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Abstract. We will give explicit bounds for the number of solutions of polynomial-exponential
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and they are of only single exponential growth in the number of coefficients.
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I. GENERAL OUTLINE

1. Introduction

We will be concerned with the number of solutions of polynomial-exponential
equations. Our equations will be of the type

k∑
`=1

P`(x)αx
` = 0 (1.1)

in variablesx = (x1, . . . , xn) ∈ Zn, where theP` are polynomials with coefficients
in an algebraic number fieldK, and theαx

` are charactersZn → K×, i.e.,αx
` =

α
x1
`1 . . . α

xn
`n, with givenα j̀ ∈ K× (16 ` 6 k,16 j 6 n).

Very roughly speaking, we will show that subject to certain conditions, the num-
ber of solutions is less than 235A3

d6A2
, whereA is the total number of coefficients

of the polynomialsP1, . . . , Pk, andd is the degree ofK. As compared to our earlier
work [16], our new bound incorporates two improvements. Firstly, it no longer de-
pends on arithmetic properties of theα j̀ , except on the degreed of the number field
K they lie in. This improvement was made possible by Schlickewei’s new method,
introduced in [14]. Secondly, our bound is only singly exponential in the numberA

of coefficients, whereas formerly it was triply exponential. One saving of exponen-
tiation stems from Evertse’s version [4] of the Subspace Theorem, which in turn
? The second author supported in part by NSF frant DMS-9401426.
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rests on Faltings’ Product Theorem [8]. Due to these authors’ works, a saving of
one exponentiation was almost automatic and would not have warranted a lengthy
exposition. Most of the novelty of our present work is a new method to save another
exponentiation. In most work up to now, and we will mention only a few instances,
e.g., work of Evertse, Györy, Stewart and Tijdeman [5], Schlickewei and Schmidt
[16], Bombieri and Mueller [1], dependency on the coefficients was eliminated by
a determinant argument. But this argument changes an equation withA summands
into an equation withA! summands. In contrast, our new argument hinges on an
idea from the Geometry of Numbers, which might see further applications.

Before giving a precise formulation of our result, let us briefly recall how par-
titions P of the set{1, . . . , k} in (1.1) come into play. The equation 2x − xy +
3z − 3w = 0 in (x, y, z,w) ∈ Z4 is of the type (1.1) withk = 4 and constant
polynomials. This equation has infinitely many solutions, namely solutions with
x = y, z = w. The point is that ifP is the ‘partition of the equation’ into the two
equations 2x − 2y = 0, 3z − 3w = 0, this system of equations has infinitely many
solutions. A more detailed motivation for the partitions is given in [16].

Now let us give precise definitions. LetP be a partition of the set3 = {1, . . . , k}.
The setsλ ⊂ 3 occurring in the partitionP will be considered elements of
P :λ ∈ P . GivenP , the system of equations∑

`∈λ
P`(x)αx

` = 0 (λ ∈ P ), (1.1P )

is a refinement of (1.1). WhenQ is a refinement ofP , then (1.1Q) implies (1.1
P ). As in [16], letS(P ) consist of solutions of (1.1P ) which are not solutions of
(1.1Q) whereQ is a proper refinement ofP . Every solution of (1.1) lies inS(P )
for someP , but the setsS(P ) for various partitionsP need not be disjoint.

Set`
P∼ m is `,m lie in the same subsetλ of P . LetG(P ) be the subgroup of

Zn consisting ofz with αz
` = αz

m for any `,m with `
P∼ m.

Laurent [9] had shown thatS(P ) is finite if G(P ) = {0}. Write

A =
∑
`∈3

(
n+ δ`
n

)
, (1.2)

whereδ` is the total degree of the polynomialP`. Note thatA is the potential
number of nonzero coefficients of the polynomialsP1, . . . , Pk . Set

B = max(n,A), (1.3)

so thatB = max(n, k) if all the polynomialsP1, . . . , Pk are constants, andB = A
otherwise. Denote the cardinality of a setS by |S|.

THEOREM 1. SupposeG(P ) = {0}. Then

|S(P )| < N(d,B) = 235B3
d6B2

. (1.4)
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If the polynomialsP` are constants, i.e., when we are dealing with a purely
exponential equation, the dependence on the degreed can now be avoided (cf. the
forthcoming paper by Evertse, Schlickewei and Schmidt [7]).

Another formulation of our Theorem is as follows. Consider a system of equa-
tions

kj∑
`=1

Pj`(x)αx
j` = 0 (j = 1, . . . , m). (1.5)

A solution x will be calleddegenerateif a subsum of one of them sums in (1.5)
vanishes, i.e., if there is aj in 1 6 j 6 m and a nonempty, proper subsetI of
{1, . . . , kj } with

∑
`∈I Pj`(x)α

x
j` = 0. LetG be the subgroup ofZn consisting of

vectorsz with αz
j1 = · · · = αz

j,kj
(j = 1, . . . , m).

Write

A =
m∑
j=1

kj∑
`=1

(
n+ δj`
n

)
, B = max(n,A),

whereδj` is the total degree of the polynomialPj`. ThenwhenG = {0}, (1.5)has
at mostN(d,B) nondegenerate solutions.

In a forthcoming paper S. Ahlgren will give a quantitative version of a more
general theorem of Laurent [9] which describes the set of solutions when the group
G(P ) is not necessarily{0}.

Before commencing with the proof of Theorem 1 in Section 3, we will now give
some applications.

2. Applications of Theorem 1 to Linear Recurrence Sequences

Let {um}m∈Z be a linear recurrence sequence of ordert , i.e., a not identically
vanishing sequence satisfying a relation

um+t = νt−1um+t−1+ · · · + ν1um+1+ ν0um (m ∈ Z), (2.1)

with t > 0 and fixed coefficientsν0, . . . , νt−1, but no such relation with 0< t ′ < t .
Thenν0 6= 0. We will suppose that all members of the sequence lie in a number
fieldK, and this (by the minimality oft) easily implies thatν0, . . . , νt−1 lie in K.
Let

F(z) = zt − νt−1z
t−1− · · · − ν0 =

k∏
`=1

(z − α`)σ` (2.2)

be thecompanion polynomialof the relation (2.1), withα1, . . . , αk being the dis-
tinct roots. Asν0 6= 0, these roots are nonzero. The sequence will be called
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nondegenerateif no quotientα`/αn with ` 6= n, 16 `, n 6 k is a root of unity. It
will be calledstrictly nondegenerateif, with α0 = 1, no quotientα`/αn with ` 6= n,
0 6 `, n 6 k is a root of unity. Thea-multiplicity of {um}, denotedU(a), is the
number ofm ∈ Z with um = a.
THEOREM 2.1. Let {um} be of ordert , and with elements in a number fieldK of
degreed. When{um} is nondegenerate, then

U(0) < (2t)35t3d6t2. (2.3)

When{um} is strictly nondegenerate, then for everya ∈ K,

U(a) < (2t)36(t+1)3d6(t+1)2. (2.4)

The bounds forU(0) andU(a) derived in [16] also depended only ond andt ,
but the dependence ont was triply exponential. When the companion polynomial
has only simple roots, we are reduced to a purely exponential equation, so that
there is a bound independent ofd (cf. [7]). But this bound is doubly exponential
in t . Recently Schmidt (in work in progress) obtained in the one variable case
of Theorem 1 an estimate independent ofd, which is however triply exponential
in t , and this entails a version of Theorem 2.1 independent ofd, which is triply
exponential int . His work depends on Proposition A formulated below, as well as
on our Lemma 15.1.

Proof of Theorem2.1. It is well known thatum has a representation

um =
k∑
`=1

P`(m)α
m
` , (2.5)

whereP` is a nonzero polynomial of degreeσ` − 1 with coefficients in the field
L = K(α1, . . . , αk). SinceK has degreed, (2.2) yields degL 6 dt !. Now U(0) is
the number of solutions of the equation

k∑
`=1

P`(m)α
m
` = 0. (2.7)

This equation is of the type (1.1) withn = 1. The quantityA from (1.2) becomes
σ1+ · · · + σk = t , and thus also the quantityB from (1.3) equalst . It will suffice
to study equations (2.7P ) for every partitionP of {1, . . . , k}.

WhenP contains a singleton, then|S(P )| < t, since our polynomialsP` have
degreeσ` − 1 < t . OtherwiseP contains a setλ with |λ| > 2, and when our
sequence is nondegenerate, we may conclude thatG(P ) = {0}. Theorem 1 in
conjunction with (2.6) gives|S(P )| < 235t3(dt !)6t2. This estimate therefore holds
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for every partitionP . Using the boundkk for the number of partitionsP , we obtain
U(0) < kk · 235t3(dt !)6t2 < (2t)35t3d6t2.

We next note thatU(a) is the zero-multiplicity of the sequenceu′m = um − a.
When{um} is strictly nondegenerate of ordert , then{u′m} is nondegenerate of order
t + 1. Therefore the argument given above may be applied witht + 1 in place oft .
We now havek 6 t + 1. However, (2.6) is still valid as before. Hence

U(a) < kk235(t+1)3(dt !)6(t+1)2

< (t + 1)t+1 · 235(t+1)3t6t (t+1)2d6(t+1)2

< (2t)36(t+1)3d6(t+1)2.

