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Abstract

A celebrated result of Rödl and Ruciński states that for every graph F , which is not a forest of stars
and paths of length 3, and fixed number of colours r > 2 there exist positive constants c,C such that
for p 6 cn−1/m2(F) the probability that every colouring of the edges of the random graph G(n, p)
contains a monochromatic copy of F is o(1) (the ‘0-statement’), while for p > Cn−1/m2(F) it is
1 − o(1) (the ‘1-statement’). Here m2(F) denotes the 2-density of F . On the other hand, the case
where F is a forest of stars has a coarse threshold which is determined by the appearance of a certain
small subgraph in G(n, p). Recently, the natural extension of the 1-statement of this theorem to k-
uniform hypergraphs was proved by Conlon and Gowers and, independently, by Friedgut, Rödl and
Schacht. In particular, they showed an upper bound of order n−1/mk (F) for the 1-statement, where
mk(F) denotes the k-density of F . Similarly as in the graph case, it is known that the threshold
for star-like hypergraphs is given by the appearance of small subgraphs. In this paper we show that
another type of threshold exists if k > 4: there are k-uniform hypergraphs for which the threshold is
determined by the asymmetric Ramsey problem in which a different hypergraph has to be avoided
in each colour class. Along the way we obtain a general bound on the 1-statement for asymmetric
Ramsey properties in random hypergraphs. This extends the work of Kohayakawa and Kreuter, and
of Kohayakawa, Schacht and Spöhel who showed a similar result in the graph case. We prove the
corresponding 0-statement for hypergraphs satisfying certain balancedness conditions.
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1. Introduction

Given graphs (or hypergraphs) G and F , we denote by

G → (F)r
the property that every colouring of the edges of G with r colours contains a
monochromatic copy of F . If r = 2 we simply write G → (F). For example,
Ramsey’s theorem shows that for every two integers `, r > 2 there exists an
integer R(`, r) such that K R(`,r)→ (K`)r . In other words, every r -edge-colouring
of a sufficiently large complete graph contains a monochromatic complete graph
with ` vertices. In this paper we are interested in the case where G is a binomial
random graph.

A random graph G(n, p) is a graph on n vertices and each possible edge is
present with probability p, independent of all other edges. The study of Ramsey-
type questions in random graphs was initiated by Łuczak et al. [15] where, among
other results, they established the threshold for

G(n, p)→ (K3).

In a subsequent series of papers, Rödl and Ruciński [20–22] fully solved the
edge colouring problem (up to one corner case, noticed later by Friedgut and
Krivelevich [9]). To state their results we first need the following definition, which
we give in the more general form for k-uniform hypergraphs. For any graph or
hypergraph G we denote by e(G) and v(G) the number of its edges and vertices,
respectively. Set

dk(G) :=


0 if e(G) = 0,
1/k if e(G) = 1, v(G) = k,
e(G)− 1
v(G)− k

otherwise,
(1)

and
mk(G) := max

H⊆G
dk(H).

We refer to mk(G) as the k-density of G. If dk(G) = mk(G) we say that G is
k-balanced, and it is strictly k-balanced if all strict subgraphs of G have smaller
k-density. With ∆(G) we denote the maximum vertex degree of G.

THEOREM 1 [9, 20, 22]. Let F be a graph with at least one edge and r > 2.

(i) If F is a forest of stars, then

lim
n→∞

P[G(n, p)→ (F)r ] =

{
0 if p � n−1−1/(r(∆(F)−1)+1),

1 if p � n−1−1/(r(∆(F)−1)+1).
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(ii) If r = 2 and F is a forest of stars and at least one path with exactly 3 edges,
then there exists a constant C such that

lim
n→∞

P[G(n, p)→ (F)] =

{
0 if p � n−1/m2(F) = n−1,

1 if p > Cn−1/m2(F) = Cn−1.

(iii) In all other cases there exist constants c = c(F, r) and C = C(F, r) such
that

lim
n→∞

P[G(n, p)→ (F)r ] =

{
0 if p 6 cn−1/m2(F),

1 if p > Cn−1/m2(F).

