X-ray powder diffraction data of $LaNi_{0.5}Ti_{0.45}Co_{0.05}O_3$, $LaNi_{0.45}Co_{0.05}Ti_{0.5}O_3$, and $LaNi_{0.5}Ti_{0.5}O_3$ perovskites

Mariana M. V. M. Souza,¹ Alex Maza,² and Pablo V. Tuza ^(2,a)

¹Escola de Química, Universidade Federal do Rio de Janeiro (UFRJ), Centro de Tecnologia, Bloco E, Sala 206, Rio de Janeiro, RJ CEP 21941-909, Brazil

²Departamento de Ciencias de la Energía y Mecánica, Carrera de Petroquímica, Universidad de las Fuerzas Armadas – ESPE sede Latacunga, Campus Académico General Guillermo Rodríguez Lara, Belisario Quevedo, Latacunga, Cotopaxi 050150, Ecuador

(Received 2 March 2020; accepted 14 December 2020)

In the present work, LaNi_{0.5}Ti_{0.45}Co_{0.05}O₃, LaNi_{0.45}Co_{0.05}Ti_{0.5}O₃, and LaNi_{0.5}Ti_{0.5}O₃ perovskites were synthesized by the modified Pechini method. These materials were characterized using X-ray fluorescence, scanning electron microscopy, and powder X-ray diffraction coupled to the Rietveld method. The crystal structure of these materials is orthorhombic, with space group *Pbnm* (No 62). The unit-cell parameters are a = 5.535(5) Å, b = 5.527(3) Å, c = 7.819(7) Å, V = 239.2(3) Å³, for the LaNi_{0.5}Ti_{0.45}Co_{0.05}O₃, a = 5.538(6) Å, b = 5.528(4) Å, c = 7.825(10) Å, V = 239.5(4) Å³, for the LaNi_{0.5}Ti_{0.5}O₃, and a = 5.540(2) Å, b = 5.5334(15) Å, c = 7.834(3) Å, V = 240.2(1) Å³, for the LaNi_{0.5}Ti_{0.5}O₃. © *The Author(s), 2021. Published by Cambridge University Press on behalf of International Centre for Diffraction Data.* [doi:10.1017/S0885715620000767]

Key words: perovskite, $LaNi_{0.5}Ti_{0.45}Co_{0.05}O_3$, $LaNi_{0.45}Co_{0.05}Ti_{0.5}O_3$, $LaNi_{0.5}Ti_{0.5}O_3$, X-ray diffraction

I. INTRODUCTION

Perovskites oxides are compounds with the formula ABO_3 , where A is a lanthanide or alkali earth metal and B is a transition metal (Mefford *et al.*, 2014). They can be represented by *B*-cations placed in the center of octahedra connected through the vertices, creating octahedra layers and cavities between them. The octahedra vertices are occupied by oxygen atoms, while A cations are located at the center of the cavities.

Double perovskites (DPs), mostly represented by the formula $A'A''B'B''O_6$, where the number of primes indicate distinct possible metal ions with the same amount (Anderson *et al.*, 1993), present various physical and chemical properties (Anderson *et al.*, 1993; Shaheen and Bashir, 2010; Ezzahi *et al.*, 2011). *B*-cation sublattice types known for *DPs* are rock-salt, layered, and random (Anderson *et al.*, 1993). The rock-salt and layered sublattices characterize ordered *DPs*. Random-like *DPs* can be assumed to be perovskites with equal number of two different *B*-cations. They have been applied as electrode materials for fuel cells (Deng *et al.*, 2009; Li *et al.*, 2011) or a catalyst for some reactions (Campbell, 1992; Huang *et al.*, 2009; Tuza and Souza, 2016).

Hydrogen is an important raw material for chemical industries and oil refineries. Because of environmental regulations, low quality of crude oil, and China and India's growing markets, the increase of H_2 consumption is expected (Zohuri, 2019). H_2 is mainly produced by steam reforming of methane (Iulianelli *et al.*, 2016), which has been carried out over various catalysts, including perovskites. For instance, Ni⁰/La₂O₃, a catalyst obtained from LaNiO₃ perovskite, showed the

catalytic activity for steam reforming of methane. However, catalyst deactivation was observed due to coking. For instance, Provendier *et al.* (2001) prepared an LaNiO₃ perovskite catalyst for steam reforming of methane. The authors observed catalyst deactivation and coke formation over the catalyst surface.

