class 2 any loop isotopic to L is an A-loop by [6], Theorem 4.7. But as a 
commutative loop L cannot be left conjugacy closed (cf. Theorem 1.1.8). 

Any conjugacy closed loop is a left and right A-loop. This is proved in [13], Theo
rem 2.2, where one finds many examples of such loops. 

2. Differentiable left conjugacy closed loops. Let L be a loop defined on a C°°-
differentiable manifold. L is called a differentiable loop if all of its operations (x, y) »—» xy, 
(JC, y) \—* x \ y and (x, y) \—> x/y are C°°-differentiable mappings. 

THEOREM 2.1. The group G generated by the left translations of a differentiable left 
A-loop is a Lie transformation group on L. 

PROOF. We introduce on L the ternary operation (JC, y, z) i—• m(x, y)z := A^À^À"1^. 
We prove that for any u 6 L the left translation Xu is an automorphism of this operation. 
Namely, we have 

Xum(x,y)z = XuXyXy\xX~lz = Xuy(X~y
lXuXy)(y \x-y\z). 

Since L is a left A-loop we have 

Xum(x,y)z = Xuy(X~yXux • XZyXuz) = Xuy(uy \ux-uy\ uz) 
= *uyAuy\uxXuy XUZ = m(Xux, Xuy)Xuz. 

https://doi.org/10.4153/CJM-1994-059-8 Published online by Cambridge University Press

file:///x-y/z
https://doi.org/10.4153/CJM-1994-059-8


1042 P. T. NAGY AND K. STRAMBACH 

Since the transitive family of diffeomorphisms {m(x, y), x, y E L] satisfies the condi
tions of Definition 2.1 in [15] one can associate to this family {ra(jc, y),x,y E L} a linear 
connection V given by 

VXY=T} \{TMl(t),x)ylYlit)] 

with a smooth curve 7 which locally uniquely solves the initial value problem 7'(0 = 
X7(,),7(0)=*. 

We prove that for any u E L the map Xu is an affine transformation relative to V: 

(T\uyyxY) = j t 

- ±L 
" dt 

- L 
~ dt 

(T\u)[Txm(l(t),x))~ Ym 

Tx(\u[m(lf(t),x)Yiyi{t) 

Tx(m{\ul(t),Xux)~iyJTXuY1{th 

where A„7(0 is the solution of [AM7(0]' = <TAM)XAu7(,). 
It follows that G is a subgroup of the affine Lie transformation group A of {L, V} 

(cf. [19], Chapter VI. §1. Theorem 1.5). Since in A limits of automorphisms of the 
differentiate ternary operation m are again automorphisms the group G is a closed 
subgroup of A. Hence G is a Lie transformation group on L. • 

It is well known that for locally compact connected loops the mapping a:x i—• 
XX:L —• G which associates to any element x E L its left translation À* E G is a 
topological embedding (c/ [9], p. 218). If L is a differentiable loop then the smooth 
version of this fact holds. 

PROPOSITION 2.2. Let L be a connected differentiable loop such that the group G 
generated by its left translations is a Lie group. The the mapping a.x i—> XX:L —• G 
is a differentiable embedding, i.e. the section a(L) = {Xx,x € L} is an embedded 
differentiable submanifold in G. 

PROOF. Let xo be a point of L. We have to prove that the mapping a is differentiable 

atjco. 
First we show that for A^ there exists a neighbourhood U\ in G and a finite set of 

elements z\,..., zr in L such that for the pointwise stabilizer 0 of z\,..., zr in G one has 

(^^)ne = {i}. 
Let z\ be an arbitrary element of L. If 0/ is the pointwise stabilizer of the points 

z i , . . . ,z/ and dim(0/) > 0 then we choose as zi+\ a point which is not fixed under the 
connected component of 0/. Clearly dim(0/+i) < dim(0f). Since G is finite dimensional 
there exist points z i , . . . ,zr such that 0 = 0 r is a discrete Lie subgroup of G. Hence 
there exists a neighbourhood W of 1 EG such that WH 0 = {1}, and we choose U\ 
satisfying U^UXXQ CW. 
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If for w, u' G U\ one has uzi = u'zi for / = 1 , . . . , r then u'~ u(zi) = Zi for / = 1 , . . . , r 

and hence u = uf. Now, in the neighbourhood U\ the function a(x) = Xx is the 

solution of the system of equations \xzi - xzi (i = 1 , . . . , r). Since the mapping g i—• 

(gZ\,.. •, gzr)'. U\ —• U is a differentiable injection the solution A* is differentiable by 

the implicite function theorem. • 

In Sections 1.1 and 1.2 we have seen many examples of left conjugacy closed loops 

L whose groups G generated by the left translations contain normal subgroups operat

ing sharply transitively on L. In the next theorem we prove that for differentiable left 

conjugacy closed loops this is always the case. 

THEOREM 2.3. Let L be a differentiable connected left conjugacy closed loop. Then 

the group G generated by the left translations is a Lie group; in G there exists a normal 

subgroup N which operates sharply transitively on L and the tangent space of N at 1 

coincides with the tangent space of the section a(L) = {Ax,x 6 L}. 

PROOF. By Theorem 2.1 the group G is a Lie group. We denote by g its Lie algebra. 