We refer the reader to [18] for a short proof of part (iii) of Theorem 1.
Theorem 1(iii) was further strengthened by Friedgut and Krivelevich [9] and by
Friedgut et al. [10] as follows. Friedgut and Krivelevich [9] proved the existence
of a sharp threshold for all forests F and any number of colours where (iii) of
Theorem 1 applies. Friedgut et al. [10] showed the existence of a sharp threshold
in the two-colour case where F = K3. The latter result was recently extended to
a more general class of graphs by Schacht and Schulenburg [27] who built on the
ideas of Friedgut et al. [8].

Note that the expected number of copies of a graph F in G(n, p) is of order
Θ(nv(F) pe(F)) and the expected number of edges isΘ(n2 p). Thus, the above result
essentially states that for a balanced graph F the transition from the 0- to the
1-statement happens around the value of p for which these two quantities are
roughly equal. In other words, if the expected number of copies of F per edge
is smaller than some small constant c′ then colouring without monochromatic
F is possible, while if this number is bigger than a large constant C ′ then
a monochromatic F always appears. This can be explained by the following
intuition: if each copy of F contains an edge which does not belong to any other
copy of F then by colouring all such edges with red and every other edge with
blue clearly gives a colouring without a monochromatic copy of F . If, on the other
hand, each edge is contained in many copies of F then these must overlap heavily
and a monochromatic copy is unavoidable.

There are two exceptional cases in Theorem 1: stars and paths of length 3 (that
is, paths with exactly 3 edges). In the case of a star S` with ` edges it is easy to see
by the pigeonhole principle that Sr(`−1)+1 → (S`)r for any r > 2. In other words,
as soon as a star on r(`− 1)+ 1 edges appears in G(n, p) it is no longer possible
to colour it with r colours without a monochromatic S`. The threshold for this
event is asymptotically smaller than n−1/m2(S`). In the case of P3 and two colours
a similar phenomenon occurs. Given any cycle C` of length ` > 3 we obtain a
‘sunshine graph’ S∗` by appending one pending edge to each vertex of C`. For any
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odd ` > 5 it holds that S∗` → (P3). From standard results it follows that whenever
p = cn−1 there is a small but constant probability that G(n, p) contains such a
sunshine graph. Accordingly the 0-statement in (ii) cannot be of the same type as
in (iii).

While the graph case was solved completely by Rödl and Ruciński in the
90’s, the hypergraph case is still open. Here we consider the random hypergraph
model analogue to G(n, p): H k(n, p) is a hypergraph on n vertices and each
possible hyperedge with k vertices is present with probability p, independently
of all other hyperedges. Rödl and Ruciński [23] conjectured that the same
intuition should hold as for Ramsey properties in the graph case, namely that
a monochromatic copy of F appears in every colouring whenever the expected
number of copies of F per hyperedge exceeds a large constant. They proved
this for the complete 3-uniform hypergraph on 4 vertices and 2 colours and,
together with Schacht, extended it in [24] to k-partite k-uniform hypergraphs.
Recently Friedgut et al. [11] proved the conjectured 1-statement for all k-
uniform hypergraphs. Similar results were obtained independently by Conlon and
Gowers [5].

THEOREM 2 [5, 11]. Let F be a k-uniform hypergraph with maximum degree
at least 2 and let r > 2. There exists a constant C > 0 such that for p = p(n)
satisfying p > Cn−1/mk (F) we have

lim
n→∞

P[H k(n, p)→ (F)r ] = 1.

It was shown in [17] that n−1/mk (F) is indeed the threshold in the case where
F is a complete hypergraph and some further special classes were considered in
[28]. However, the complete characterization, like the one in Theorem 1, is still
not known. As an evidence that such a characterization might not be as simple as
in the graph case, we show that there exists another type of threshold if k > 4.
In particular, contrary to the graph case we show that there exist hypergraphs
for which the threshold is neither the conjectured n−1/mk (F) nor is it determined
by the appearance of a small subgraph. The following theorem is our first main
contribution.

THEOREM 3. For every k > 4 there exists a k-uniform hypergraph F and positive
constants 1 < θ < mk(F) and c,C > 0 such that

lim
n→∞

P[H k(n, p)→ (F)] =

{
0 if p 6 cn−1/θ ,

1 if p > Cn−1/θ .
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Figure 1. The hypergraph F given by Theorem 3 for k = 5.

Note that if the threshold for a hypergraph F given by the previous theorem
was determined by the appearance of a certain small hypergraph then, for the 0-
statement to hold, we would necessarily need to have p � n−1/θ (we elaborate
more on this in Section 2).