Titanium inclusion in LaNiO₃ perovskite can mitigate coke deposition on Ni⁰/La₂O₃. For instance, Hayakawa *et al.* (1997) synthesized Ni/Ca_{0.8}Sr_{0.2}TiO₃ as a catalyst for CO₂ reforming of CH₄. Catalyst performance was related to Ni dispersion over the perovskite and strong interaction between nickel and perovskite containing titanium. Urasaki *et al.* (2005) used an Ni/SrTiO₃ catalyst for steam reforming of methane. Hindering production of carbon species due to oxygen mobility in perovskite containing titanium was related to high catalytic activity of an Ni/SrTiO₃ catalyst.

By substituting Ni³⁺ from LaNiO₃ by Ti⁴⁺ such that equal amount of *B*-cations is attained, either the random (LaNi_{0.5} Ti_{0.5}O₃, orthorhombic symmetry, and space group *Pbnm* (Rodríguez *et al.*, 1999)) or the rock-salt (La₂NiTiO₆, monoclinic symmetry, and space group *P*2₁/*n* (Rodríguez *et al.*, 2002; Pérez-Flores *et al.*, 2011; Yang *et al.*, 2012)) sublattice was achieved. Ni⁰/La₂TiO₅, which is obtained after reduction of LaNi_{0.5}Ti_{0.5}O₃ perovskite, showed both catalytic activity and stability for steam reforming of methane because of the metal–support interaction (Tuza and Souza, 2016).

Partial substitution of either NiO₆ or TiO₆ from double perovskite LaNi_{0.5}Ti_{0.5}O₃ by CoO₆, i.e., LaNi_{0.5}Ti_{0.45}Co_{0.05}O₃ and LaNi_{0.45}Co_{0.05}Ti_{0.5}O₃, and the corresponding influence on crystal structure, reductive behavior, and catalytic activity for steam reforming of methane were reported in a previous work (Tuza and Souza, 2017). These properties were completely different for LaNi_{0.5}Ti_{0.45}Co_{0.05}O₃ when compared with the other materials, which was attributed to different metal–support

^{a)}Author to whom correspondence should be addressed. Electronic mail: pvtuza@espe.edu.ec

interaction between Ni⁰ (for the LaNi_{0.5} Ti_{0.5}O₃) or Ni⁰–Co⁰ (for cobalt-containing perovskites) and the corresponding supports, as confirmed from quantitative phase analysis for these perovskites after reduction with 10% H₂/N₂. It is worth noting that LaNi_{0.5}Ti_{0.5}O₃ can be a double perovskite with the random ordering of *B*-cations (Anderson *et al.*, 1993). Moreover, only the catalyst obtained from the perovskite synthesized by partial substitution of Ni²⁺ from LaNi_{0.5}Ti_{0.5}O₃ by Co²⁺ in 0.05 mol did not present catalytic stability for the investigated reaction.

In this work, we report powder X-ray diffraction (XRD) data for LaNi_{0.5}Ti_{0.45}Co_{0.05}O₃, LaNi_{0.45}Co_{0.05}Ti_{0.5}O₃, and LaNi_{0.5}Ti_{0.5}O₃ materials, which were published in the Powder Diffraction FileTM with the PDF numbers 00-69-0417, 00-69-0418, and 00-69-0419, respectively.

II. MATERIALS AND METHODS

A. Synthesis

 $LaNi_{0.5}Ti_{0.45}Co_{0.05}O_3$ and $LaNi_{0.45}Co_{0.05}Ti_{0.5}O_3$ materials were prepared by the modified Pechini method and

reported in a previous work (Tuza and Souza, 2016, 2017). Briefly, adequate amounts of precursors (lanthanum nitrate hexahydrate (La(NiO₃)₃• 6H₂O, 99.5%), nickel nitrate hexahydrate (Ni(NiO₃)₂• 6H₂O, 97%), cobalt nitrate hexahydrate $(Co(NiO_3)_2 \cdot 6H_2O, 100\%)$, and titanium isopropoxide (C12H28O4Ti, 97%) from Sigma-Aldrich) were dissolved in water. Metal citrates were prepared by heating metal solutions to 60 °C, to which citric acid was added. The polyester solution was achieved after adding ethylene glycol at 90 °C to a solution composed of lanthanum, nickel, cobalt, and titanium citrates. The resin obtained by evaporation of the polyester solution was calcined at 240 °C for 1 h and 450 °C for 4 h. The material was milled and then calcined in air at 800 °C for 17 h. Moreover, LaNi_{0.5}Ti_{0.5}O₃ perovskite was synthesized by using the same method. The perovskites were obtained in the form of black powders.

B. Characterization

The chemical composition of the as-prepared materials was determined by X-ray fluorescence analysis, which was

TABLE I. Chemical composition determined from X-ray fluorescence, Sycos, X-ray density, atomic coordinates, unit-cell parameters, bond lengths, bonding angles, and conventional discrepancy factors from Rietveld refinement of powder XRD data for LaNi_{0.5}Ti_{0.45}Co_{0.05}O₃, LaNi_{0.45}Co_{0.05}Ti_{0.5}O₃, and LaNi_{0.5}Ti_{0.5}O₃.