Remark. Since we suppose that{um} is (strictly) of ordert , so that the poly-
nomialsP` are nonzero, the hypothesis for (2.3) that{um} be nondegenerate may
be replaced by the weaker hypothesis that for someαn, no quotientα`/αn with
16 ` 6 k and` 6= n is a root of 1. Similarly for (2.4) with 06 ` 6 k and` 6= n.

Now let {um}m∈Z and{vn}n∈Z be nondegenerate recurrence sequences of order
6 t , and consider the equation

um = vn (2.8)

in integersm,n. In view of the special rôle played by roots of unity, we will change
the notation (2.2) for the polynomialF(z) associated with{um}. Letα1, . . . , αk1 be
the roots ofF which are not roots of unity. We will writeF(z) = ∏k1

`=0(z− α`)ρ`,
where eitherα0 is a root ofF which is a root of unity (suchα0 then is unique), or
α0 = 1, ρ0 = 0. Then

um =
k1∑
`=0

P`(m)α
m
` , (2.9)

whereP` is a polynomial of degreeρ`− 1. (A polynomial of degree 0 is a nonzero
constant, and a polynomial of degree−1 is zero.) Similarly,

vn =
k2∑
`=0

Q`(n)β
n
` . (2.10)

The sequences{um}, {vn} are said to berelatedif k1 = k2 (= k, say), and after
a suitable reordering ofβ1, . . . , βk,

α
p

` = βq` (` = 1, . . . , k), (2.11)

with nonzero integersp, q. They aredoubly relatedif there is a second reorder-
ing of β1, . . . , βk with this property, i.e., if there is a nontrivial permutationπ of
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{1, . . . , k} such that we have both (2.11) andαp
′

` = β
q ′
π(`) (` = 1, . . . , k) with

nonzero integersp′, q ′. Then it was shown in [17] thatk is even, thatp′/q ′ =
−p/q, and after a suitable reordering ofα1, . . . , αk andβ1, . . . , βk we have both
(2.11) and

α
p′
` = βq

′
`+1, α

p′
`+1 = βq

′
` for ` odd, 16 ` 6 k. (2.12)

The sequences{um} and{vn} are calledsimply relatedif they are not doubly related.
A sequence{um} is always related to itself; it is calledsymmetricif it is doubly
related to itself.

THEOREM 2.2 Suppose the members of{um}, {vn} lie in a number fieldK of
degreed. Supposek1 > 0, k2 > 0 in (2.9), (2.10). Then

(a) the Equation(2.8) has at most

Z = 2310t6d24t4 (2.13)

solutions when{um}, {vn} are not related.
(b) When{um}, {vn} are simply related with(2.11), then all but at mostZ solutions

of (2.8) have

P`(m)α
m
` = Q`(n)β

n
` (` = 0, . . . , k). (2.14)

(c) When{um}, {vn} are doubly related with(2.11), (2.12), then all but at mostZ
solutions satisfy(2.14) or the system

P`(m)α
m
` = Q`+1(n)β

n
`+1, P`(m)α

m
`+1 = Q`(n)β

n
`

(` odd,16 ` 6 k), (2.15i)

P0(m)α
m
0 = Q0(n)β

n
0 . (2.15ii)

It may easily be deduced that when{um} is not symmetric, the equationum = un
has at mostZ solutions withm 6= n.

An estimate given in [18] was weaker in its dependence ont andd, and moreover
it involved the number of prime ideal factors of the rootsα` andβ`. The order or
magnitude of our estimates can be further reduced when theα` andβ` are simple
roots.

Proof of Theorem2.2. We rewrite (2.8) as

k1∑
`=0

P`(x)α
x
` −

k2∑
`=0

Q`(y)β
y

` = 0, (2.16)

to be solved in integersx, y. We symbolize the summands in (2.16) by

(0x),1x, . . . , k1x, (0y),1y, . . . , k2y.
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The parentheses indicate that, e.g., 0x occurs only whenα0 is a root ofF(x),
i.e., only if P0 6= 0. Let P be a partition of this set, andG(P ) the associated
group. Similarly to (1.1P ), let (2.16P ) denote the system obtained by splitting
(2.16) into vanishing subsums, the summands of each subsum parametrized by a set
λ ∈ P . Suppose at first thatP contains a singleton, saỳy. Then (2.16P ) yields
Q`(y)β

y

` = 0, and sinceQ` is of degree< t , there are fewer thant choices fory.
Giveny, (2.16) becomes an equation inx of the type considered in Theorem 2.1.
We therefore can estimate the number of choices forx by (2.4). Thus whenP
contains a singleton,|S(P )| < t · (2t)36(t+1)3d6(t+1)2. Now suppose thatP does
not contain a singleton. Then, as shown in [17],G(P ) = {0} unless{um} and
{vn} are related. Note that the fieldL = K(α1, . . . , αk1, β1, . . . , βk2) has degree
6 (t !)2d < 2(3/4)t

2
d, sincet ! < 2(3/8)t

2
. We apply Theorem 1 withn = 2 and

observe that (withδt = degP` = ρ` − 1, δ′` = degQ` = ρ ′` − 1, say),

A =
k1∑
`=0

(
ρ` + 1

2

)
+

k2∑
`=0

(
ρ ′` + 1

2

)

= 1

2

(
k1∑
`=0

(ρ2
` + ρ`)+

k2∑
`=0

(ρ ′2` + ρ ′`)
)

6 1

2
((t2+ t)+ (t2+ t)) 6 2t2,

so thatB = A 6 2t2. Therefore

|S(P )| < 236B3
(2(3/4)t

2
d)6B

2

6 2306t6d24t4.

Since the number of partitionsP is at most(2t)2t < 22t6, the first assertion of
Theorem 2.2 follows.

Now if {um} and {vn} are simply related, it was shown in [17] that the only
partition P which does not contain a singleton and hasG(P ) 6= {0} is {0x,0y},
{1x,1y}, . . . , {kx, ky}. (Here{0x,0y} occurs only ifP0,Q0 are nonzero.) So (b)
follows as well. As for (c), in addition to the exceptional partition from (b), again
by [17], we need only consider partitions containing the sets{1x,2y}, {2x,1y}, . . . ,
{(k − 1)x, ky}, {kx, (k − 1)y}.

3. A Proposition on Linear Equations

We will formulate a proposition which may be of independent interest.
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Consider the multiplicative group(C×)m = C× × · · · × C×, and a subgroup0
of finite rankr. In [7] we had studied the equation

z1+ · · · + zm = 1 (3.1)

in variablesz = (z1, . . . , zm) ∈ 0. Here we will need this equation in variablez
which lies ‘almost’ in0.

We cannot go further without introducing heights. We define the heightH(α)

of a point(α0: · · · :αm) in projective spacePm(Q) as usual. Supposeα0, . . . , αm lie
in a number fieldK, and letV = V (K) be the set of places ofK. With eachv ∈ V
we associate the absolute value| |v, normalized so that it extends the standard
or ap-adic absolute value ofQ, and we further set‖α‖v = |α|dv/dv , whered is
the degree ofK, anddv the local degree. We then defineH(α) = ∏v∈V (K) ‖α‖v,
where‖α‖v = max{‖α0‖v, . . . , ‖αm‖v}. By the product formulaH(α) depends
only on the projective pointα = (α0: · · · :αm). It is independent of the fieldK with
αi ∈ K (i = 0, . . . , m) and is usually called theabsolute multiplicative height. We
will also use theabsolute logarithmic heighth(α) = log H(α).

Whenx = (x1, . . . , xm) is in affine spaceQm, we set

H(x) = H(1:x1: · · · :xm), h(x) = h(1:x1: · · · :xm) = log H(x).

In particular, whenm = 1, we haveH(x) = H(1:x), h(x) = h(1:x).
Now let K be a number field of degreed. When x = (x1, . . . , xm), y =

(y1, . . . , ym) are inKm, we setx ∗ y = (x1y1, . . . , xmym).

PROPOSITION A.Letm > 1 and let0 be a finitely generated subgroup of(K×)m
of rank r > 0. Then the solutionsz of (3.1) of the typez = x ∗ y wherex ∈ 0,
y ∈ Qm and

h(y) 6 1

4m2
h(x) (3.2)

are contained in the union of at mostf (m, r, d) = 230m2
(32m2)rd3r+2m proper

linear subspaces ofKm.

4. The Germ of the Proof of Theorem 1

Let α1, . . . ,αk be as in the theorem. Asx runs throughZn, the vector

(αx
1, . . . ,α

x
k) (4.1)

runs through a subgroup0 of (K×)k of rank6 n. If in (1.1) the polynomialsP`
are all identically equal to 1, we obtain an equation

z1+ · · · + zk = 0, (4.2)
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with z= (z1, . . . , zk) ∈ 0. This is a homogeneous version of Equation (3.1). Now
(4.2) defines a subspaceT of Kk of codimension 1, and it is known (cf. [7]) that
the solutionsz ∈ 0 lie in a finite number (and this number may be effectively
estimated) of proper subspaces ofT (thus subspaces ofKk of codimension> 2).