The k-uniform hypergraph F in Theorem 3 is formed as a disjoint union of
a hypergraph triangle and a tight cycle of certain length (see Figure 1). We
formally define it in Section 2. The value of θ corresponds to the threshold for the
asymmetric Ramsey property of the two hypergraphs, which we describe next. In
Section 1.2, we then give an intuition behind the connection between symmetric
Ramsey property for F and the asymmetric one for the two hypergraphs.

1.1. Asymmetric Ramsey properties. Instead of avoiding a monochromatic
copy of the same hypergraph F in all colours, in the asymmetric case we want
to avoid a hypergraph F1 in red, a hypergraph F2 in blue, and so on for all r > 2
colours. Similarly as before, let

G → (F1, . . . , Fr )

denote the property that every colouring of the edges of G with r colours contains
at least one monochromatic copy of Fi in its respective colour (for some 1 6 i 6
r ). Clearly, if all Fi are equal this reduces to the previously discussed (symmetric)
case.

In the context of random graphs, the asymmetric Ramsey property was first
studied by Kohayakawa and Kreuter [13] where they determined the threshold for
the case where each Fi is a cycle. They also conjectured that in the general case the
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threshold is determined by the function below. Here we state the extension for k-
uniform hypergraphs, while the original conjecture concerns only the case k = 2.

DEFINITION 4. Let F1, F2 be two k-uniform hypergraphs with at least one edge
and such that mk(F1) > mk(F2). The asymmetric k-density is defined as follows,

mk(F1, F2) = max
{

e(F ′1)
v(F ′1)− k + 1/mk(F2)

: F ′1 ⊆ F1, e(F ′1) > 1
}
. (2)

Note that if mk(F1) = mk(F2) then mk(F1, F2) = mk(F1) and otherwise
mk(F2) < mk(F1, F2) < mk(F1). We say that F1 is strictly balanced with respect
to mk(·, F2) if no proper subgraph F ′1 ( F1 with at least one edge maximizes (2).

The intuition behind the conjectured value n−1/mk (F1,F2) for the asymmetric
Ramsey property is easiest explained in the case r = 3 and F2 = F3. In other
words, we have three colours and we aim to avoid a copy of F1 in colour 1 and
a copy of F2 in colours 2 and 3. First, observe that we can assign the colour 1 to
every edge which does not belong to a copy of F1. Since mk(F1, F2) < mk(F1),
for p = Θ(n−1/mk (F1,F2)) we do not expect the copies of F1 to overlap too
much. Therefore, the number of edges which are left is of the same order as
the number of copies of F1, which is asymptotically nv(F1) pe(F1). Assuming that
these edges are randomly distributed (which is not entirely correct, but it gives
a good intuition) this gives us a random hypergraph H ′ with edge probability
p∗ = nv(F1)−k pe(F1). Next, we use colours 2 and 3 for the hyperedges in H ′. Now
the same argument as in the symmetric case applies: if the copies of F2 are not
overlapping heavily in H ′ then it should be possible to assign two colours to the
edges of H ′ such that there is no monochromatic copy of F2, and otherwise this
is unavoidable. The reasoning as before shows that we expect this transition to
happen around p∗ = n−1/mk (F2). Putting all together, we obtain the value of p
given by the conjecture.

In turns out that, in order to avoid a monochromatic Fi , if p < cn−1/mk (F1,F2)

the third colour is actually not needed. That is, we can assign colours 1 and 2
to H ′ such that both monochromatic F1 and F2 are avoided. This is the reason
why the conjectured threshold is determined only by the two graphs with largest
k-density. Progress towards proving the conjecture in the graph case was made
by Marciniszyn et al. [16], where they confirmed it for complete graphs. They
also observed that the approach of Kohayakawa and Kreuter can be used to
deduce the 1-statement for all graphs F1 and F2 which satisfy certain mild
conditions, provided that the KŁR-conjecture holds (the KŁR-conjecture was
verified recently by several groups of authors [2, 6, 26]). On the other hand,
Kohayakawa et al. [14] gave an alternative proof for the same result by using
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Figure 2. A generic (left) and a nongeneric (right) graph F∗ ∈ F ∗(K3,C4). Note
that F e1

1 and F e2
1 are the same copy of K3 in (b).

elementary means, with similar conditions on F1 and F2. Our second main
contribution is an extension of these results to hypergraphs.