	LaNi _{0.5} Ti _{0.45} Co _{0.05} O ₃ ^a	LaNi _{0.45} Co _{0.05} Ti _{0.5} O ₃ ^b	LaNi _{0.5} Ti _{0.5} O ₃ ^c	LaNi _{0.5} Ti _{0.5} O ₃ (ICSD: 88851)	
La (wt%)	71.3	70.9	71.1		
Ni (wt%)	16.6	15.2	16.5		
Ti (wt%)	10.3	12	12.4		
Co (wt%)	1.8	1.9			
Sycos (°)	0.04590	-0.01622	-0.00685		
X-ray density $(g \text{ cm}^{-3})$	6.685	6.661	6.643	6.631	
Average crystallite size (nm)	35.8	32.7	27.1		
a (Å)	5.535(5)	5.538(6)	5.540(2)	5.517	
<i>b</i> (Å)	5.527(3)	5.528(4)	5.5334(15)	5.555	
<i>c</i> (Å)	7.819(7)	7.825(10)	7.834(3)	7.856	
$V(Å^3)$	239.2(3)	239.5(4)	240.2(1)	240.59	
La: x	-0.0072(9)	-0.0053(12)	-0.0046(4)	-0.0048	
У	0.0226(7)	0.0184(8)	0.0198(3)	0.0206	
Z	0.25	0.25	0.25	0.25	
Ni: x y z	0.5 0 0	0.5 0 0	0.5 0 0	0.5 0 0	
Ti: x y z	0.5 0 0	0.5 0 0	0.5 0 0	0.5 0 0	
Co: <i>x y z</i>	0.5 0 0	0.5 0 0	-		
O1: <i>x</i>	0.275(8)	0.251(11)	0.253(3)	0.281	
у	0.278(8)	0.284(7)	0.292(2)	0.249	
Z	0.048(3)	0.041(3)	0.0443(12)	0.036	
O2: <i>x</i>	0.02	0.02	0.02	0.02	
У	0.489(5)	0.496(6)	0.478(2)	0.499	
Z.	0.25	0.25	0.25	0.25	
<i>B</i> –O1 ^e	$2.01(4) \times 2$	2.11(5)2	$2.146(14) \times 2$	2.10348×2	
	$1.99(4) \times 2$	1.86(5)2	$1.847(14) \times 2$	1.85749×2	
B-O2 ^f	$1.9588(19) \times 2$	$1.960(3) \times 2$	$1.9654(10) \times 2$	1.967×2	
$B-O1-B^{g}$	155(2)	160(2)	157.4(6)	162.1	
$B-O2-B^{h}$	172.6(2)	173.4(3)	170.4(1)	173.6	
<i>R</i> p/ <i>R</i> wp (%)	20.5/26.8	21.4/26.8	12.7/14.6		
Rbragg (%)	6.406	6.224	4.31		
χ2	1.15	1.18	1.68		

Theoretical chemical composition of La (wt%)/Ni (wt%)/Ti (wt%)/Co (wt%).

^a72.07%/15.22%/11.18%/1.53%.

^b72.27%/13.74%/12.45%/1.54%.

°72.28%/15.27%/12.45%/0.

^dReference: ICSD (2017).

^eBond lengths (Å), in which *B* is equal to Ni/Ti or Ni/Ti/Co, according to *B*-cations. ^fBond lengths (Å), in which *B* is equal to Ni/Ti or Ni/Ti/Co, according to *B*-cations. ^gBonding angles (°), in which *B* is equal to Ni/Ti or Ni/Ti/Co, according to *B*-cations. ^hBonding angles (°), in which *B* is equal to Ni/Ti or Ni/Ti/Co, according to *B*-cations.

