THE MAXIMUM ORDER OF THE GROUP OF A TOURNAMENT

John D. Dixon

(received March 20, 1967)

1. Introduction. To each tournament T_{n} with n nodes there corresponds the automorphism group $G\left(T_{n}\right)$ consisting of all dominance preserving permutations of the set of nodes. In a recent paper [3], Myron Goldberg and J. W. Moon consider the maximum order $g(n)$ which the group of a tournament with n nodes may have. Among other results they prove that
(1) $\lim g(n)^{1 / n}$ exists as $n \rightarrow \infty$ and is ≤ 2.5;
(2) $g(n) \geq \sqrt{3}^{n-1}$ for $n=3^{k} \quad(k=0,1, \ldots)$.

Moreover, they conjecture that
(3) $\quad \lim g(n)^{1 / n}=\sqrt{3}$.

The object of the present paper is to prove
THEOREM 1. For each positive integer $n, g(n) \leq \sqrt{3}^{n-1}$. Taken together with (2) this implies the truth of the conjecture (3).

In contrast to the graph theoretic approach of [3], our approach is via group theory. It takes as its starting point the Addendum to [3] where it is shown that $g(n)$ can be interpreted as being the largest order of a permutation group of odd order and degree n. By the celebrated theorem of Feit and Thompson [2], any group of odd order is solvable. Thus Theorem 1 is equivalent to

THEOREM 1'. Every solvable permutation group G of odd order and degree n has order $|G| \leq \sqrt{3}{ }^{n-1}$.

Canad. Math. Bull. vol. 10, no. 4, 1967

We shall prove the result in this latter form. It would be interesting to know if the result is as deep as the use of the Feit-Thompson theorem suggests.
2. Proof of Theorem 1'. The main step in the proof of Theorem 1^{\prime} is already contained in a previous paper of the author (see [1]). It is shown there that we can use induction on n to reduce the problem to the case where G is a primitive permutation group. In the latter case it is shown that $G=A G_{1}$ with $A \cap G_{1}=1$, where A is a normal elementary abelian p-subgroup of order $p^{k}=n$ and G_{1} is the stability subgroup of G fixing one symbol. Moreover, A equals its centralizer in G, and so G_{1} is isomorphic to a subgroup of the group Aut A of all automorphisms of A. Finally, since the order of Aut A for an elementary abelian p-group is known, we obtain

$$
\begin{equation*}
|G|=|A|\left|G_{1}\right| \text { divides } p^{k}\left(p^{k}-1\right)\left(p^{k}-p\right) \ldots\left(p^{k}-p^{k-1}\right) \tag{4}
\end{equation*}
$$

(See [1] Section 2 for details.)
The remaining step is to prove that (4) together with the hypothesis that $|G|$ is odd implies $|G| \leq \sqrt{3}{ }^{n-1}$ with $n=p^{k}$. Direct calculation shows

$$
|G| \leq p^{k}\left(p^{k}-1\right) \ldots\left(p^{k}-p^{k-1}\right)<p^{k+k^{2}} \leq \sqrt{3} p^{k}-1
$$

unless $p^{k}=3,3^{2}, 5$ or 7 . However, since $|G|$ is odd, we have in the exceptional cases

$$
\begin{aligned}
& |G| \leq 3=\sqrt{3} 3^{3-1} \text { if } r=3, \\
& |G| \leq 3^{3}<\sqrt{3} 3^{9-1} \text { if } n=3^{2}, \\
& |G| \leq 5<\sqrt{3} 3^{5-1} \text { if } n=5,
\end{aligned}
$$

and

$$
|\mathrm{G}| \leq 21<\sqrt{3}^{7-1} \text { if } \mathrm{n}=7
$$

Thus the inequality holds in all cases, and the theorem is proved.
3. Remarks. The inequality (2) can be proved in a direct group-theoretic manner by constructing imprimitive permutation
groups of suitable order (cf. the end of Section 2 in [1]). Theorem 1^{\prime} shows that we actually have equality in (2) and a simple check of the inequalities in the proof above shows that we cannot have equality except when $n=3^{k}$. Again a straightforward case-by-case analysis of the proof above gives an easy way of calculating the values of $g(n)$ for moderate values of n.

REFERENCES

1. J.D. Dixon, The Fitting subgroup of a linear solvable group, J. Austral. Math. Soc. 7 (1967), to appear.
2. W. Feit and J. G. Thompson, Solvability of groups of odd order. Pac. J. Math. 13 (1963), 775-1029.
3. M. Goldberg and J.W. Moon, On the maximum order of the group of a tournament. Canad. Math. Bull. 9 (1966), 563-569.

University of New South Wales, Australia