By Proposition 2.2 the set cr(L) = {\x,x E L} is a differentiable submanifold in G. 

Since a(L) is invariant with respect to inner automorphisms of G the vector subspace 

<M = TG(e)<r(L) is invariant in g under the adjoint representation Ad(G) of G. Hence M is 

an ideal in the Lie algebra g and it is a complement of the Lie algebra h of the stabilizer 

group Ge. Hence g is a semidirect product of M with h. If M is the normal subgroup of 

G corresponding to the ideal M C g then G is the product M - Ge such that M n Ge is a 

central normal subgroup of G {cf. [25], Satz 2, p. 158]). Since G operates effectively on 

L the group Ge cannot contain a nontrivial normal subgroup of G. Hence M n Ge = {1}. 

Since G = MGe operates transitively on L, the group M is sharply transitive on L. • 

In Theorem 1.4.3 we have seen the existence of proper topological universal Burn 

loops defined on a manifold. In contrast to this we have: 

THEOREM 2.4. Every connected differentiable Burn loop is a group. 

PROOF. Every Burn loop L is a Bol loop and hence power-associative (cf. [21], 

IV.6.6. Corollary). Using a result of Holmes [16] (cf. also [20], Theorem 5.5.(v)), it 

follows that in any differentiable Burn loop there exists a suitable neighbourhood of 

the identity e which is simply covered by 1-dimensional subgroups. Hence the mapping 

x i—• x2 is locally surjective. Since in a Burn loop every square is contained in the left 

nucleus (cf. Theorem 1.4.4) there exists a neighbourhood of e which is a local Lie group 

U. The subgroup N <L generated by U has the same dimension as L. Since TV is an open 

and closed subset of L, it follows N = L. m 

COROLLARY 2.5. Every connected differentiable left conjugacy closed loop with the 

inverse property is a group. 

The assertion follows immediately from Theorem 1.1.6 and 2.4. 
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For any analytical loop L(a, p, r) defined in Section 1.2 (where the field of scalars is R 
or C) the left translations A^) generate a closed Lie subgroup of the Lie transformation 
group 

r = {(y, ry) H-> (y +1, rj + r + A(y) + Mt(y,y))} 

where t E V, r € W, A 6 Hom(V, W) and M, is a symmetric tensor on W such that 
/ —* Mt is a homomorphism from V into the space of symmetric 2-tensors on V with 
values in W. The sharply transitive normal subgroup described in Theorem 2.3 consists 
in the case of an analytical loop L(a,/?, r) of the mappings 

(y,ri) ^-+ (t + y,r + ri + a(t,y) + r(t,t + y,yj) 

with t eVandr eW. 
In contrast to the opinion expressed in [24], the examples of loops L(a,/?, r) show 

moreover that to force an A-loop or a left A-loop to be a group we have to work within 
classes of loops satisfying relatively strong associativity conditions. 

THEOREM 2.6. Let Lbea connecteddifferentiable Moufang loop which is an A-loop. 
Then L is a Lie group. 

PROOF. From Theorem 4B in [4], p. 298, it follows that all elements uvu~]v~\ 
v~xu~xvu and u3 for u,v € L are contained in the nucleus N of L. Since N is a normal 
subloop of L (cf. [4], p. 301 ) the factor loop L/N is a commutative differentiable Moufang 
loop in which every element different from 1 has order 3. Since any commutative 
connected differentiable Moufang loop is a Lie group one has L = N. m 

THEOREM 2.7. Any locally compact connected topological Moufang loop L such that 
every loop isotopic to L is an A-loop must be a group. 

PROOF. From Theorem 4.7 in [6], it follows that the derived subloop L' is contained 
in the nucleus Af of L. Since Ljl! is an abelian group L/N is also a connected abelian 
group. It follows from Theorem 7A in [4], p. 302, that L/N has exponent 3. Hence L 
must be equal to N and L is a group. • 

3. Geometry of universal Burn loops. 

3.1. The Bol condition. Let L be a Bol loop and let N be the 3-net associated with L 
(cf. [22], [3], [21]). If we choose a vertical line G then we may define the following 
mapping: CTG'-N —> N : (TG(X) - X f° r all x € G; if x ^ G let CFG(X) he the unique point of 
N such that the transversal and horizontal lines through x and CG(X) intersect each other 
onG. 

PROPOSITION 3.1.1. Let Lbea Bol loop. The mappings G G are involutory collineations 
of N preserving the family of vertical lines and interchanging the families of horizontal 
and transversal lines. If we choose a unit point e on L then the corresponding loop 
multiplication on G and the isostrophic loop multiplication arising by interchanging the 
families of horizontal and vertical lines are the same. 
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Conversely, if in an arbitrary 3-net M all loop multiplications on vertical lines are 

the same independent of the choice of the other coordinate axes as the horizontal or 

transversal lines, then M satisfies the Bol condition. 

PROOF. The first assertion is a direct consequence of the Bol condition. It follows 

that the construction of the product x • y for points JC, y E G is mapped by GQ onto the 

construction of the product in the isostrophic loop arising by interchanging the families 

of horizontal and transversal lines. 