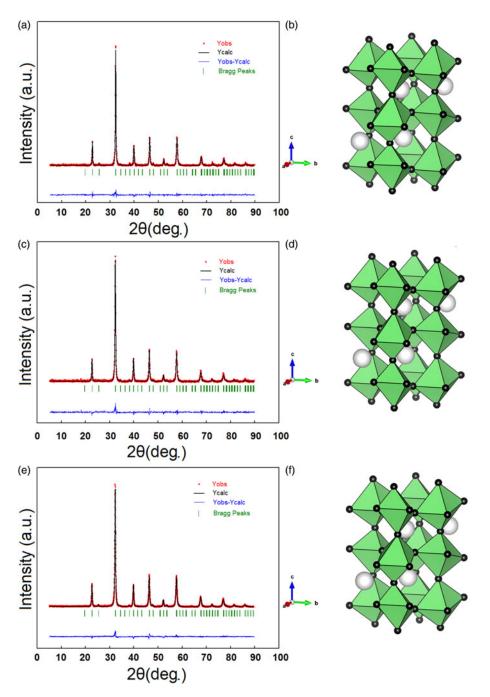


Figure 1. Observed (red symbols), calculated (black line), and difference (blue line) XRD profiles for (a) $LaNi_{0.5}Ti_{0.45}Co_{0.05}O_3$, (c) $LaNi_{0.45}Co_{0.05}Ti_{0.5}O_3$, and (e) $LaNi_{0.5}Ti_{0.5}O_3$. Crystal structure of (b) $LaNi_{0.5}Ti_{0.45}Co_{0.05}O_3$, (d) $LaNi_{0.45}Co_{0.05}O_3$, and (f) $LaNi_{0.5}Ti_{0.5}O_3$.

carried out using a Rigaku Primini Spectrometer equipped with a Pd X-ray tube operating at 50 W (40 kV, 1.25 mA), and a ZSX software package. A sample amount around 200 mg was packed on a polyethylene sample cup, covered with polypropylene thin-film, and then fixed with a ring. Chemical composition was expressed on the weight percentage basis of the cation amount for each sample. Sample images were recorded by means of scanning electron microscopy (Model QuantaTM 450 FEG, FEI Co) operating with an accelerating voltage of 20 kV. Previously, samples were sputter-coated with a gold-based layer for enhancing image quality.

Powder XRD patterns were recorded at room temperature using the Rigaku Miniflex II X-ray diffractometer equipped with a graphite monochromator and CuK α radiation (30 kV and 15 mA), 2 θ range 5–90°, step size and counting time per step equal to 0.02° and 6 s (for LaNi_{0.5}Ti_{0.5}O₃ perovskite) or 0.05° and 1 s (for cobalt-containing perovskites). A mass amount approximately equal to 300 mg was packed on a quartz specimen holder as a thin layer of powdered compound. The *d*-values were calculated using CuK α radiation.

The Rietveld method of powder XRD patterns was performed using the Fullprof Program (Rodríguez-Carvajal, 1993). The structural model of LaNi_{0.5}Ti_{0.5}O₃ perovskite (space group *Pbnm*) (ICSD, 2017) was used as a starting point to refine the corresponding structures for the as-synthesized samples. The background (fourth-degree polynomial), the scale factor, the unit-cell parameters, three

TABLE II. Powder diffraction data of LaNi_{0.5}Ti_{0.45}Co_{0.05}O₃.

$\Delta 2\theta$ (°) ⁶	$d_{ m calc} ({ m \AA})^{ m d}$	$2\theta_{\text{calc}}(^{\circ})^{\text{c}}$	$2\theta_{\text{calc}}(^{\circ})^{\text{b}}$	l	k	h	(I/I ₀) _{obs}	$d_{\rm obs}$ (Å)	$2\theta_{\rm obs}$ (°) ^a
0.001	3.909	22.727	22.747	2	0	0	109.1	3.906	22.748
0.009	3.498	25.444	25.447	1	1	1	32.9	3.496	25.455
-0.005	2.765	32.352	32.379	2	1	1	1000	2.763	32.374
-0.003	2.358	38.134	38.159	3	0	1	11.9	2.357	38.156
-0.011	2.259	39.877	39.937	2	0	2	150.3	2.256	39.926
-0.005	2.091	43.233	43.236	2	1	2	1.6	2.091	43.231
0.002	1.955	46.396	46.458	0	2	2	328.7	1.953	46.460
-0.014	1.897	47.912	47.912	1	2	2	19.4	1.898	47.898
-0.011	1.794	50.863	50.786	3	2	1	3.7	1.797	50.775
-0.001	1.749	52.263	52.303	2	2	2	44.9	1.748	52.302
0.037	1.706	53.685	53.698	1	3	1	31.7	1.704	53.735
0.009	1.597	57.662	57.719	2	1	3	196.9	1.596	57.727
-0.013	1.382	67.722	67.783	4	2	2	161	1.382	67.771
0.008	1.304	72.423	72.431	4	1	3	17.7	1.304	72.439
0.008	1.236	77.078	77.097	6	1	1	84	1.236	77.105
0.014	1.180	81.533	81.652	2	2	4	28.8	1.178	81.666
-0.022	1.165	82.74	82.798	5	3	1	9.9	1.165	82.776
-0.002	1.129	86.004	86.158	4	0	4	46.5	1.128	86.156
-0.003	1.117	87.202	87.232	3	4	2	14.4	1.117	87.229
0.002	1.095	89.419	89.493	7	0	1	0.4	1.094	89.495

F(20) = 16.13 (0.0090, 138) (Smith and Snyder, 1979).