This gives us information on the equation
∑k

`=1α
x
` = 0. The situation is similar

for

k∑
`=1

a`α
x
` = 0 (4.3)

with coefficientsa` ∈ K×: one could consider it of the type (4.2) with0 the group
of rank6 n+ 1 generated by the points (4.1) and by(a1, . . . , ak).

Now in Equation (1.1), letM ` be the set of monomials of total degree6 δ`.
Write P` =∑M∈M `

a`MM (16 ` 6 k).
Then Equation (1.1) may be rewritten as

∑
(`,M)∈AM(x)a`Mα

x
` = 0, whereA

consists of the pairs(`,M) with 1 6 ` 6 k, M ∈ M ` anda`M 6= 0. With the
notationη`M(x) = M(x)a`Mαx

`, the equation becomes∑
(`,M)∈A

η`M(x) = 0. (4.4)

If it were not for the monomialsM(x), this would be the type (4.3). The vector
η(x) with componentsη`M(x) lies inKa wherea = |A|, and (4.4) says thatη(x)
lies in a certain subspaceT of Ka of codimension 1. We wish to show that as
x ∈ Zn ranges through the solutions of (4.4), thenη(x) lies in a finite union of
proper subspaces ofT , and we want to estimate the number of required subspaces.
This can in fact be done if the vector with components

M(x) (M ∈ M = M1 ∪ · · · ∪M k) (4.5)

is ‘small’ compared to the vector with components

a`mα
x
` ((`,m) ∈ A). (4.6)

Let hM(x) be the logarithmic height of the vector (4.5), andhE(x) the height of the
vector (4.6).

PROPOSITION B.Supposea > 3. Then asx ranges through solutions of(4.4)
with

hM(x) 6
1

4a2
hE(x), (4.7)

the vectorη(x) will be contained in a union of not more than

230a2
(32a2)nd3(n+a) (4.8)
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proper subspaces ofT .
We will now deduce Proposition B from Proposition A. Let(`0,M0) be a par-

ticular element ofA, andA′ the complement of(`0,M0) in A. Define

β` = α`/α`0 = (α`1/α`01, . . . , α`n/α`0n). (4.9)

Then whenM0(x) 6= 0, (4.4) may be rewritten as∑
(`,M)∈A′

Z`M = 1 (4.10)

whereZ`M = X`MY`M with

X`M = −(a`M/a`0M0)β
x
`, Y`M = M(x)/M0(x).

Let X,Y,Z respectively be the points inKa−1 with componentsX`M, Y`M,Z`M
where(`,M) ∈ A′. ThenX lies in a group of rank6 n + 1, andY lies inQa−1.
FurtherhM(x) = h(Y), hE(x) = h(X), so that

h(Y) 6 1

4a2
h(X) (4.11)

by (4.7).
By Proposition A withm = a − 1, the solutionsZ of (4.10) with (4.11) lie in

the union of

f (a − 1, n+ 1, d) = 230(a−1)2(32(a − 1)2)n+1d3(n+1)+2(a−1)

< 230a2
(32a2)nd3(n+a) (4.12)

subspaces ofKa−1. Here then+1 comes from the fact thatX runs through a group
of rank6 n + 1. WhenW is one of these subspaces, the solutions of (4.4) with
Z(x) ∈ W will haveη(x) in a certain proper subspaceW ′ of T . To these subspaces
W ′ we have to add the subspace withM0(x) = 0, thus giving the bound (4.8).

5. Induction on the Dimension of Subspaces

The vectorsξ with componentsξ`M where` ∈ 3,M ∈ M ` lie in KA with A given
by (1.2).

Whenλ is any subset of3, letVλ be the coordinate subspace ofKA consisting
of vectorsξ with ξ`M = 0 when` 6∈ λ. For any partitionQ of 3,

KA =
⊕
λ∈Q

Vλ. (5.1)
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WhenW is a subspace ofKA, letW(Q) = ∑
λ∈Q(W ∩ Vλ), so thatW(Q) is a

subspace ofW . We haveW(Q′) ⊆ W(Q) if Q′ is a refinement ofQ. We will say
thatQ is agreeablewith W if W(Q) = W . If Q′ is agreeable withW whereQ′ is
a refinement ofQ, thenQ is agreeable withW . Write Q ≺ W if Q is agreeable
with W , but no proper refinement ofQ is agreeable withW . For anyW , there is a
Q with Q ≺ W , but thisQ is not necessarily unique.

Suppose for each̀∈ 3 we are given a polynomialP` of degree6 δ`. Thus

P` =
∑
M∈M `

a`MM (` ∈ 3). (5.2)

Givenx ∈ Zn, let ξ = ξ(x) = KA have componentsξ`M = ξ`M(x) = M(x)αx
`.

The equations (1.1P ) mean thatξ(x) lies in the subspaceW of KA defined by∑
`∈λ

∑
M∈M `

a`Mξ`M = 0 (λ ∈ P ). (5.3)

For any subspaceT ofKA, letX(T ) consist ofx ∈ Zn with ξ(x) ∈ T . LetX(T ,P )
consist ofx with ξ(x) ∈ T (P ), but ξ(x) 6∈ T (Q) for any proper refinementQ of
P . In the notation of the Introduction,S(P ) = X(W,P ) whereW is given by
(5.3).

PROPOSITION C.Recall the definition(1.3) of B and set

C = 234B2
d6B. (5.4)

Let P be a partition of3 with G(P ) = {0}. Let T 6= {0} be a subspace ofKA

with P ≺ T . Then there is a subspaceT ′ $ T havingT ′(P ) = T ′ and

|X(T ,P )| 6 C|X(T ,P ) ∩X(T ′)| + C. (5.5)

We are going to derive Theorem 1 from the proposition. First we claim that
every subspaceT with P ≺ T and dimensiont has

|X(T ,P )| 6 (2C)t . (5.6)

This is done by induction ont . Whent = 0, thenX(T ) is empty, sinceξ(x) = 0 is
impossible becauseξ(x) has the nonzero componentsξ`M(x) = αx

` whenM = 1.
Thus (5.6) is true in this case. Whent > 0, letT ′ be the subspace of the proposition.
There are two possibilities.

Either P ≺ T ′ fails to hold. There is then a proper refinementQ of P with
T ′(Q) = T ′. ThenX(T ′) = X(T ′(Q)) ⊆ X(T (Q)) has empty intersection with
X(T ,P ), so thatX(T ,P ) = ∅ by (6.5).Or P ≺ T ′. Then everyx ∈ X(T ,P ) ∩
X(T ′) hasξ(x) ∈ T ′ = T ′(P ), but in view ofx ∈ X(T ,P ) it cannot haveξ(x) ∈
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T ′(Q) ⊂ T (Q) for a proper refinementQ of P . Thereforex ∈ X(T ′,P ), i.e.,
X(T ,P )∩X(T ′) ⊂ X(T ′,P ). Now (5.5) together with the induction hypothesis
gives

|X(T ,P )| 6 C|X(T ′,P )| + C 6 C · (2C)t−1+ C 6 (2C)t .

The theorem is aboutS(P ) = X(W,P )withW given by (5.3). ClearlyW(P ) =
W . Again there are two possibilities. EitherP ≺ W fails to hold (this could only
happen if some polynomialsP` are zero). ThenW = W(Q) whereQ is a proper
refinement ofP , so thatX(W,P ) = ∅. Or P ≺ W . Then we may apply (5.6) to
T = W . Since dimT 6 A 6 B, we obtain|S(P )| 6 (2C)B < 235B3

d6B2
. The

theorem follows.
It remains for us to prove Proposition A, and to show that Proposition B can

be used to deduce Proposition C. The first of these tasks will be accomplished in
Sections 6–11, the second in Sections 12–17. The second task is the more original
one. The geometric idea alluded to above will occur in the proof of Lemma 15.1.
Unfortunately, our arguments will be rather complicated.

II. PROOF OF PROPOSITION A

6. Small Solutions

We will initially only study solutionsz= x ∗ y of (3.1) withx ∈ 0, y ∈ (Q×)m, so
that all the components ofz are nonzero. A solution will be calledsmall if

h(x) 6 2m logm. (6.1)

A solution which is not small will be calledlarge.