THEOREM 5. Let r > 2 and F1, . . . , Fr be k-uniform hypergraphs such that
mk(F1) > mk(F2) > · · · > mk(Fr ) and F1 is strictly balanced with respect to
mk(·, F2). Then there exists a constant C > 0 such that for p > Cn−1/mk (F1,F2) we
have

lim
n→∞

Pr
[
H k(n, p)→ (F1, . . . , Fr )

]
= 1.

1.1.1. Sufficient criterion for the 0-statement. The corresponding 0-statement
for the asymmetric Ramsey properties remains open in its full generality. As
mentioned earlier, even in the case k = 2 it is known only for some special classes
of graphs, such as complete graphs and cycles. Our modest contribution towards
resolving these questions is a result that reduces the problem from random graph
theory to a deterministic question, at least under a certain balancedness condition.
To state it we first need a couple of definitions.

DEFINITION 6. Given k-uniform hypergraphs F1 and F2, let F ∗(F1, F2) be the
family of all k-uniform hypergraphs F∗ with the following property,

F ∗(F1, F2) :=

F∗ :

F∗ contains a copy F∗2 of F2 and
for each e ∈ E(F∗2 )− e0 (for some e0 ∈ E(F∗2 ))
there exists a copy F e

1 of F1, containing e, such that
E(F∗) = E(F∗2 ) ∪

⋃
e∈E(F∗2 )−e0

E(F e
1 )

.
Note that hypergraphs F e

1 need not be disjoint (in fact they are not even required
to be distinct; see Figure 2b).
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Informally, every graph in the family F ∗(F1, F2) is obtained by an
amalgamation of copies of F1 onto F2 which cover all but at most one edge
of F2.

Given a hypergraph F∗ ∈ F ∗(F1, F2), we say that e0 is an attachment edge of
F∗. Note that there can be more than one edge which fall under the definition of
an attachment edge. Moreover, we say that a member F∗ ∈ F ∗(F1, F2) is generic
if the following holds: each F e

1 intersects F∗2 on exactly k vertices (namely those
which correspond to the intersecting edge e) and the remaining vertices of F e

1 are
disjoint from those of all other F e′

1 (see Figure 2). Observe that there could be
several nonisomorphic generic copies since an attachment edge can vary, and F1

and F2 need not be ‘symmetric’.
The main property that we require F ∗(F1, F2) to possess resembles that of

strictly k-balancedness.

DEFINITION 7 (Asymmetric-balanced). For given k-uniform hypergraphs F1 and
F2, we say that F ∗ := F ∗(F1, F2) is asymmetric-balanced if the following two
conditions are satisfied for all F∗ ∈ F ∗ and all H ( F∗ with V (H) ( V (F∗) that
contain an attachment edge of F∗:

(1)
e(F∗)− e(H)
v(F∗)− v(H)

> mk(F1, F2);

(2) if
e(F∗)− e(H)
v(F∗)− v(H)

= mk(F1, F2)

then H consists of exactly an attachment edge and F∗ is generic.

The next theorem shows that the function mk(·, ·) indeed determines the
threshold for the asymmetric Ramsey property for all k-uniform hypergraphs
which satisfy certain conditions.

THEOREM 8. Let F1, . . . , Fr be k-uniform hypergraphs such that F2 has at least
three edges, mk(F1) > mk(F2) > · · · > mk(Fr ) and the following holds:

(i) F1 and F2 are strictly balanced and mk(F2) > 1;

(ii) F1 is strictly balanced with respect to mk(·, F2);

(iii) F ∗(F1, F2) is asymmetric-balanced;

(iv) for every k-uniform hypergraph G such that m(G) 6 mk(F1, F2) we have

G 9 (F1, F2).
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Then there exists a constant c > 0 such that for p 6 cn−1/mk (F1,F2) we have

lim
n→∞

Pr
[
H k(n, p)→ (F1, . . . , Fr )

]
= 0.

We prove Theorem 8 in Section 4. In Section 5 we use it to derive the 0-
statement for pairs of hypergraphs that are used in the proof of Theorem 3.