^aCorrected observed peak positions.

^bPeak positions calculated using the McMaille program.

^cPeak positions calculated using the Fullprof program.

^dInterplanar distance calculated using the Fullprof program.

 ${}^{e}\Delta 2\theta (\circ) = {}^{a}2\theta_{obs} (\circ) - {}^{b}2\theta_{calc} (\circ).$

halfwidth parameters, La1 at (x, y, 0.25), O1 at (x, y, z), and O2 at (y, 0.25) atomic coordinates, and the sample displacement, Sycos, were refined. Sycos is equal to the ratio between a correction parameter attributed to sample displacement error, in degrees, and cosine of θ angle, where θ is measured in radians (Rodríguez-Carvajal, 2001). Since a satisfactory fit could not be achieved, "x" atomic coordinate for O2 was not refined. The isotropic displacement parameter was maintained at 0.5 $Å^2$, as suggested for atoms in a metal oxide (Attfield *et al.*, 2004). Peak shapes of powder XRD patterns were described using the pseudo-Voigt function. The fraction of site occupancy for all elements was not refined. To achieve the electroneutrality for LaNi_{0.5}Ti_{0.45}Co_{0.05}O₃ perovskite, the fraction of site occupancy for B-cations was divided and fixed into four parts: 0.225 for Ni²⁺ or Ti⁴⁺ and 0.025 for Ni³⁺ or Co³⁺. For LaNi_{0.45}Co_{0.05}Ti_{0.5}O₃ perovskite, this value was divided and fixed into three parts: 0.25, 0.225, and 0.025 for Ti⁴⁺, Ni²⁺, and Co²⁺, respectively. For LaNi_{0.5}Ti_{0.5}O₃ perovskite, the fraction of site occupancy for B-cations was equal and fixed to 0.25 for Ti⁴⁺ and Ni²⁺ (ICSD, 2017).

III. RESULTS AND DISCUSSION

Chemical composition (weight percentage basis) obtained from X-ray fluorescence, unit-cell parameters, X-ray densities, atomic coordinates, *B*-cation to metal bond distances, and agreement factors from Rietveld refinement of powder XRD data for as-synthesized materials are indicated in Table I.

The chemical composition was close to their corresponding nominal values, whose variation was attributed to experimental error. Therefore, it supports the expected composition. Experimental, calculated, and difference XRD patterns are shown in Figure 1. Impurity phases were not detected in

XRD patterns of the as-synthesized materials. The unit-cell parameters for as-synthesized materials are similar to the respective for LaNi_{0.5}Ti_{0.5}O₃ (ICSD, 2017). X-ray density for LaNi_{0.5}Ti_{0.5}O₃ perovskite is similar to the reported literature value (6.643 vs. 6.631 g cm⁻³; Table I). For LaNi_{0.5}Ti_{0.45} Co_{0.05}O₃ (6.685 vs. 6.631 g cm⁻³; Table I) and LaNi_{0.45}Co_{0.05} Ti_{0.5}O₃ (6.661 vs. 6.631 g cm⁻³; Table I), the variations of X-ray density are expected due to chemical composition. Metal-to-oxygen bond distances and bonding angles are close to values reported in the literature, except the B-O1 and B-O2 bond distances for the perovskite obtained from the partial substitution of Ti^{4+} by Co^{2+} in 0.05 mol. These results are attributed to different values of metal-to-oxygen bond distances for B-cations with two different valences $(Ni^{2+}, Ni^{3+}, Ti^{4+}, and Co^{3+})$ assumed for the achievement of electroneutrality. Since R factors from Rietveld refinement can be improved by increasing the counting time per step and decreasing the step size of powder XRD data acquisition, agreement factors were acceptable for the used experimental conditions. It is worth mentioning that we reported magnetic measurements for LaNi_{0.5}Ti_{0.5}O₃ perovskite and temperatureprogrammed reduction for the as-prepared materials in a previous work (Tuza and Souza, 2017). Magnetic measurements support the assumed symmetry for LaNi_{0.5}Ti_{0.5}O₃ perovskite. Also, $LaNi_{0.5}Ti_{0.45}Co_{0.05}O_3$ is difficult to reduce, when compared with the other as-synthesized perovskites, which can be attributed to some nickel and all the cobalt with a valence equal to 3+. Therefore, the symmetry of as-prepared perovskites is orthorhombic, with space group Pbnm, and glazer notation $a^{-}a^{-}c^{+}$ (Martin and Parise, 2008; Fowlie, 2019). The powder diffraction data of as-synthesized perovskites are provided in Tables II-IV. The indexation of the powder XRD pattern from each sample was carried out using the

TABLE III. Powder diffraction data of LaNi_{0.45}Co_{0.05}Ti_{0.5}O₃.