Now let M be a 3-net. Constructing the products x\ •/, X2 and x\ -t X2 on a vertical line 

L with unit point xo we have to use the following points and lines: 

Let Hi and 7} respectively be the horizontal or transversal line through the point xt 

for i = 0 ,1 ,2 . Let yt = Tt n H0 for i = 1,2 and let yj = H} PI T0 for j = 1 , 2 . The points 
xh y h y'tte, the lines L, Hi, 7/ and the vertical lines through JC,, y, form a non-closed Bol 

configuration which closes if and only if x\ ^ X2 = x\ -tX2. • 

3.2. The Burn configuration. Let Lo, Li, L2, L3 be vertical lines and let JCO, yo, *£>, yo> 

JCI , y 1, x\, J i , JC2, X2, JC3, x^ be points in N such that the following conditions are satisfied: 

(i) x0,x'0,yo,y'0eLo,xux'l,yuy[ € L , ; 

(ii) Jt2,-4 £ ^2, *3,*3 € L3; 

(iii) each of the pairs {xo,*i}, {y 0 ,* i} , {yo,)Vi}, {yi,*2}. {*2,*3}, {*o,*3}, {*o,*î}, 

{^o»-^}' {^0^1}' { / l ? ^ } ' i ^ » ^ } ' {^o»-^} determines a line if the pair consists 

of different points; 

(iv) the lines xoX\ , yoyi, XQX\ , yfQy\, X2X3, x^x^ belong to the same family, the same holds 

for the lines JC0JC3, x^, y\X2, y\x'2, yoX\, y ^ , but these two families are different. 

This configuration we call the Burn configuration. 

If we replace in the defining properties of a Burn configuration the condition (ii) by 

the weaker condition 

(ii)' X2,x'2 E L2 and X3 E L3; 

then we call this configuration a non-closed Burn configuration. We say that N satisfies 

the Burn condition if in any non-closed Bol configuration the incidence x^ E L3 is 

satisfied, too. In this situation we say that every non-closed Burn configuration can be 

completed within N to a Burn configuration. 

PROPOSITION 3.2.1. If a 3-net N satisfies the Burn condition then it is a Bol net. 

PROOF. If we consider the non-closed Burn configurations with JC3 E Lo = L3 then 

we obtain non-closed Bol configurations. These can be completed by the Burn condition 

to (closed) Bol configurations. • 

PROPOSITION 3.2.2. If a 3-net N satisfies the Burn condition then in any loop asso

ciated with N every element x2 (x E L) is in the intersection of the left and the middle 

nucleus. 
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PROOF. Let C be a Burn configuration such that the lines xoxi , y$y\, xf
0x\, yf

0y\, x2x?>, 
*2-*3 are horizontal. We consider as the origin of the coordinate system the intersection 
of L$ with the horizontal line through x2. Then the coordinates of the points of the 
configuration C can be written in the following way: 

xo = (l,y), yo = (l,xy), x'0 = (l,yu), y'0 = (l ,x -xy), 

xx = (x, y), y 1 = (x, xy), x\ = (x, yu\ y\ = (x, x • yu), 

x2 = (x-xy, 1), x'2 = {x-xy,u\ x3 = (y, 1), x'3 = (y, u). 

Since x'1 and y[ are contained in a transversal line we obtain (x • xy)u = x(x • yu). Since 
N is a Bol net in the coordinate loop L we have the identity x • xy = x2y. Consequently 
x2y - u = x2 - yu for all JC, v, u E L. 

Let C' be a Burn configuration such that the lines x$x\, y$y\, xf
0x\, yr

0y\, x2x^, xf
2x

f
3 

are transversal. Let the origin of the coodinate system be the intersection of Lo with the 
horizontal line through x2. The coordinates of the points of the configuration Cf are: 

y0 = (l,x), x0 = (l,x2), y'Q = (\,xu\ x'0 = ( l ,x • xu), 

yx = (x, 1), xi= (x, x), y\ = (x, w), Xj = (x, xw), 

^2 = (y*2, l), 4 = (y-̂ 2^ u\ -̂ 3 = Cv,-̂ 2), X3 = Cv,x • xu). 

Since x̂  and X2 are contained in a transversal line we obtain y(x • xu) = yx2 • a. Since 
x • xu = x?u we obtain the identity y - x2u= yx2 - u. m 

COROLLARY 3.2.3. Every coordinate loop of a 3-net satisfying the Burn condition is 
a Burn loop. 

The assertion follows from Theorem 1.3.1 and from the previous proposition. 

PROPOSITION 3.2.4. If Lis a universal Burn loop then the corresponding 3-net N = 
L x L satisfies the Burn condition. 

PROOF. From the définition of a Burn loop, it follows that all loops isotopic to a Burn 
loop are Burn loops. Hence TV is a Bol net and in any coordinate loop of this net we have 
the identity x2^ • u = x2 • yu. If we consider a non-closed Burn configuration the points of 
which have the coordinates of the points of the configuration C used in the proof of the 
previous proposition then x2y • u = x2 • yu implies that the point X3 = (y, u) is contained 
in the vertical line L3. Using the involutory collineation a^ introduced at the beginning 
of the section any configuration C1 constructed in the proof of Proposition 3.2.2 is the 
image of a configuration C. Hence the assertion is proved. • 

From the previous results we obtain the following 

THEOREM 3.2.5. For a Bol loop L the following conditions are equivalent: 
(i) L is a universal Burn loop; 

(ii) for every Burn loop isotopic to L all squares x2 (x G L) are contained in the middle 
nucleus ofL; 

https://doi.org/10.4153/CJM-1994-059-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-059-8


LOOPS AS INVARIANT SECTIONS IN GROUPS 1047 

(Hi) for every Burn loop isotopic to L all squares x2 (x E L) are contained in the 
intersection of the left and middle nucleus ofL. 