LEMMA 6.1. The number of small solutionsz occurring in Proposition A is

< (4d2)m(86d2m logm)r. (6.2)

Proof.According to Theorem 4 of Schmidt [19] the number of elementsx ∈ 0
with h(x) 6 2m logm does not exceed

(2d2)m(86d2m logm)r. (6.3)

Further,h(y) 6 (4m2)−1h(x) 6 (2m)−1 logm 6 1/2 by (3.2). Therefore each
componentyi of y hash(yi) 6 1/2, henceH(yi) 6 e1/2 < 2, so thatyi , being
rational, is 1 or−1. This gives 2m choices fory. Allowing a factor 2m in (6.3) we
get the assertion.
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7. Remarks on Heights

Forx ∈ K× we note that

h(x) = h(1:x) =
∑

v∈V (K)
max{0, log‖x‖v}

= 1

2

∑
v∈V (K)

| log‖x‖v |. (7.1)

We then haveh(1/x) = h(x), h(xy) 6 h(x)+ h(y).
As was pointed out in [17], it is an immediate consequence of work of Dobro-

wolski [3] that whenx is of degreed, and not zero or a root of unity, then

h(x) > 1/21d3. (7.2)

Whenx = (x1, . . . , xm) ∈ Qm, we will also use the logarithmic heighths(x) =∑m
i=1 h(xi). We notice that

h(x) 6 hs(x) 6 mh(x), (7.3)

h(x ∗ y) 6 h(x)+ h(y), hs(x ∗ y) 6 hs(x)+ hs(y), (7.4)

hs(x−1) = hs(x), (7.5)

wherex−1 denotes the inverse ofx in (Q×)m.
Let 0 ⊆ (K×)m be a finitely generated group of rankr > 0. Letα1, . . . ,αr be

a set of generators of0, so that the elements of0 may be written as

x = ζ ∗ αu1
1 ∗ · · · ∗ αurr , (7.6)

where(u1, . . . , ur) runs throughZr , andζ runs through the torsion groupT (0) =
0 ∩ Um of 0, with U the group of roots of unity ofK.

For u = (u1, . . . , ur) ∈ Zr we put

ψ(u) = hs(αu1
1 ∗ · · · ∗ αurr ). (7.7)

Forv ∈ V write

βijv = log‖αij‖v (16 i 6 r,1 6 j 6 m),

whereαi = (αi1, . . . , αim). By the product formula we get
∑

v∈V βijv = 0 (1 6
i 6 r,1 6 j 6 m). Let S be the subset ofV consisting of the Archimedean places
of K and ofv’s with βijv 6= 0 for somei, j (1 6 i 6 r,1 6 j 6 m). Then also∑

v∈S βijv = 0.
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For ξ ∈ Rr we define

gjv(ξ) =
r∑
i=1

βijvξi (16 j 6 m, v ∈ V ). (7.8)

Then again
∑

v∈S gjv(ξ) = 0 (1 6 j 6 m) andgjv(ξ) = 0 for v 6∈ S, j =
1, . . . , m.

As

log‖αu1
1j . . . α

ur
rj ‖v =

r∑
i=1

βijvui = gjv(u),

we obtain from (7.1) and (7.7)

ψ(u) = 1

2

m∑
j=1

∑
v∈V
|gjv(u)| = 1

2

m∑
j=1

∑
v∈S
|gjv(u)|. (7.9)

More generally, forξ ∈ Rr we put

ψ(ξ) = 1

2

∑
v∈V

m∑
j=1

|gjv(ξ)|. (7.10)

It was shown in [19] (Section 3) thatψ is a distance function in the sense of Cassels
[2] (Chapter IV) and that the set

9 = {ξ ∈ Rr |ψ(ξ) 6 1} (7.11)

is a symmetric, convex body.

8. Special Solutions

LetK,0,α1, . . . ,αr be as in Section 7. Put

q = 8m+ 4. (8.1)

Whenx ∈ 0, set

h = h(x), H = H(x) = eh. (8.2)

Expressx as in (7.6). Givenρ ∈ Rr , an elementx ∈ 0 will be calledρ-specialif
h > 0 and

u ∈ (h/q)9 + hρ, (8.3)
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where9 is the set{ξ |ψ(ξ) 6 1} from (7.11); the right-hand side of (8.3) signifies
(h/q)9 translated byhρ.

Let8 be a symmetric convex body inRr . Let1 = 1(8) be the least covering
density ofRr by translates of8 (not necessarily by points of a lattice). Thus1 is
least such that there areρ1, ρ2, . . . inRr such that the union of the translates8+ρi
(i = 1,2, . . .) isRr , and ifν(ξ) is the number of translates which containξ , then

∫
|ξ |6X

ν(ξ)dξ

/∫
|ξ |6X

dξ < 1(1+ ε) (8.4)

whenε > 0 andX > X0(ε). Here|ξ | denotes the maximum norm, say. Let1(r)
be the supremum of the covering densities of symmetric convex bodies inRr . It is
relatively easy ([11]) to show that

1(r) 6 2r . (8.5)

Better bounds are known (cf. [12]), but (8.5) will do for us.

LEMMA 8.1. Let8 be a symmetric convex body inRr . Supposeλ > 0. Thenλ8
can be covered by not more than(λ+ 2)r1(r) 6 (2λ+ 4)r translates of8.

Proof. In view of (8.4), it is not hard to see that there is a translate of(λ+ 2)8,
say(λ+ 2)8+ τ , such that∫

(λ+2)8+τ
ν(ξ)dξ/(λ+ 2)rV (8) < 1(r)(1+ 2ε), (8.6)

whereV (8) is the volume of8 (so that(λ+2)rV (8) is the volume of(λ+2)8+
τ ). Then (replace theρi by ρi − τ (i = 1,2, . . .)), there is also a covering such
that (8.6) is true withτ = 0. Now if Z of the translates8+ ρi intersectλ8, then
these are contained in(λ+ 2)8, so that∫

(λ+2)8
ν(ξ)dξ > ZV (8).

Comparison with (8.6) yields

Z < (λ+ 2)r1(r)(1+ 2ε). (8.7)

For everyε > 0 there is a covering ofλ8 by Z translates of8 with Z satisfying
(8.7). The lemma is now obvious.

Applying Lemma 8.1 with8 = m9, λ = 1/(mq), we may conclude that
m9 may be covered byZ = (2mq + 4)r translates ofq−19, say byq−19 + ρi
(i = 1, . . . , Z). Thenhm9 is covered by(h/q)m9 + hρi (i = 1, . . . , Z). When
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(8.2) holds, thenu as in (7.6) lies inhs(x)9 ⊆ mh9 (by (7.3)). Thusx is special
for at least one ofρ1, . . . ,ρZ. With our valueq as in (8.7) we obtain

Z = (16m2 + 8m+ 4)r 6 (21m2)r , (8.8)

sincem > 2. By (8.3), whenu ∈ hm9, thenρ ∈ (m+q−1)9. Hence we may take

ρ1, . . . ,ρZ ∈ (m+ q−1)9.

9. Properties of Special Solutions

Let ρ ∈ (m+ q−1)9 be fixed, wherem > 2. Set

mjv =
{
giv(ρ), if v ∈ V,16 j 6 m,
0, if v ∈ V, j = 0.

(9.1)

Then, as was seen below (7.8), we have∑
v∈V

mjv = 0 (j = 0,1, . . . , m). (9.2)

By the definitions (7.10), (7.11) ofψ,9 and by (9.1),

∑
v∈V

m∑
j=0

|mjv| 6 2ψ(ρ) 6 2(m+ q−1). (9.3)

LetL0, . . . , Lm be the linear forms inX = (X1, . . . , Xm) defined by

L0(X) = X1+ · · · +Xm,
Lj(X) = Xj (j = 1, . . . , m).

(9.4)

Suppose now we have a solutionz = x ∗ y of (3.1) wherex ∈ 0, y ∈ (Q×)m
and where (3.2) holds. Writeyj = wj/w0 with w0, . . . , wm ∈ Z and g.c.d.
(w0, . . . , wm) = 1. Then (3.1) may be rewritten as

z′1+ · · · + z′m = z′0, (9.5)

wherez′0 = w0 andz′j = xj · wj for j = 1, . . . , m. We writez′ = (z′1, . . . , z
′
m).

Recall the definition ofS in Section 7.

LEMMA 9.1. Letρ be as above. Then there arem-element subsetsI(v) of {0,1,
. . . , m} defined forv ∈ V , and there are numbers̀jv (v ∈ V, j ∈ I(v)) with the
following properties.

I(v) = {1, . . . , m} for v 6∈ S, (9.6)
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`jv = 0 for v 6∈ S, j ∈ I(v), (9.7)∑
v∈V

∑
j∈I(v)

`jv = 0,
∑
v∈V

∑
j∈I(v)

|`jv| 6 1. (9.8)

Moreover, ifz= x ∗ y andz′ are as above, wherex is ρ-special, then∏
v∈V

max
j∈I(v)
{‖Lj(z′)‖vQ−`jv } 6 Q−1/(4m2+2m), (9.9)

withQ = H(x)2m+1.
Proof. We defineI(v) as follows. Forv ∈ S we setI(v) = {1, . . . , m} ac-

cording to (9.6). Forv ∈ S we consider the elementsmjv from (9.1). Pickj (v) ∈
{0, . . . , m} such that

mj(v),v = max(m0v, . . . , mmv). (9.10)

and set

I(v) = {0, . . . , m}\{j (v)} (v ∈ S).
Now let x ∈ 0 beρ-special. Then withu as in (7.6) we have (8.3) withh =

h(x). So

gjv(u) = h(gjv(ρ)+ q−1gjv(ξ)) = hmjv + (h/q)gjv(ξ), (9.11)

for a suitableξ ∈ 9 and forv ∈ V , j = 1, . . . , m. If we putg0v(ξ) = 0 for v ∈ V
and ξ ∈ Rr , then (9.11) will be true forj = 0 as well. Sinceξ ∈ 9 we have∑

v |gjv(ξ)| 6 2, and therefore

∑
v∈S

m∑
j=0

|hmjv − gjv(u)| 6 2h/q (j = 0, . . . , m). (9.12)

By our definition ofS in Section 7, and by (7.6), (7.8), anyx ∈ 0 has

h(x) =
∑
v∈S

max(0, log‖x1‖v, . . . , log‖xm‖v)

=
∑
v∈S

max(g0v(u), . . . , gmv(u)).