$\Delta 2\theta (^{\circ})^{\mathrm{e}}$	$d_{ m calc} ({ m \AA})^{ m d}$	$2\theta_{\text{calc}}(^{\circ})^{\text{c}}$	$2\theta_{\text{calc}}(^{\circ})^{\text{b}}$	l	k	h	(<i>I</i> / <i>I</i> ₀) _{obs}	$d_{\rm obs}$ (Å)	$2\theta_{\rm obs}$ (°) ^a
0.006	3.912	22.710	22.739	2	0	0	99.5	3.907	22.744
0.004	2.766	32.334	32.370	2	1	1	1000	2.763	32.374
0.003	2.260	39.853	39.909	2	0	2	155.4	2.257	39.912
0.008	1.956	46.379	46.440	0	2	2	327.4	1.953	46.448
0.008	1.898	47.894	47.922	1	2	2	13.9	1.896	47.930
-0.011	1.750	52.239	52.303	2	2	2	42.8	1.748	52.292
0.014	1.598	57.630	57.701	2	1	3	190.9	1.596	57.715
-0.041	1.565	58.972	58.978	3	2	2	3.5	1.566	58.937
-0.012	1.383	67.680	67.732	4	2	2	170.1	1.382	67.720
-0.008	1.305	72.374	72.415	4	1	3	18.9	1.304	72.407
-0.010	1.286	73.568	73.673	1	3	3	7.3	1.285	73.664
0.023	1.268	74.784	74.737	2	4	1	1.2	1.269	74.760
0.006	1.237	77.013	77.032	2	3	3	72.9	1.237	77.038
0.007	1.130	85.942	86.086	4	0	4	44.7	1.128	86.093
0.003	1.117	87.165	87.128	3	4	2	11.2	1.118	87.131

F(20) = 19.87 (0.0082, 123) (Smith and Snyder, 1979).

^aCorrected observed peak positions.

^bPeak positions calculated using the McMaille program.

^cPeak positions calculated using the Fullprof program.

^dInterplanar distance calculated using the Fullprof program.

 ${}^{e}\Delta 2\theta (\circ) = {}^{a}2\theta_{obs} (\circ) - {}^{b}2\theta_{calc} (\circ).$

TABLE IV. Powder diffraction data of LaNi_{0.5}Ti_{0.5}O₃.

$2\theta_{\rm obs} \left(^{\circ}\right)^{\rm a}$	$d_{\rm obs}$ (Å)	(1/I ₀) _{obs}	h	k	l	$2\theta_{\rm calc}$ (°) ^b	$2\theta_{\text{calc}}(^{\circ})^{\text{c}}$	$d_{ m calc}\left({ m \AA} ight)^{ m d}$	$\Delta 2\theta (^{\circ})^{\mathrm{e}}$
22.713	3.912	98.8	0	0	2	22.713	22.683	3.917	-0.001
32.315	2.768	1000	1	1	2	32.315	32.303	2.769	0.001
39.868	2.259	148.7	2	0	2	39.864	39.824	2.262	0.004
41.585	2.170	6.7	1	1	3	41.561	41.535	2.172	0.025
43.118	2.096	4	1	2	2	43.149	43.2	2.092	-0.031
46.382	1.956	323.2	2	2	0	46.386	46.343	1.958	-0.004
52.221	1.750	42.5	2	2	2	52.227	52.194	1.751	-0.006
57.661	1.597	191.6	3	1	2	57.661	57.591	1.599	-0.001
63.919	1.455	1.6	3	1	3	63.900	63.942	1.455	0.019
67.639	1.384	152.8	2	2	4	67.636	67.608	1.385	0.003
72.244	1.307	17.3	3	1	4	72.261	72.307	1.306	-0.017
72.417	1.304	7.7	0	4	2	72.419	72.389	1.304	-0.003
78.071	1.223	4.7	2	2	5	78.056	78.059	1.223	0.015
81.334	1.182	10.5	2	0	6	81.318	81.418	1.181	0.016
81.440	1.181	26.5	4	2	2	81.443	81.427	1.181	-0.004
82.501	1.168	0.9	3	1	5	82.519	82.537	1.168	-0.018
85.971	1.130	41.6	4	0	4	85.969	85.868	1.131	0.002
89.180	1.097	0.1	5	0	1	89.183	89.187	1.097	-0.003

F(20) = 17.50 (0.0085, 134) (Smith and Snyder, 1979)

^aCorrected observed peak positions.

^bPeak positions calculated using the McMaille program.

^cPeak positions calculated using the Fullprof program.

^dInterplanar distance calculated using the Fullprof program.