The class of (left-)Burn loops is defined by the identities \x\y\x = Xx.yx and X~l XyXx = 
\x\yx in the group of left multiplications. If we use instead of left multiplications {A*} 
the right multiplications {QX} we will call the corresponding class of loops right Burn 
loops. 

PROPOSITION 3.2.6. A conjugacy closed Bol loop L is an extra loop. 

PROOF. See [10], Theorem 2.1. • 

In the following we call the Burn condition for a 3-net as defined at the begin of this 
section the vertical Burn condition. If we take for the parallel lines L, (i = 0,1,2,3) in 
the vertical Burn condition horizontal or transversal lines instead of vertical ones we 
obtain the horizontal or transversal Burn condition, respectively. 

THEOREM 3.2.7. If a 3-net N satisfies one of the three Burn conditions and a Bol 
condition which does not follow from this Burn condition then any coordinate loop ofN 
is an extra loop. 

PROOF. It follows from our assumption that in TV two independent Bol conditions 
are satisfied. It follows that TV is a Moufang 3-net and Proposition 3.2.6 implies the 
assertion. • 

THEOREM 3.2.8. In the 3-net N belonging to an extra loop L all three Burn conditions 
hold. 

PROOF. Since the squares x2 (x G L) are contained in the nucleus of L the net N 
satisfies the vertical Burn condition (cf. Theorem 3.2.5). Since the stabilizer of any 
point q in the collineation group of N is transitive on the three lines through q (cf. [2], 
Theorem 10.3, p. 45) also the horizontal and transversal Burn conditions are satisfied. • 

4. Geometry of left conjugacy closed loops. 

4.1. Projectivities. Let L be a loop and let N be the 3-net associated with L (cf. [22], 
[3], [2], [21]); we use the terminology and notation introduced in [2]. The loops arising 
from N are all isotopic to L. A perspectivity of a line Lt onto a line L* in N is given by a 
pencil T of parallel lines, such that L„ L* fi T; we write [L/, Y, Lk]. A projectivity from 
LQ onto the line Ln is a product of perspectivities and has a representation 

(6) 7T = n[L /_1,Y /,L /] 
i-\ 

with L/_i ^Li(i- 1 , . . . , n) and Y/ ^ Y,+i for all i = 1 , . . . , n — 1. We call the number n 
the length of the representation (6). 

We consider now the sets 

<Mn = [YllLi-uTMM = **,T, 7* Y*,* < n) 

where LQ, . . . , Lk are arbitrary parallel lines. It follows that the natural number k is even. 
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THEOREM 4.1.1. Let n > 4. Every ix E 9An which has a fixed point is the identity if 
and only if every loop associated with the 3-netN is a group. 

PROOF. We assume that the condition holds for n = 4. 
If the projectivity 7r is given by 

i=\ 

with different lines Lo, L\, Li, L3 and satisfies 7T(JC) = x for some 1 E L 0 then ir(y) = y 
(y E Lo) shows that the Reidemeister condition holds. 

Now, we have to show that for a 3-net N associated with a group G the condition of 
the theorem holds for any n > 4. If V is the family of vertical lines in N then the group 
|J^>2 ^n with lines L, E V is isomorphic in a natural way to the group of left translations 
x v—• ax: G —> G, a E G and it is sharply transitive on the line Lo (cfi [2], Theorem 6.1). • 

THEOREM 4.1.2. Lef ^ be the set of projectivities of length 4 contained in Mx such 
that L\ - L3 and all lines Li are vertical. Every IT E !frQ which has a fixed point is the 
identity if and only if every loop associated with the 3-net N is a Bol loop. 

PROOF. If the projectivity n given by 

T ^ n ^ - l ^ L ; ] 

with L4 = Lo and L\ = L3 and vertical lines L/ (/ = 0 , . . . , 4) satisfies n(x) = x for some 
x E Lo, then n(y) = y gives the Bol condition. • 

4.2. Reidemeister condition. Now we consider for a projectivity n representations 

(7) 7r = f[[L/-i,T0L /], Lo = Ln, 
1=1 

where all L/ (/ = 0 , . . . , n) are parallel, but we allow L/ = Lf+i. Any such representation 
can be reduced to a representation of the previous type (6); the representations of the 
type (6) are called irreducible. The set of all projectivities having representations (7) for 
a fixed n > 2 w e call tftQ. 

Let !M£^ denote the subset of all projectivities from ^4 such that amongst their 
representations (7) there exists one with L/ = L, for fixed i ^7, ij E { 0 , . . . , 5}. Any set 
9rf£1^ contains M^; consequently every n E f^j which has a fixed point is the identity 
if and only if every loop associated with the 3-net N is a group. 