Thus by (9.10) and (9.12),

h
∑
v∈S

mj(v),v > h(x)− (2h/q) = h(1− 2/q),
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so that∑
v∈S

mj(v),v > 1− 2/q. (9.13)

This estimate holds if there exists anyρ-special pointx ∈ 0.
Let s be the cardinality ofS and write

γ = 1

ms

∑
v∈S

mj(v),v. (9.14)

We define numberscjv (v ∈ V, j ∈ I(v)) by

cjv =
{
mjv + γ, if v ∈ S, j ∈ I(v),

mjv(= 0), if v 6∈ S, j ∈ I(v).
(9.15)

We infer from (9.2), (9.3) that∑
v∈V

∑
j∈I(v)

cjv = 0,
∑
v∈V

∑
j∈I(v)

|cjv| 6 2(m+ q−1). (9.16)

Observe that forj = 1, . . . , m,

log‖xj‖v = gjv(u) = h(gjv(ρ)+ gjv(ξ)/q)
= h(mjv + gjv(ξ)/q), (9.17)

by (9.11), (9.1). But

log |wj | 6 h(w0: · · · :wm) = h(y) 6 h/4m2 (j = 0, . . . , m)

by (3.2), so that by definition ofz′j and by (9.5), (9.17),

log‖Lj(z′)‖v = log‖z′j‖v 6 h(mjv + gjv(ξ)/q + δv/4m2),

whereδv = dv/d whenv ∈ V∞ (the set of Archimedean places), andδv = 0
otherwise. Sincez′0 = w0 and sincem0v = g0v(ξ) = 0, this inequality holds for
j = 0, . . . , m. Whenj ∈ I(v) we have by the definition (9.15) of thecjv that

log‖Lj(z′)‖v − hcjv 6 h(gjv(ξ)/q + δv/4m2− ηvγ ),
whereηv = 1 whenv ∈ S, andηv = 0 otherwise. We note that∑

v∈V
max
j
|gjv(ξ)| 6 2ψ(ξ ) 6 2,
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sinceξ ∈ 9, and therefore∑
v∈V

max
j∈I(v)

(log‖Lj(z′)‖v − hcjv)

6 h((2/q)+ (1/4m2)− γ s)
6 h((1/4m)+ (1/4m2)− (1/m)(1− 1/8m) 6 −h/2m,

by (8.1), (9.13), (9.14), and sincem > 2. Exponentiating, we obtain∏
v∈V

max
j∈I(v)
{‖Lj(z′)‖vH−cjv } 6 H−1/2m. (9.18)

We now renormalize using the quantityQ = H(x)2m+1. We define

`jv = cjv/(2m+ 1) (v ∈ V, j ∈ I(v)).

Then (9.7), (9.8) hold as a consequence of (9.15), (9.16), and (9.9) holds by virtue
of (9.18).

10. Large Solutions

We quote a very special case of a theorem of Evertse and Schlickewei [6].

PROPOSITION D.Suppose0 < δ < 1, and letLj be the linear forms of(9.4).
For v ∈ V let I(v) be as in Lemma9.1, and let`jv (v ∈ V, j ∈ I(v)) be as in
(9.7), (9.8). Then there are proper linear subspacesT1, . . . , Tt ofKm with

t 6 22(m+5)2δ−m−4, (10.1)

such that everyz ∈ Km having∏
v∈V

max
j∈I(v)
{‖Lj(z)‖vQ−`jv } 6 Q−δ/m, (10.2)

for some

Q > mm/δ (10.3)

lies in the union ofT1, . . . , Tt .

When we are dealing with a large solution of (3.1), thenh > 2m logm by the
definition (6.1), so thatQ = H 2m+1 satisfies (10.3) withδ = 1/(4m + 2). By
Lemma 9.1, a pointz′ arising from a large special solution satisfies the hypotheses
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of Proposition D. With our value ofδ, we see that the largeρ-special solutions will
havez′ contained in not more than

22(m+5)2(4m+ 2)m+4 < 249m2/2(5m)3m < 230m2

proper linear subspaces ofKm, sincem > 2. Asz′ is proportional toz in (3.1), also
z will be in the union of these subspaces.

Allowing a factor (21m2)r from (8.8) for the number of pointsρ needed, we
may conclude that the set of large solutions of (3.1) may be covered by

< 230m2
(21m2)r (10.4)

proper subspaces.

11. Proof of Proposition A

Let us recall that in the preceding sections, according to the convention adop-
ted at the beginning of Section 6, we had restricted ourselves to solutionsz =
(z1, . . . , zm) with z1 . . . zm 6= 0. Clearly all the other solutions may be covered by
them coordinate subspaceszi = 0 (i = 1, . . . , m). It will suffice to combined
this bound with the bounds from Lemma 6.1 for the small solutions and the bound
(10.4) for the large solutions. Altogether we need fewer than

m+ (4d2)m(86d3m logm)r + 230m2
(21m2)r < 230m2

(32m2)rd3r+2m

III. PROOF OF PROPOSITION C

It remains for us to deduce Proposition C from Proposition B. The main difficulty
will be to satisfy condition (4.7) of Proposition B. A priori, it would seem that the
heighthM(x) of the vector (4.5) of monomials should be much smaller than the
heighthE(x) of the vector (4.6) of exponentials. But lacking information on the
basesα` of these exponentials, condition (4.7) is difficult to enforce.

12. Minimal Forms

Recall thatKA is the space of vectorsξ = (ξ`M) where` ∈ 3 = {1, . . . , k} and
M ∈ M `, i.e., the set of monomials of total degree6 δ`. Every linear formL on
KA may be written as

L(ξ) = L1(ξ1)+ · · · + Lk(ξ k), (12.1)

whereξ = (ξ1, . . . , ξ k) andξ ` = (ξ`M) with M ∈ M ` and whereL` is a linear
form on a space of dimension|M `| = cardM ` (` = 1, . . . , k). In factL`(ξ `) =∑

M∈M `
b`Mξ`M with coefficientsb`M ∈ K. Write B(L) for the set of̀ ∈ 3 with
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L` 6= 0. WriteA(L) for the set of pairs(`,M) with b`M 6= 0. ThusB(L) consists
of ` ∈ 3 for which there is anM ∈ M ` with (`,M) ∈ A(L). We callA(L) the
supportof L.

Let T be the subspace ofKA of Proposition C andL(T ) the space of linear
forms vanishing onT . If we hadL(T ) = {0}, thenT = KA, so thatP ≺ T would
imply that P is the partition into singletons{1}, . . . , {k}, which is incompatible
with G(P ) = {0}. ThereforeL(T ) 6= {0}.

A form L 6= 0 in L(T ) will be called aminimal form if there is no nonzero
form L′ in L(T ) with A(L′) a proper subset ofA(L). SinceP ≺ T , a minimal
formL hasB(L) ⊂ λ for someλ ∈ P . Say the minimal form is

L =
∑

(`,M)∈A(L)
b`Mξ`M. (12.2)

Whenx ∈ X(T ), thenL(ξ(x)) = 0 whereξ(x) is the vector having components
ξ`M(x) = M(x)αx

` with ` ∈ 3, M ∈ M `. Let us restrict to the vectorξL(x) with
componentsξ`M(x) where(`,M) ∈ A = A(L). By a slight abuse of notation

L(ξL(x)) = 0. (12.3)

Here ξL(x) ∈ Ka with a = aL = |A(L)|, and (12.3) says thatξ(x) lies in a
subspaceUL ⊂ Ka of codimension 1. The idea will be to show via Proposition B
that whenx lies outside an exceptional set ofC elements, the set of solutionsξL(x)
lies in a number of proper subspaces ofUL, sayUL1, . . . , ULC. NowULi is given
by Li(ξL) = 0 for a linear formLi which is, of course, not proportional toL.
SinceA(Li) ⊆ A(L), we may replaceLi by L′i = Li − αiL with suitableαi in
such a way thatA(L′i) is a proper subset ofA(L). In other words, we may suppose
thatA(Li) is a proper subset ofA(L). By the minimality property ofL, we have
Li 6∈ L(T ), and therefore whenξL(x) ∈ ULi , thenξL(x) lies in a proper subspace
Ti of T . Moreover, sinceB(Li) ⊂ B(L) ⊂ λ for someλ ∈ P , we haveP ≺ Ti.

The plan, then, will be to apply Proposition B to a minimal formL. At least
one of the resulting subspacesTi amongT1, . . . , TC will have |X(T ,P )| − C 6
C|X(T ,P ) ∩X(Ti)|, and Proposition C will follow withT ′ = Ti .

Note that the minimality of forms may be destroyed by the transformations of
Sections 13 and 15 below, and that useful minimal forms will only be constructed
in Section 16.