 ${}^{e}\Delta 2\theta (\circ) = {}^{a}2\theta_{obs} (\circ) - {}^{b}2\theta_{calc} (\circ).$

McMaille program (Le Bail, 2004). Moreover, the crystal structure of the as-prepared samples is indicated in Figure 1, which was drawn using VESTA software (Momma and Izumi, 2011).

A representative FEG-SEM image of $LaNi_{0.5}Ti_{0.5}O_3$ is shown in Supplementary Figure S1. Related to this perovskite, grains are composing elongated and spherical particles at the range 15.5–128.1 nm, with mean particle size equal to 57.3 nm. Grain population with particle size less than 100 nm was equal to 87.3%. This result is in accordance with the average crystallite size determined by the Scherrer equation (27.1 nm; Table I). It is worth noting that the average crystallite size for LaNi_{0.5}Ti_{0.45}Co_{0.05}O₃ (35.8 nm; Table I) and LaNi_{0.45}Co_{0.05}Ti_{0.5}O₃ (32.7 nm; Table I) was similar to the corresponding for LaNi_{0.5}Ti_{0.5}O₃. As the synthesis method was the same for all the perovskites, i.e., the same calcination temperature was employed to synthesize all the perovskites, we concluded that LaNi_{0.5}Ti_{0.45}Co_{0.05}O₃, LaNi_{0.45}Co_{0.05}Ti_{0.5}O₃ materials are composed mainly by nanoparticles.

IV. CONCLUSIONS

LaNi_{0.5}Ti_{0.45}Co_{0.05}O₃, LaNi_{0.45}Co_{0.05}Ti_{0.5}O₃, and LaNi_{0.5}Ti_{0.5}O₃ perovskites were synthesized by the modified Pechini method. The chemical composition of these materials was close to nominal values, which indicated the appropriate application of the synthesis method. The as-prepared perovskites are composed largely by nanoparticles, with orthorhombic crystal structure, space group *Pbnm*, and glazer notation $a^{-}a^{-}c^{+}$. XRD data affirmed the single-phase of each as-prepared material.

V. DEPOSITED DATA

CIF files with information related to as-prepared perovskites, RAW, and DAT files with XRD data of these materials were deposited with the ICDD. You may request this data from ICDD at info@icdd.com.

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be found at https://doi.org/10.1017/S0885715620000767.

ACKNOWLEDGEMENTS

The authors thank Carlos André de Castro Perez from Instituto Federal de Ciência e Tecnologia do Rio de Janeiro – IFRJ, Brazil, for Rietveld analysis suggestions. Also, they are grateful to Andréa Maria Duarte de Farias and Francisco Luiz Correa Rangel from Nanotechnology Characterization Center (CENANO)/National Institute of Technology, Brazil for SEM images used to determine the particle size of as-synthesized perovskites.

CONFLICTS OF INTEREST

The authors have no conflicts of interest to declare.

- Anderson, M. T., Greenwood, K. B., Taylor, G. A., and Poeppelmeier, K. R. (1993). "B-cation arrangements in double perovskites," Prog. Solid State Chem. 22(3), 197–233.
- Attfield, M., Barnes, P., Cockcroft, J. K., and Driessen, H. (2004). Advanced Certificate in Powder Diffraction (School of Crystallography, Birkbeck College, University of London). Available at: http://pd.chem.ucl.ac.uk/ pdnn/chapter.htm.
- Campbell, K. D. (1992). "Layered and double perovskites as methane coupling catalysts," Catal. Today 13(2–3), 245–253.
- Deng, Z. Q., Smit, J. P., Niu, H. J., Evans, G., Li, M. R., Xu, Z. L., Claridge, J. B., and Rosseinsky, M. J. (**2009**). "B cation ordered double perovskite $Ba_2CoMo_{0.5}Nb_{0.5}O_{6-\delta}$ as a potential SOFC cathode," Chem. Mater. **21** (21), 5154–5162.
- Ezzahi, A., Manoun, B., Ider, A., Bih, L., Benmokhtar, S., Azrour, M., Azdouz, M., Igartua, J. M., and Lazor, P. (2011). "X-ray diffraction and Raman spectroscopy studies of BaSrMWO₆ (M=Ni, Co, Mg) double perovskite oxides," J. Mol. Struct. 985(2–3), 339–345.
- Fowlie, J. (2019). Electronic and Structural Properties of LaNiO₃-Based Heterostructures (Springer, Cham), p. 2.