Let ÛQl^k) denote the subset of all projectivities from ^ such that amongst their 
representations (7) there is one with L, = Ly = Lk for fixed ij, k. We want to discuss 
properties of the set tAQ1^® with respect to different choices of the indices ij, k E 
{ 0 , . . . , 5 } . 

If we assume that min{|/ — y|, \j — k\, \k — i\} = 1, then any set !AQ1^ contains M\. 
and the 3-net N is associated with a group if and only if any projectivity 7r having a 
representation in <M^N' with a fixed point is the identity. 

https://doi.org/10.4153/CJM-1994-059-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-059-8


LOOPS AS INVARIANT SECTIONS IN GROUPS 1049 

We consider now the subset of all projectivities from <M^l^k) such that L, = L, = Lk 

and \i —j\ = \j — k\ = \i — k\ = 2. In this case we can assume LQ = Li - L4. From the 
fact that in fÂ^(0'2'4) there are also representations with Lo = L\ we have 9A.[ C f̂ 0,2'4). 
Consequently if any projectivity IT having a representation in ftÇ ' ' ) and fixing a point 
of Lo is the identity then the coordinate loops associated with N are Bol loops. Moreover 
we prove that this condition is equivalent even to the Reidemeister condition. 

Let L5, Lo = L2 = L4, L3 and S be four lines from the same family and let p^.p'^p^ 
p\, /?3, p'3, x, J*7, x" be points such that the following conditions are satisfied: 

(i) P5,Ps €L5,p4,p
f
4eL4,p3,p'3 eL^x,**,*" GS; 

(ii) the pairs of points {/?3,/?4}, {p^/^} , {ps,*}, {p'5,x"} determine lines from the 
same family; 

(iii) the pairs of points {p4,Ps}, {p^Ps}* {/?3>*}> {Pii**} determine lines from the 
same family; 

(iv) the lines in (i), (ii), (iii) belong to different families of lines. 
The Reidemeister condition holds if and only if in any such configuration xf = x". 
Let the points po,/?2,/?2 ^ e m e intersections of the line L4 with the lines {/?5,x}, 

{/?3,JC}, {/?3, x"}. Let/?o be the intersection of the line L4 with the line through x" parallel 
to the line given by {ps,x}. Let Q and Q' respectively be the lines through po and p'0 

which are parallel to the line determined by {p4,ps}. Let R and Rf respectively be the 
lines through/?2 and/?2 which are parallel to the line determined by {/?3,/?4}. We denote 
p\ - QDR and p\ = Q'Cl R'. From the Bol condition, it follows that the points p\ and 
p\ determine a line L\ parallel to L3, L4, L5. The projectivity n = nf=i [L/-i, Y,-, L{\ where 
LQ = L2 = L4 and Y, is the parallel pencil of lines determined by the line {pi~\,/?/} fixes 
the point /?oGLo and hence 7r is the identity. From this, it follows that xf - x". 

Conversely, if a 3-net N satisfies the Reidemeister condition then from Theorem 4.1.1 
it follows that any projectivity n having a representation in ^ (0 '2 ,4 ) and fixing a point of 
Lo is the identity. 

By this discussion, we have classified all 3-nets in which every projectivity of f^Çv' 
having a fixed point is the identity. 

4.3. Burn condition. Let ^l^k^ denote the subset of all projectivities from 9A$ such 
that amongst their representations (7) there is one with L/ = Ly and Lk = L\. 

If min{|/ — yl, \k — l\} = 1 then the set of projectivities n € ÂÇ^ ' ) having a fixed 
point coincides with the set of projectivities of M4 or M^ respectively having a fixed 
point. Hence the condition that any such 7r G fi/QJ^ is the identity is equivalent to the 
Reidemeister or to the Bol condition for 3-nets, respectively. 

Now we consider the set ^ ( 0 ' 1,3) of projectivities. One sees immediately: A projec
tivity 7T = Ef=i [L/_i, Y/, Li] G IfrQ ' ' ' having a fixed point on the line Lo is the identity 
if and only if the lines L/ (/ = 0 , . . . , 5) and the points x% = x"02k

=] [U-\, Y/, L,-]) for any 
two points XQ € Lo (a = 1,2) and the connecting lines of the points x%_x and x% form a 
Burn configuration. 

Let us consider the set ^ ° ' 2 ; 1 ' 4 ) of projectivities. A projectivity 7r = £f=i [L,_i, Y£-, L{\ 
€ 5V^(0,2;1'4) having a fixed point on the line Lo is the identity if and only if for any two 
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points XQ (a = 1,2), the lines L£-, the points x% and the joining lines of x"_x and x% form 
the following configuration: 

(i) Lo, L\, L3, L5 are vertical lines; 
(ii) *J,j£ € L0, jcf,jcj € Li, jcf € L 3 , 4 6 L5; 

(iii) the pairs of points {x%_Y, x£ } (A; = 1 , . . . , 6) determine a line if they are different; 
(iv) the lines x\x\ , x\x\, x\x\, XQX2, x^x2, x\x\ belong to the same family, the same holds 

for the lines x\x\, x\x\, x\x\, x\x\, x\x\, x\x\, but these two families are different. 
This configuration we call a D-configuration. 
If we replace in the defining properties of a D-configuration the condition (ii) by the 

weaker condition 
(ii') xf E Lo, xf,x£ € Li, x% E L3, x£ E L5 and xj E Lo; 

then this configuration is called a no/i-c/osed D-configuration. We say that a non-closed 
D-configuration D can be completed to a D-configuration if in D the incidence XQ E Lo 
holds, too. 