1.2. Asymmetric meets symmetric Ramsey. Before we dive into proofs,
we elaborate on the connection between the asymmetric Ramsey properties
and Theorem 3. We construct the hypergraph F in Theorem 3 as a disjoint
union of two carefully chosen hypergraphs F1 and F2 with mk(F1) > mk(F2)

(see Figure 1). Moreover, we choose F1 as a triangle-like hypergraph whose
threshold is asymptotically below n−1/mk (F1,F2) (in particular, it is determined by
the appearance of a small subgraph). The choice of θ := mk(F1, F2) now comes
into play as follows. First observe that if G 6→ (F1, F2) then also G 6→ (F1 ∪ F2).
The 0-statement thus follows immediately from the corresponding statement for
the asymmetric case. For the 1-statement we proceed as follows. Consider some 2-
edge-colouring of H ∼ H k(n, p). We arbitrarily partition the vertex set of H into
three parts of size n/3 and only consider the three induced (coloured) hypergraphs
H1, H2 and H3. By Theorem 5, if p > Cn−1/θ we know that H1 either contains a
blue F1 or a red F2 (or both). Similarly, by reverting the colours, Theorem 5 also
implies that H2 contains a red F1 or a blue F2. If in this way we find a red F1 and
a red F2 or a blue F1 and a blue F2, we are done, so we just have to consider the
remaining two cases.

• There exists a blue F1 and a red F1:

As θ = mk(F1, F2) > mk(F2) it follows from Theorem 2 that there exists
a monochromatic copy of F2 in H3, which, regardless of its colour, gives a
monochromatic copy of F .

• There exists a red F2 and a blue F2:

This is the case where the special choice of F1 comes into play: we choose it as
a hypergraph for which the (symmetric) threshold is much lower than n−1/mk (F1),
in fact, lower than n−1/θ . In particular there exists F ′ such that F ′ → (F1) and
H k(n, p) a.a.s (asymptotically almost surely, that is, with probability which
tends to 1 as n goes to infinity) contains F ′ for p = n−1/mk (F1,F2). Thus, we
conclude that H3 contains F ′ and, in turn, a monochromatic copy of F1 which
again implies the existence of a monochromatic F .

Of course, we need to show that it is possible to choose F1 and F2 with the
desired properties. We are able to do so for k > 4, thus the bound in Theorem 3.
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Another challenge is to show that for p < cn−1/θ we can colour the edges of
H k(n, p) such that there is no red copy of F1 and no blue copy of F2, which
implies that there is no monochromatic F .

The rest of the paper is organized as follows. In the next section we describe
a k-uniform hypergraph F = F1 ∪ F2 and, assuming that the threshold for
H k(n, p) → (F1, F2) is n−1/mk (F1,F2), prove Theorem 3. In Section 3 we prove
Theorem 5 (the 1-statement for asymmetric Ramsey properties). In the rest of the
paper we prove the matching lower bound on the threshold for H k(n, p)→ (F1,

F2). In Section 4 we prove Theorem 8 and then in Section 5 we verify that it can
be applied with F1 and F2. We close with some concluding remarks in Section 6.

2. Proof of Theorem 3

Let G = (V, E) be a graph and W a set of k − 2 additional vertices with
V ∩ W = ∅. We denote by G+k

= (V ′, E ′) the k-uniform hypergraph obtained
by adding the vertices of W to each edge of G, that is, we set V ′ = V ∪ W and
E ′ = {e ∪ W | e ∈ E}. A tight k-cycle Ct is a k-uniform hypergraph with vertex
set {v0, . . . , vt−1} and the edges {vi , vi+1, . . . , vi+k−1} for every 0 6 i 6 t − 1 (the
index addition is modulo t).

The following theorem implies Theorem 3.

THEOREM 9. For every k > 4 there exist positive constants c,C such that

lim
n→∞

P[H k(n, p)→ (K+k
3 ∪ Ctk )r ] =

{
0 if p 6 cn−1/θ ,

1 if p > Cn−1/θ ,

where
θ := mk(K+k

3 ,Ctk )

and
t4 = 8, t5 = 14, and tk = k2 for k > 6.