- Hayakawa, T., Harihara, H., Andersen, A. G., Suzuki, K., Yasuda, H., Tsunoda, T., Hamakawa, S., York, A. P. E., Yoon, Y. S., Shimizu, M., and Takehira, K. (1997). "Sustainable Ni/Ca_{1-x}Sr_xTiO₃ catalyst prepared *in situ* for the partial oxidation of methane to synthesis gas," Appl. Catal., A 149(2), 391–410.
- Huang, Y. H., Liang, G., Croft, M., Lehtimäki, M., Karppinen, M., and Goodenough, J. B. (2009). "Double-perovskite anode materials Sr₂MMoO₆ (M=Co, Ni) for solid oxide fuel cells," Chem. Mater. 21 (11), 2319–2326.
- ICSD (2017). Inorganic Crystal Structure Database (Database), 76344 Eggenstein-Leopoldshafen, Germany.
- Iulianelli, A., Liguori, S., Wilcox, J., and Basile, A. (2016). "Advances on methane steam reforming to produce hydrogen through membrane reactors technology: a review," Catal. Rev. 58(1), 1–35.
- Le Bail, A. (2004). "Monte Carlo indexing with McMaille," Powd. Diffr. 19 (3), 249–254.
- Li, C., Wang, W., Zhao, N., Liu, Y., He, B., Hu, F., and Chen, C. (2011). "Structure properties and catalytic performance in methane combustion of double perovskites Sr₂Mg_{1-x}Mn_xMoO_{6-δ}," Appl. Catal., B 102(1–2), 78–84.
- Martin, C. D. and Parise, J. B. (2008). "Structure constraints and instability leading to the post-perovskite phase transition of MgSiO₃," Earth Planet. Sci. Lett. 265(3–4), 630–640.
- Mefford, J. T., Hardin, W. G., Dai, S., Johnston, K. P., and Stevenson, K. J. (2014). "Anion charge storage through oxygen intercalation in LaMnO₃ perovskite pseudocapacitor electrodes," Nat. Mater. 13(7), 726–732.
- Momma, K. and Izumi, F. (2011). "VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data," J. Appl. Crystallogr. 44, 1272–1276.
- Pérez-Flores, J. C., Ritter, C., Pérez-Coll, D., Mather, G. C., García-Alvarado, F., and Amador, U. (**2011**). "Synthesis, structures and electrical transport properties of the La_{2-x}Sr_xNiTiO_{6- δ} ($0 \le x \le 0.5$) perovskite series," J. Mater. Chem. **21**(35), 13195–13204.
- Provendier, H., Petit, C., and Kiennemann, A. (2001). "Steam reforming of methane on LaNi_xFexO₃ (0<=x<=1) perovskites. Reactivity and characterisation after test," C. R. Acad. Sci., Ser. IIc: Chim., 4(1), 57–66.
- Rodríguez, E., Álvarez, I., López, M. L., Veiga, M. L., and Pico, C. (**1999**). "Structural, electronic, and magnetic characterization of the perovskite $LaNi_{1-x}Ti_xO_3$ ($0 \le x \le 12$)," J. Solid State Chem. **148**(2), 479–486.
- Rodríguez, E., López, M. L., Campo, J., Veiga, M. L., and Pico, C. (2002). "Crystal and magnetic structure of the perovskites La₂MTiO₆ (M = Co, Ni)," J. Mater. Chem. 12(9), 2798–2802.
- Rodríguez-Carvajal, J. (1993). "Recent advances in magnetic structure determination by neutron powder diffraction," Physica B. 192(1–2), 55–69.
- Rodríguez-Carvajal, J. (2001). Fullprof Manual (Report). Grenoble: Institute Laue Langevin.
- Shaheen, R. and Bashir, J. (2010). "Ca₂CoNbO₆: a new monoclinically distorted double perovskite," Solid State Sci. 12(8), 1496–1499.
- Smith, G. S. and Snyder, R. L. (1979). "FN: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing," J. Appl. Crystallogr. 12, 60–65.
- Tuza, P. V. and Souza, M. M. V. M. (2016). "Steam reforming of methane over catalyst derived from ordered double perovskite: effect of crystalline phase transformation," Catal. Lett. 146(1), 47–53.
- Tuza, P. V. and Souza, M. M. V. M. (2017). "B-cation partial substitution of double perovskite La₂NiTiO₆ by Co²⁺: effect on crystal structure, reduction behavior and catalytic activity," Catal. Commun. 97(1), 93–97.
- Urasaki, K., Sekine, Y., Kawabe, S., Kikuchi, E., and Matsukata, M. (2005). "Catalytic activities and coking resistance of Ni/perovskites in steam reforming of methane," Appl. Catal., A 286(1), 23–29.
- Yang, W. Z., Liu, X. Q., Lin, Y. Q., and Chen, X. M. (2012). "Structure, magnetic, and dielectric properties of La₂Ni(Mn_{1-x}Ti_x)O₆ ceramics," J. Appl. Phys. 111, 084106.
- Zohuri, B. (2019). Small Modular Reactors as Renewable Energy Sources (Springer, Gewerbestrasse), p. 198.

34