THEOREM 4.3.1. In a 3-net TV all non-closed D-configurations can be completed to 
D-configurations if and only ifN satisfies the Burn condition. 

PROOF. First, we assume that any non-closed D-configuration can be completed. If 
we assume in a D-configuration Lo = L5 (and forget the points x\, x\ and the lines 
XQX̂  and XQX2) then we have a (closed) Bol configuration. Hence, if every projectivity 
7T E f̂ 0,2'1,4) having a fixed point on the line Lo is the identity then TV is a Bol net. If we 
now map the points x\, x\ and the line L3 under the involutory collineation GLX introduced 
at the beginning of this section then the lines Lo, L\, oLx (L3), L5, the points x\, X2,, X \ , X \ , 
x\, x\, x\ - L\ n x ^ , X4 = L\ nxlx2, GL,\ (*\)> o"Li (x\)and the corresponding joining lines 
XQXJ, XQXJ, XJX2, XJX2, Xr^X^ , X2X4 , X4 (^(Xj), X4 0*^^X3), ̂ L^X^JX^, G^yX^jX^, X^XQ, -̂5-̂0 

form a Burn configuration. Hence every projectivity IT E fiQ ' ' ' having a fixed point 
is the identity (or equivalently every non-closed D-configuration can be completed) if 
and only if the 3-net TV is a Burn net. 

Conversely if a 3-net satisfies the Burn condition then it satisfies the Bol condition and 
hence the mapping GL is a collineation for any vertical line L. If one has a (closed) Burn 
configuration with respect to the vertical lines Lo, L\, L2, L3 then we obtain a (closed) 
D-configuration if we take instead of the line L2 the line GLX (La) and instead of the points 
X2 and X2 the points GLX (X2) and GLX (X

,
2)- • 

4.4. CC-conditions. Now we investigate the set M^ ' ' ' of projectivities. If we con
sider the subset T C 9^0,2, '5) of projectivities for which L^ = Lo then T contains the set 
9^1 of irreducible projectivities. It follows that if every projectivity TT E ^ ° ' 2 ; 3 ' 5 ) having 
a fixed point is the identity then the 3-net TV is a Bol net. 

Conversely in a Bol net TV we consider a projectivity IT = nf=i [L;_i, Y/, L/] E 5V^°'2'3'5) 

having a fixed point XQ on Lo. We denote by L the vertical line through the inter
section point y of the lines joining the points XQ, X\ and the points x\, x\ where 
x% = x"(lTy=i [L/_i, T/, L/]). It follows from the (closed) Bol configuration that the inter
section point y' of the lines joining the points x2,, x\ and the points x\, x\ is contained 

https://doi.org/10.4153/CJM-1994-059-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-059-8


LOOPS AS INVARIANT SECTIONS IN GROUPS 1051 

in the line L. Since the reflection a^ is a collineation of N we have Gi^iy) = x\ and 
tfLoC/) = x\ and the configuration belonging to the projectivity n is closed. Hence every 
projectivity n E ^ (0 '2,3 '5) having a fixed point is the identity if and only if TV is a Bol net. 

The sets 5V̂  ' of projectivities are invariant under the cyclic group Te on the set of 
indices (ij',k, I). Hence if min{|/ — j \ , \k — l\} < 2 then every projectivity n E 9^^',k^ 
having a fixed point is the identity if and only if the 3-net N is a group net, Bol net or 
Burn net. 

At the end of our discussion we have to consider the sets ^l^k,l) where \i — j \ = 
\k — l\ = 3 . Up to a cyclic permutation of indices we have to consider the set &Q ' ' ' of 
projectivities. Every projectivity n E ^ ° ' 3 ; 1 ' 4 ) with representation 7r = nf=i[L/-i, Y,,L;] 
having a fixed point on the line LQ is the identity if and only if any two points x" E Lo 
(a = 1,2), the lines L/, the points x* = x"(IIJLi [L/-i, Ty, L/]) and the joining lines x*_xx% 
form the following configuration which we will call the CC-configuration: 

(i) Lo, L\, L2, L5 are vertical lines; 
(ii) xl,xl,x\,x\ eL0,x\,x2

vxl,xl EL\,x\,x\ E L2 andx\,x2
5 e L5; 

(iii) the pairs of points {*ô>*i}» {xl,x\}> W»^}» iA^l)^ {^2^3}» {xlixl)i ix\ix\}> 
{x 2 , ^} , {x4,.4}, {x^,^}, {-^5,̂ 0}' {-^i^o} determine lines whenever the points 
are different; 

(iv) the lines xl
0x\, x\x\, x\x\,x\x\, x\x\, x\x\ belong to the same family, the same holds 

for the lines x\x\, x\x\, x\x\, x\x\, x\x\, x\x\, but these two families are different. 
If we replace in the defining properties of a CC-configuration the condition (ii) by the 
weaker condition 

(ii)' x]
Qlxl^xl

3lxl ELo, *},*?, A4, *4 £ L\,x\,x\ E L2 andx^ EL5\ 
then we call this configuration a non-closed CC-configuration. 