13. The Initial Transformation

Given a vectorα = (α1, . . . , αn) ∈ (K×)n, set`jv = log‖αj‖v (1 6 j 6 n, v ∈
V = V (K)). Then

∑
v `jv = 0 (1 6 j 6 n) by the product formula; here and

below, a sum overv, unless indicated otherwise, is overv ∈ V . Forξ ∈ Rn set

gv(ξ) =
n∑
j=1

`jvξj , (13.1)
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so thatgv is a linear form. We have
∑

v gv(ξ) = 0. Put

ψ(ξ) =
∑
v

max(0, gv(ξ)) = 1

2

∑
v

|gv(ξ)|. (13.2)

Note that

ψ(ξ + η) 6 ψ(ξ)+ ψ(η), ψ(γ ξ) = |γ |ψ(ξ), (13.3)

for γ ∈ R. Since log‖αx‖v = gv(x), we see from (7.1) that

ψ(x) = h(αx), (13.4)

for x ∈ Zn.
Givenα1, . . . ,αk as in our theorem, defineα`/αm in analogy to (4.9). Define

ψ`m(ξ) asψ(ξ) above, but withα = α`/αm. Then

ψ`m(x) = h((α`/αm)x) = h(αx
`:α

x
m),

for x ∈ Zn. Given a subsetλ of 3 = {1, . . . , k}, put

hλ(x) = max
`,m∈λ

h(αx
`:α

x
m), ωλ(ξ) = max

`,m∈λ
ψ`m(ξ).

Given a partitionP of 3, write

hP (x) = max
λ∈P

hλ(x), ωP (ξ) = max
λ∈P

ωλ(ξ).

The maximum of several functions with (13.3) still has this property, and therefore

ωP (ξ + η) 6 ωP (ξ)+ ωP (η), ωP (γ ξ) = |γ |ωP (ξ). (13.5)

Clearly

ωP (x) = hP (x), (13.6)

for x ∈ Zn.
Now suppose that the groupG(P ) = {0}. Then whenx ∈ Zn\{0}, there arè ,m

with `
P∼ m andαx

` 6= αx
m, hence with(α`/αm)x 6= 1. In fact there is such a pair

`,m for which(α`/αm)x is not a root of 1. Then according to (7.2),h((α`/αm)x) >
1/(21d3). We may conclude that forx ∈ Zn\{0},

ωP (x) > 1/(21d3). (13.7)

In view of (13.5), (13.7), the functionωP is a Minkowski distance inRn (see [19,
Lemma 3]), i.e., the set� of ξ ∈ Rn with ωP (ξ) 6 1 is convex, symmetric (that
is, ξ ∈ � implies−ξ ∈ �), compact, and contains0 in its interior.
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SinceP will be fixed, we will write more brieflyω for ωP . By a theorem of
Schlickewei [15], there is a basisb1, . . . ,bn of Zn such that

ω(ξ1b1+ · · · + ξnbn) > 4−n max
16i6n

|ξi|ω(bi),

and in view of (13.7) this is

> (4n · 21d3)−1|ξ |,
where|ξ | denotes the maximum norm. In other words, there is a transformation
τ ∈ GL(n,Z) such that

ω(τ(ξ)) > c1|ξ |,
with

c1 = (4n · 21d3)−1. (13.8)

Now

k∑
`=1

P`(τ(x))α
τ (x)
` =

k∑
`=1

P̂`(x)β
x, (13.9)

whereP̂`(x) = P`(τ(x)) is a polynomial of the same total degree asP`, and where
β` = (α

τ (e1)
` , . . . , α

τ (en)
` ) with e1, . . . ,en the standard basis ofZn. Our ω was

defined in terms ofα1, . . . ,αk; write ω = ωα. Similarly defineωβ in terms of
β1, . . . ,βk. Then

ωβ(ξ) = ωα(τ(ξ)) > c1|ξ |.
As is suggested by (13.9), and as was explained in detail in [16, §7], we may apply
a substitutionτ . Therefore we may suppose from now on that

ω(ξ) > c1|ξ |. (13.10)

This is essentially [16, (7.8)], except that we went to the logarithm, and that we
have a better value forc1.

14. Producing Large Heights (i)

Let L ∈ L(T ) be minimal, and write it as in (12.2). Setη`M(x) = b`MM(x)αx
` =

b`Mξ`M(x), and letη(x) be the vector inKa (wherea = |A(L)|) having compon-
entsη`M(x) with (`,M) ∈ A(L). Then (12.3) is the same as (4.4), andηL(x) lies
in a subspaceU ′L ⊆ Ka of codimension 1. It will suffice to show thatηL(x) lies in
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the union of proper subspacesU ′L1, . . . , U
′
LC of U ′L, for thenξL(x) will lie in the

union of proper subspacesUL1, . . . , ULC of UL.
To apply Proposition B, we will need (4.7). So lethLE(x) be defined as in

Section 4, i.e., as the heighth(εL(x)) of the vector

εL(x) = {b`Mαx
`}(`,M)∈A(L). (14.1)

We need formsL with hLE(x) large. This we cannot do at once; we will first have
to deal with the heighthLD(x) = h(δL(x)) where

δL(x) = {αx
`}`∈B(L). (14.2)

LEMMA 14.1. Suppose for eachλ ∈ P we have formsLλj (j = 1, . . . , t (λ)
wheret (λ) 6 |λ| 6 k) with B(Lλj) ⊆ λ, and such that for anỳ,m in λ, there
is a chain of formsLλ,j (1), . . . , Lλ,j (q) with q 6 t (λ) and ` ∈ B(Lλ,j (1)), m ∈
B(Lλ,j (q)) having

B(Lλ,j (i)) ∩B(Lλ,j (i+1)) 6= ∅, (14.3)

for 16 i < q. Then

max
λ,j

hLλ,jD(x) > c2|x| (14.4)

with

c2 = c1/k = (21kd3 · 4n)−1. (14.5)

Proof. By (13.6), (13.10) we havehP (x) > c1|x|, thereforehλ(x) > c1|x| for
someλ ∈ P , and thenh(αx

`:α
x
m) > c1|x|, for somè ,m in λ. LetLλ,j (1), . . . , Lλ,j (q)

be as above, and let̀i be in the set (14.3). Then (since generallyh(α:γ ) 6
h(α:β)+ h(β:γ )),

c1|x| 6 h(αx
`:α

x
m)

6 h(αx
`:α

x
`1
)+ h(αx

`1
:αx
`2
)+ · · · + h(αx

q−1:αx
m)

6 hLλ,j (1)(x)+ · · · + hLλ,j (q) (x).
The assertion follows.

15. Producing Large Heights (ii)

Givenα = (α1, . . . , αn) ∈ (K×)n, we have definedgv(ξ), ψξ ) by (13.1), (13.2).
Now let vectorsβ1, . . . ,βr in (K×)n be given, and definegiv(ξ), ψi(ξ) as above
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but with α = β i (i = 1, . . . , r). Setχ(ξ) = max16i6r ψi(ξ). We make the extra
hypothesis that

χ(ξ) > c2|ξ |, (15.1)

for ξ ∈ Rn. Thenχ is a Minkowski distance onRn. Let X consist ofξ with
χ(ξ) 6 1.

We have (in analogy to (13.4))ψi(x) = h(βx
i ) (i = 1, . . . , r) for x ∈ Zn, hence

χ(x) = max(h(βx
1), . . . , h(β

x
r )). (15.2)

LEMMA 15.1 Letγ1, . . . , γr in K× be given, and set

χ̃(x) = max(h(γ1β
x
1), . . . , h(γrβ

x
r )). (15.3)

Then there is au ∈ Zn such that

χ̃(x− u) > 1
4c2|x|,

for x ∈ Zn.
Proof.We havegiv(ξ) =∑n

j=1 `ijvξj with `ijv = log‖βij‖v, and

ψi(ξ) =
∑
v

max(0, giv(ξ)) = 1

2

∑
v

|giv(ξ)|,

for 16 i 6 r. Setciv = log‖γi‖v and

g̃iv(ξ , ζ ) = giv(ξ)+ civζ

for (ξ , ζ ) ∈ Rn × R1 = Rn+1. Further set

ψ̃i(ξ , ζ ) =
∑
v

max(0, g̃iv(ξ , ζ )) = 1

2

∑
v

|g̃iv(ξ , ζ )|,

χ̃(ξ , ζ ) = max
16i6r

ψ̃i(ξ , ζ ).

Let X̃ ⊂ Rn+1 consist of(ξ , ζ ) with χ̃ (ξ , ζ ) 6 1. ThenX̃ is convex, symmetric,
closed, and it contains0 in its interior. But it may be unbounded. The intersection
of X̃ with the coordinate hyperplaneζ = 0 isX. We haveχ̃(x,1) = χ̃(x).