We say that a 3-net Af satisfies the CC-condition if all non-closed CC-configurations 
can be completed to CC-configurations, i.e. if in any non-closed CC-configuration the 
incidence x\ E L5 is a consequence of all other incidences. Clearly the 3-net associated 
with a universal left conjugacy closed loop L satisfies the CC-condition {cf. proof of 
Theorem 4.4.1). 

A conjugacy closed loop L is a left conjugacy closed loop for which also the set 
{QX, x E L} is invariant under the inner automorphisms in the group generated by the set 
{QX,X E L} (cf. §1). From Theorem 1.1.1, it follows that a loop L is conjugacy closed 
precisely if in L the following two identities are satisfied: 

(i) x\(yz)=x\(yx)-x\z\ 
(ii) (zy)/x = z/x-(xy)/x. 
The conjugacy closed loops L have the property that all loops which are isotopic to L 

are already isomorphic to L. 
We can call our CC-condition for a 3-net N the vertical CC-condition. The horizontal 

or transversal CC-conditions arise from the vertical CC-condition if we replace the 
vertical lines L; by horizontal or transversal lines, respectively. We say that the 3-net N 
satisfies the CC-condition for a given line L and a non-parallel line K if every non-closed 
CC-configuration with the line L as Lo and JC4, X\ E K can be completed within N to a 
CC-configuration. 
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THEOREM 4.4.1. If a 3-net N satisfies the vertical CC-condition with respect to the 
lines L and K and the horizontal CC-condition with respect to the lines L' and K' then N 
satisfies the horizontal CC-condition and the vertical CC-condition and every coordinate 
loop associated with N is a conjugacy closed loop. 

PROOF. Since every non-closed vertical CC-configuration determines a projectivity 
7T = nf=i[£/-i, Y|,L,-] of the line Lo, the inverse projectivity n~l determines the same 
CC-configuration up to indexing of the lines L; (/ ^ 0). Hence we can assume that the 
line K containing the points x\ and x\ is a horizontal line. Now we consider in N the 
coordinate system which is given by the lines K and L. The coordinates of the points of 
the CC-configurations with Lo = L and x\,x\ € K are: 

x\ = (x,\), x\ = (\,x), x\ = (z,x), x\ = (x\zx,\\ 

x]
0 = (\,x\zx), x\={x,x\zx\ ^ = (1,0, *2 = (z,0? 

x\ = (x\zx,x\t), x\ = {x,x\f), x{ = (x,x\zt), JCQ = ( l ,x \z r ) . 

If the points JĈ  and x\ are contained in the same vertical line L5 (this is the case for 
CC-configurations) then we obtain the identity 

(8) x\zt = (x\zx)-(x\t) 

since the points x\ and JCQ are contained in the same transversal line. Hence the coordinate 
loop L corresponding to the origin K Pi L is a left conjugacy closed loop. 

Conversely if we have a non-closed CC-configuration then it follows from the identity 
(8) that the points x\ and x\ are contained in a vertical line. 

Now, we consider the coordinate loop belonging to the axes l! and K\ since we 
can assume that K' is vertical. The coordinates of the points of the horizontal CC-
configurations with LQ=L and ^4,^5 6 K' are: 

4 = ( M ) , x\ = (x,\), x\ = {x,z), x\ = (\,xz/x), 

4 = (hxz/x), x\ = (xzlx,x), xj = (r, 1), x\ = (r,z), 
x\ = (t/x, xz/x), x\ = (t/x, x), x\ = (tz/x, x), XQ = (tz/x, 1). 

If the points x\ and x\ are contained in the same horizontal line L5, then we obtain the 
identity 
(9) tz/x = (t/x) • (xz/x), 

since the points x% and JCQ are contained in the same transversal line. Hence the coordinate 
loop V corresponding to the origin L' Pi A'' is a right conjugacy closed loop. Conversely 
the identity (9) forces the points x\ and x\ to be contained in a horizontal line. 

We consider now the coordinate loop L belonging to the axes l! and L. Since all 
loops which are left (right) isotopic to a left (right) conjugacy closed loop are left (right) 
conjugacy closed L is a conjugacy closed loop. Hence all coordinate loops of the net N 
are conjugacy closed. • 

Clearly the 3-net associated with a conjugacy closed loop L satisfies the vertical 
CC-condition and the horizontal CC-condition. 
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THEOREM 4.4.2. A 3-net N satisfies the transversal CC-condition with respect to a 
given transversal line LQ and another non-transversal line K if and only if the coordinate 
loop L ofN belonging to the origin LDK satisfies the following identity: 

(10) x/((l/z)\y)-(x/z)\y = x/yx\y 

for all I J , Z 6 L. 

PROOF. Let C be a transversal CC-configuration in N. We choose as coordinate axes 
the horizontal and vertical lines through the point x\. The coordinates of the points of C 
with transversal lines L; can be written in the following way: 

*{=(*,i), 4 = (MX 4 = (x,x\y), 4 = 0»^ xl = (x/y,y), 
x\ = (xjy,x\y), x\={\/z,z\ x2

l=(x/z,z% x\ = (x/z,(x/z)\y), 

Then the points x\ and x\ are contained in the same transversal line if and only if the 
identity (10) is satisfied. • 

It is well-known that in a 3-net N the Bol conditions for two different families of lines 
imply the Bol condition for the third class. In §3 (cfi Theorem 3.2.8) we have proved 
the same for the Burn conditions. Now we want to show that an analogous statement for 
CC-conditions does not hold. 

We consider the conjugacy closed loop constructed by V.D. Belousov (cf [3], p. 184, 
and [13], Theorem 3.3): Let F be a field, F* its multiplicative group and let G = F* x F. 
The multiplication in G is defined by 

(^0-(y, î?) = ( ^ ( ^ " 1 - D ( y " 1 - i ) + r 1 4 + î/)-

Then we have 

(*,©\fcO = ( J T ^ C - ^ C - O T 1 - l)(xz~l - 1)) 

and 

foO/0s 1) = {zy~\ylC -rj- (z~ly - l)(y-1 - 1)]). 

Since the loop G is conjugacy closed the 3-net TV corresponding to G satisfies the 
vertical and the horizontal CC-condition. It would satisfy the transversal CC-condition 
if in G the identity (10) of the Theorem 4.4.2 holds. In particular we have 

(11) (x,0)/(y,0)-(x,0)\(y,0) = (l,xy-' -x-ty+y-y-* +x~l -x) 

and 

(12) (JC,0)/((z,0)- ,\(y,0))-((*,0)/(z,0))\(y,0) 

= (l,z[xy~l -x~xy+y-y~l +x~x -x]), 
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where fcO)"1 = (l,0)/fe,0) = (z~\(z - l)2). 
But if the field F has at least 6 elements then we can choose x,y,z 6 F* \ {1} in such 

a way that 

z[xy_1 — x~]y +y — y~] + x~l — x] / xy_1 — x~xy +y —y~x +x_ 1 — x. 

The validity of all three CC-conditions in a 3-net determines a proper subclass in the 
class of conjugacy closed loops. This class contains the extra loops but also loops with 
very weak associativity. To demonstrate this we use a class of examples constructed by 
Goodaire and Robinson in [13], p. 668. 

Let R and S be rings with R commutative and associative and let 6: R —• S be a 
homomorphism of (/?, +) into (S, +)• For (x, £) and (jy, 77) in G = R x S define 

(•*, 0(y, rç) = (*+y, £ +1 + (*y2)#) • 

Then (G, •) is a conjugacy closed loop with identity (0,0) whose nucleus N is given 
by 

N = {(JC, 0 E G : 2xyz E Ker 6 for all y, z 6 R}. 

This implies that if/? is an integral domain of characteristic ^ 2 and the homomorphism 
9 is not trivial then G is a proper loop. 

The inverse operations of the loop G have the following form: 

(*, 0 \ fe 0 = {z ~ x, C ~ Ê - Wz - x)2]0), 

foO/(y^) = ( * - * < - * ? - [fe -y)y2]0). 

It follows that ( JC ,O\ (0 ,0 ) = (-JC, -^-X^O) ^ (0,0)/(JC, O = ( - J C , - ^ x ^ i f j c 3 £ Ker0. 
Hence such a loop G has neither the left nor the right inverse property. 

PROPOSITION 4.4.3. The 3-net associated with a Goodaire-Robinson loop (G, •) sat
isfies all three CC-conditions. 

PROOF. Since (G, •) is a conjugacy closed loop we have only to prove that G satisfies 
the identity 

(*, O/{[(0,0)/(z,Q] \ (y, v)} • [(*,O/foC)] \ (y,Î?) = [(*,0/(y,^)] • [(*,O \ (y, t?)] 

(cf. Theorem 4.4.2). We have 

(x^)/{mO)/(z,0]\(y^)} = (x-y-z^-r]~C^[z3-(y + z)2(x-y)]9) 

and 

[(*, O / f o 0 ] \ (y, Î?) = (y - * + z, ry - £ + C + [(* - z)(z2 - (y - * + z)2)]e). 
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Since 

l(x,0/(y,ri)]-[(x,0\(y,T,)] 

= (0,[xy(y-x)]0) 

= {x-y-z,t-r1-<;+[z3-(y + z)2(x-y)]8) 

.(-x + y + ̂ -ç + ̂  + Ç+lix-z^-iy-x + z)2)^) 

we obtain the assertion. • 

In summary, in §4 we have established conditions, in terms of projectivities of length 
at most 6, which assure that a 3-net satisfies a configurational condition. 

THEOREM 4.4.4. Let N be a 3-net, LQ be a line in N and n a given number < 6. Let Z 
be a set of projectivities ofLo onto itself such that Z consists of all projectivities having 
an irreducible representation 

(13) fllLi-u^Li] 
i=\ 

of length n with the following properties: 
1) All lines Li belong to the same family. 
2) There exist subsets Ij of the set {0 , . . . , n} such that for any Ij the following 

condition holds: Ifk,k' E Ij then Lk = Lk> in (13). 
If every projectivity o/Z having a fixed point on LQ is the identity then N satisfies one 

of the following conditions with respect to LQ: Reidemeister condition, Burn condition, 
Bol condition or CC-condition. 
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