When X̃ is unbounded, there is some(ξ0, ζ0) 6= (0,0) with χ̃ (ξ0, ζ0) = 0.
SinceX is bounded,ζ0 6= 0. By homogeneity, there is some(ξ1,1)with χ̃ (ξ1,1) =
0. On the other hand, wheñX is bounded, hence compact, pick(ξ0, ζ0) in X̃ with
ζ0 maximal. We rewriteξ0 = ζ0ξ1, so thatζ0(ξ1,1) ∈ X̃.
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Now suppose that(ξ , ζ ) ∈ X̃. WhenX̃ is unbounded,ζ(ξ 1,1) ∈ X̃; but this is
also true wheñX is bounded, since|ζ | 6 ζ0 in that case. Taking the difference, we
see that(ξ − ζ ξ1,0) ∈ 2X̃, which yieldsξ − ζ ξ1 ∈ 2X. Thus(ξ , ζ ) ∈ X̃ implies
ξ − ζ ξ1 ∈ 2X. Therefore, by reason of homogeneity,χ(ξ − ζ ξ1) 6 2χ̃ (ξ , ζ ). Put
differently,

χ(ξ) 6 2χ̃ (ξ + ζ ξ1, ζ ), (15.4)

for any(ξ , ζ ) ∈ Rn+1.
Pick u ∈ Zn such thatu = −ξ1 + µ, where the coordinates|µi| 6 1

2 (i =
1, . . . , n). Then by (15.4) withζ = 1,

χ̃(x− u) = χ̃ (x− u,1) = χ̃(x− µ+ ξ1,1)

> 1
2χ(x− µ) > 1

2c2|x− µ| > 1
4c2|x|,

in view of (15.1).
As was pointed out above, we wanthLE(x) large for certain formsL, and not

hLD(x) as in Lemma 14.1. One might try to writeb`Mαx
` = b

y

`Mα
x
` with y = 1,

i.e., to add a variabley, so thatby`Mα
x
` = (α̃`)

x̃ with α̃` = (b`M , α`1, . . . , α`n)
and x̃ = (y, x). This way the coefficients seem to disappear miraculously. How-
ever, then the initial transformation of Section 13, which now is in GL(n+ 1,Z),
will transform a polynomial having all its coefficients equal to 1 into a poly-
nomial whose coefficients are not necessarily 1, thus reintroducing coefficients.
For this reason this simple idea does not seem to work. We will take recourse to
Lemma 15.1 instead.

We order the monomials lexicographically: writeM > N whenM = Xi1
1 . . . X

in
n ,

N = X
j1
1 . . . X

jn
n with is > js, is+1 = js+1, . . . , in = jn for somes. We also

introduce a ‘pseudomonomial’� and writeM > � for every genuine monomial
M. Let

L = L1+ · · · + Lk =
∑
`∈3

∑
M∈M `

b`Mξ`M

be a form in the notation (12.1). Wheǹ∈ B(L), so thatL` 6= 0, letM`(L) be
the monomial which is largest with respect to the ordering> among the monomi-
als with nonzero coefficientsb`M , and letb`(L) be the corresponding coefficient.
When` 6∈ B(L), so thatL` = 0, we setM`(L) = �, b`(L) = 0, b`(L)M`(L) =
�. We callM`(L), b`(L) andb`M`(L) theleading monomials, leading coefficients,
and leading termsof L, respectively. To every formL there belongs ak-tuple
of leading terms(b1(L)M1(L), . . . , bk(L)Mk(L)), as well ask-tuples of leading
monomials and leading coefficients.

Clearly

hLE(x) > h′LE(x), (15.5)
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whereh′LE(x) is the height of the vectorε′l(x) with componentsb`(L)αx
` where

` ∈ B(L).
An examination of the proof of Lemma 14.1 shows that we have really proved

that

χ(x) := max
`,m

h((α`/αm)
x) = max

`,m
h(αx

`:α
x
m) > c2|x|, (15.6)

where the maximum is over all pairs̀,m having`,m ∈ B(Lλj) for someλ, j .
Thusχ(x) = Maxh(αx

`:α
x
m) = Maxh((α`/αm)x), where Max signifies the max-

imum over all quadruplesλ, j,m, `with λ ∈ P , 16 j 6 t (λ) and`,m ∈ B(Lλj).
Consider

χ̃(x) = Maxh(b`(Lλj)α
x
`:bm(Lλj )α

x
m)

= Maxh((b`(Lλj)/bm(Lλj ))(α`/αm)
x).

In view of (15.6) and Lemma 15.1, there is au ∈ Zn with

χ̃(x− u) > c3|x|, (15.7)

for x ∈ Zn, where we set

c3 = 1
4c2 = (84kd3 · 4n)−1. (15.8)

The idea now is to apply the translationx 7→ x − u. ThenP`(x)αx
` becomes

P`(x−u)αx−u
` = P̂`(x)αx

` with P̂`(x) = α−u
` P`(x−u). We hadL =∑`,M b`Mξ`M

andP` = ∑
M b`MM; now write P̂` = ∑

M b̂`MM and set̂L = ∑
`,M b̂`Mξ`M.

ThenL(ξ(x − u)) = L̂(ξ(x)). The subspaceT consists ofξ havingL(ξ) = 0
for L ∈ L(T ). Let T̂ be the space ofξ having L̂(ξ) = 0 for L ∈ L(T ), so that
L(T̂ ) consists of formŝL with L ∈ L(T ). Our transformation does not mess up
α1, . . . ,αk, so that againP ≺ T̂ .

In short, we may replaceT by T̂ , the formsL by L̂. We haveB(L̂) = B(L),
and when formsLλj have the property enunciated in Lemma 14.1, then so do the
forms L̂λj . The leading monomials are not changed by a substitutionx 7→ x − u.
Therefore whenb`(L) was a leading coefficient ofL, thenb`(L)α

−u
` is a leading

coefficient ofL̂. By (15.7) and the definition of̃χ ,

Maxh(b`(L̂λj )α
x
`:bm(L̂λj )α

x
m) > c3|x|.

In other words, after performing the substitutionx 7→ x − u, we may suppose
that χ̃(x) > c3|x|. In view of the definition ofh′LE, we have the following.

LEMMA 15.2. After a suitable translation x
¯
7→ x−u, the formsLλj of Lemma14.1

have

max
λ,j

h′LλjE(x) > c3|x|, (15.9)
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where the maximum is overλ ∈ P , 16 j 6 t (λ).

16. Construction of Minimal Forms

As pointed out in Section 12, we need to apply Proposition B to a minimal form.
Now it would be easy to construct formsLλj (λ ∈ P ,1 6 j 6 t (λ)) as in
Lemma 14.1 which are minimal. However, minimality may be destroyed by the
substitutionx 7→ x − u, i.e., changingLλj to L̂λj . This difficulty necessitates a
somewhat complicated construction.

Suppose

P ≺ T . (16.1)

For λ ∈ P , let Lλ(T ) consist of formsL ∈ L(T ) with B(L) ⊂ λ. As a con-
sequence of (16.1),

L(T ) =
⊕
λ∈P

Lλ(T ). (16.2)

We now begin our construction. Letλ ∈ P with |λ| > 1 be given. To fix ideas,
suppose thatλ = {1, . . . , r}. We will construct a partition ofλ, λ =⋃t

j=1µj , into
nonempty subsetsµ1, . . . , µt , as well as formsL1, . . . , Lt in Lλ(T ).

A form L ∈ Lλ(T ) will be called 1-stableif |B(L)| > 1 and ifL cannot be
written asL = L′ +L′′ whereL′, L′′ are nonzero, lie inLλ(T ), and haveB(L′)∩
B(L′′) = ∅. There are 1-stable forms, for otherwise every form inLλ(T ) would
be a sum of forms whose setsB are of cardinality 1, so that ifQ is obtained from
P by chopping upλ into the singletons{1}, . . . , {r}, thenQ would be agreeable
with T , contradicting (16.1). Pickµ1 ⊂ λ of minimal cardinality such that there is
a 1-stable formL with B(L) = µ1. Clearly|µ1| > 1.

Supposej > 1, and subsetsµ1, . . . , µj−1 of λ have been chosen. Setνj−1 =⋃j−1
i=1 µi. We are finished ifνj−1 = λ (just sett = j − 1); otherwise letν̄j−1

be the complement ofνj−1 in λ. A form L ∈ Lλ(T ) will be calledj -stableif L
cannot be written asL = L′ + L′′ whereB(L′) ⊂ νj−1, B(L′′) ⊂ ν̄j−1. There are
j -stable forms, for otherwise every formL ∈ Lλ(T ) could be written as a sum:
L = L′ +L′′ as above, so that ifQ is obtained fromP by dividingλ into νj−1 and
ν̄j−1, thenQ would be agreeable withT , contradicting (16.1). Pickµj ⊂ ν̄j−1 of
minimal cardinality such that there is aj -stable formL with

B(L) ∩ ν̄j−1 = µj . (16.3)

Clearly µj 6= ∅. Continuing in this way we finally get setsµ1, . . . , µt which
partitionλ.

We may renumber the elements ofλ such thatµj = {rj−1 + 1, . . . , rj } (j =
1, . . . , t) with 0 = r0 < r1 < · · · < rt = r. Now recall thatM1(L), . . . ,
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Mr(L), . . . , Mk(L) were the ‘leading monomials’ ofL. Given formsL,L′ in
Lλ(T ), writeL′ < L if

Ms(L
′) < Ms(L),Ms+1(L

′) = Ms+1(L), . . . ,Mr(L
′) = Mr(L),

for somes.
Our construction was such that for eachj , 16 j 6 t , there arej -stable forms

Lj with (16.3) (where we setν0 = ∅, ν̄0 = λ). A formLj will be calledproper if it
is minimal (with respect to<) amongj -stable forms with (16.3). Since< induces
only a partial ordering of the forms (only the leading monomials matter for<),
j -proper forms are not uniquely determined. However, if bothLj,L

′
j arej -proper,

then

(M1(Lj ), . . . ,Mrj (Lj)) = (M1(L
′
j ), . . . ,Mrj (L

′
j )).

LEMMA 16.1. SupposeLj,L′j are j -proper. Then therj -tuples of leading coeffi-
cients

(a1(Lj ), . . . , arj (Lj )) and (a1(L
′
j ), . . . , arj (L

′
j )) (16.4)

are proportional.
Proof. The coefficientsarj (Lj ), andarj (L

′
j ) are nonzero by (16.3). SetJ =

arj (L
′
j )Lj − arj (Lj )L′j . Then

J < Lj . (16.5)

If the rj -tuples (16.4) were not proportional, there would be ag with Mg(J ) =
Mg(Lj) 6= �. There is anα ∈ K with

Mg(Lj − αJ ) < Mg(Lj). (16.6)

In the casej = 1 write

J = J 1+ · · · + J r1, (16.7)

L1 = L1
1+ · · · + Lr11 (16.8)

in the notation of (12.1). Now (16.5), i.e.,J < L1, and the hypothesis thatL1

is minimal imply thatJ is not 1-stable, and by the minimality ofµ1 it is easy to
conclude that eachJ i ∈ Lλ(T ). We say that ‘J splits completely.’ Then

L̃1 = L1− αJ g ∈ Lλ(T ) (16.9)

andL̃1 < L1 by (16.6). Therefore alsõL1 splits completely. But

L̃1 = L1
1+ · · · + Lg−1

1 + (Lg1 − αJ g)+ Lg+1
1 + · · · + Lr11 .
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ThereforeLi1 for i 6= g is in Lλ(T ), hence so isLg1, andL1 splits completely,
against the fact that it is 1-stable.

In the casej > 1 write

J = J ∗ + J ∗∗, Lj = L∗j + L∗∗j ,
with B(J ∗), B(L∗j ) ⊂ νj−1 andB(J ∗∗), B(L∗∗j ) ⊂ µj . Now (16.5) implies thatJ
is notj -stable, so thatJ ∗, J ∗∗ ∈ Lλ(T ). We say that ‘J splits.’ Set

L̃j =
{
Lj − αJ ∗, if g ∈ νj−1,

Lj − αJ ∗∗, if g ∈ µj .
(16.10)

ThenL̃j ∈ Lλ(T ), furtherL̃j < Lj by (16.6). ThereforẽLj also splits. E.g., in the
case wheng ∈ νj−1,

L̃j = (L∗j − αJ ∗)+ L∗∗j ,
so thatL∗∗j ∈ Lλ(T ), henceLj splits, against the fact that it isj -stable. The
situation is similar wheng ∈ µj .

LEMMA 16.2. LetLj be aj -proper form with|A(Lj )| as small as possible. Then
Lj is a minimal form.

Proof.Suppose to the contrary that there is a formJ 6= 0 inLλ(T )with A(J ) $
A(Lj). By the special choice ofLj , the formJ cannot bej -proper. ButJ < Lj
or J ∼ Lj (meaning thatJ,Lj have the same leading monomials), and henceJ

cannot bej -stable.
Write

J = J 1+ · · · + J rj , (16.11)

Lj = L1
j + · · · + Lrjj (16.12)

in the notation of (12.1). SomeJ g 6= 0. Every monomial occurring with nonzero
coefficient inJ g also occurs so inLgj . Therefore there is anα ∈ K with

A(Lgj − αJ g) $ A(Lgj ). (16.13)

In the casej = 1, J (being not 1-stable) splits completely, and we have (16.9)
again. ButA(L̃1) $ A(L1) by (16.13). Therefore by the special property ofL1, the
form L̃1 cannot be 1-proper. But̃L1 < L1 or L̃1 ∼ L1, so that̃L1 is not 1-stable,
hence splits completely. We get a contradiction as in the proof of Lemma 16.1.

In the casej > 1, J splits, and̃Lj as defined by (16.10) is inLλ(T ). We have
A(L̃j ) $ A(Lj ) by (16.13). We may infer that̃Lj is notj -proper, further that it is
not j -stable, and it splits. Again we get a contradiction as in Lemma 16.1.
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17. End of Proof

For eachλ ∈ P , construct setsµλ1, . . . , µλt and linear formsLλ1, . . . , Lλt with
t = t (λ) 6 |λ| as described in the preceding section, such thatLλj is j -proper.

LEMMA 17.1. The formsLλj (λ ∈ P ,1 6 j 6 t (λ)) satisfy the hypotheses of
Lemma14.1.

Proof.We may suppose thatλ is given and we write the corresponding sets and
forms again asµ1, . . . , µt andL1, . . . , Lt . We will show by induction onq that
if `,m ∈ νq = ⋃q

j=1µi , then there are formsLj(1), . . . , Lj(q) amongL1, . . . , Lt
with ` ∈ B(Lj(1)), m ∈ B(Lj(q)) andB(Lj(i)) ∩B(Lj(i+1)) 6= ∅ for 1 6 i < q.
This is trivial for q = 1, for then`,m ∈ µ1 = B(L1). Whenq > 1, we may
suppose that̀ ∈ νq−1, m ∈ µq (for if both `,m ∈ µq , then both are inB(Lq)).
Nowm ∈ B(Lq). There is anm′ in the nonempty setB(Lq)∩ νq−1. By induction,
there are formsLj(1), . . . , Lj(q−1) with ` ∈ B(Lj(1)), m′ ∈ B(Lj(q−1)), and with
any two successiveL’s having theirB ’s with nonempty intersection. The assertion
now holds withLj(q) = Lq .

By Lemmas 14.1, 17.1 we have (14.4). Further by Lemma 15.2, we have (15.9)
after a suitable translationx 7→ x− u.

Now a translation changes formsL into formsL̂. ButB(L) = B(L̂). Therefore
the new formŝLλj are againj -stable (λ ∈ P ,1 6 j 6 t (λ)). In fact the leading
monomials are not changed, and therefore the new formsL̂λj are againj -proper
(with respect to the new spacêT ). These new forms have leading coefficients such
that (15.9) holds. We finally replacêLλj by a j -proper formL̃λj whose support
A(L̃λj ) is minimal. ThenL̃λj is a minimal form by Lemma 16.2. In view of
Lemma 16.1, the leading coefficients ofL̃λj (j = 1, . . . , t (λ)) are proportional
to the leading coefficients of̂Lλj (j = 1, . . . , t (λ)), so that again (15.9) holds.
Therefore in view of (15.5),we may suppose that we have minimal formsLλj
(λ ∈ P ,16 j 6 t (λ)) with

max
λ,j

hLλjE(x) > c3|x|.

We now divide the solutionsx ∈ X(T ,P ) into possibly overlapping classes
Cλj , with x ∈ Cλj if

hLλjE(x) > c3|x|. (17.1)

Sincet (λ) 6 |λ|, the number of classes is6 |3| = k 6 A.
Now let λ, j be fixed and consider solutionsx ∈ Cλj . HereLλj (x) = 0, and

this equation is as in Proposition B, i.e., (4.4) withA = A(Lλj). Suppose initially
that a = |A(Lλj)| > 3. The monomials occurring inLλj have total degree6
max(δ1, . . . , δk) 6 A, so thatHM(x) 6 |x|A. In view of (17.1), the condition (4.7)
will be satisfied ifA log |x| 6 1/(4a2)c3|x|. Sincea 6 A, this will certainly be
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true if |x| 6 exp((4A3)−1c3|x|). Since expt > t2/2, the condition will be amply
satisfied if

|x| > 32A6c−2
3 . (17.2)

By Proposition B, the solutions with (17.2) yield at most (4.8) proper subspaces of
T . (Here we used thatLλj was minimal – see the discussion in Section 12.)

Summing over the classes, of which there are at mostA, and noting that each
a = |A(Lλj)| 6 A, we get a boundA · 230A2

(32A2)nd3(n+A). Since 26 A 6 B

andn 6 B, the total number of subspaces is< 234B2
d6B = C.

We are left with the solutions where (17.2) is violated, so that by (15.8),

|x| < 32B6(84kd3 · 4n)2 < 24n+18k2B6d6. (17.3)

Since 26 k 6 B andn 6 B we obtain|x| < 219Bd6, and the number of such
x ∈ Zn is

< 220B2
d6n < C.

This establishes Proposition C whena > 3.
Whena = 2, the equationLλj = 0 is of the typea`MM(x)αx

`+a`′M ′M ′(x)αx
`′ =

0, so that

hLλjE(x) = hLλjM(x) 6 A log |x|.

Together with (17.1) this yieldsc3|x| 6 A log |x|, so that|x| > exp(A−1c3|x|) >
1
2A
−2c2

3|x|2, i.e., |x| 6 2A2c−2
3 . This gives (17.3) and hence leads again to fewer

thanC solutions. So whena = 2, thenX(T ,P )| < C, and Proposition C follows.
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