From the definition of the k-density mk we have

mk(Ctk ) =
tk − 1
tk − k

and mk(K+k
3 ) = 2

and thus mk(Ctk ) < mk(K+k
3 ) for our choice of tk . In addition, one easily checks

that K+k
3 is strictly balanced with respect to mk(·,Ctk ). Thus,

θ = mk(K+k
3 ,Ctk ) =

3tk − 3
2tk − k − 1

< mk(Ctk ∪ K+k
3 ) = 2.
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Observe that the threshold θ from Theorem 9 does not fall into any category
(i)–(iii) from Theorem 1. Indeed, the fact that θ < mk(K+k

3 ∪ Ctk ) excludes (ii)
and (iii). We further exclude the possibility that there exists a small hypergraph
whose appearance determines the threshold. To see this let m(F) denote the usual
density measure

m(F) := max
H⊆F
v(H)>1

e(H)
v(H)

and note that Bollobás’ small subgraphs theorem [3] (for graphs) extends
straightforwardly to hypergraphs. That is, for any hypergraph F we have

lim
n→∞

P[H k(n, p) contains a copy of F] =

{
0 if p � n−1/m(F),

1 if p � n−1/m(F).
(3)

Therefore, if the threshold in Theorem 9 is determined by the appearance of
a small subgraph, as in the 0-statement of (i) in Theorem 1, then we would
necessarily have p � n−1/θ in order for the 0-statement to hold, which yields
a longer interval for the phase transition, contrary to what we proved.

The proof of Theorem 9 relies on Theorem 5 (which is proven in the next
section) and the following lower bound on the threshold for H k(n, p)→ (K+k

3 ,

Ctk ) which we prove in Section 4.

LEMMA 10. For every k > 4 there exists c > 0 such that if p < cn−1/mk (K+k
3 ,Ctk )

then
lim

n→∞
P[H k(n, p)→ (K+k

3 ,Ctk )] = o(1).

The choice of tk in Theorem 9 is based on a number of inequalities that have to
be satisfied. Some of them come from the proof of Lemma 10, some others will
become clear soon. In particular, the reason why we need k > 4 is that for small
values of k the calculations behave differently.

Proof of Theorem 9. Note that if H k(n, p) 6→ (K+k
3 ,Ctk ) then also H k(n, p) 6→

(K+k
3 ∪ Ctk ). Therefore, Lemma 10 immediately gives the 0-statement.
For the 1-statement we proceed as explained in Section 1.2. Recall from there

that the only fact that we have to check is that

lim
n→∞

P[H k(n, p)→ (K+k
3 )] = 1 for p > Cn−1/θ .

Now we use that the density of K+k
6 is m(K+k

6 )= 15/(k+4) < θ (this inequality is
the main reason why we require k > 4). As K6 → (K3) and thus K+k

6 → (K+k
3 )

we know that H3 contains a monochromatic copy of K+k
3 , which concludes the

proof of the theorem.
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3. Asymmetric Ramsey properties: 1-statement

In this section we prove Theorem 5. We generalize an approach of Nenadov and
Steger [18] based on the hypergraph containers. For further applications of this
method in the context of Ramsey-type problems we refer the reader to [4, 19, 25].
The proof relies on three ingredients: Ramsey’s theorem, Janson’s inequality and
hypergraph containers. We now state each of them.

The following theorem is a well-known quantitative strengthening of Ramsey’s
theorem. We include the proof for convenience of the reader.

THEOREM 11 (Folklore). Let F1, . . . , Fr be k-uniform hypergraphs and r ∈ N
be a constant. Then there exist constants α > 0 and n0 ∈ N such that for any
n > n0 and any r-edge-colouring of K (k)

n (the complete k-uniform hypergraph
on n vertices) there are at least αnv(Fi ) copies of Fi in the colour i , for some
1 6 i 6 r .

Proof. From Ramsey’s theorem we know that there exists N = N (F1, . . . , Fr ) ∈

N such that every r -edge-colouring of the edges of K (k)
N contains a copy of Fi

in some colour i ∈ [r ]. Therefore, in any r -edge-colouring of K (k)
n with n > N ,

every N -subset of the vertices contains at least one monochromatic copy of Fi

in some colour i . In particular, there exists i ∈ [r ] such that in at least
( n

N

)
/r N -

subsets of K (k)
n we find a copy of Fi in colour i . On the other hand, every copy

of Fi is contained in at most
( n−v(Fi )

N−v(Fi )

)
N -subsets thus the number of different

monochromatic copies of Fi is at least(
n
N

)(
r
(

n − v(Fi)

N − v(Fi)

))−1

>
(n/N )N

rnN−v(Fi )
>

nv(Fi )

r N N
.

The theorem now follows for α = (r N N )−1.

Next, we derive a bound on the expected number of copies of certain
hypergraphs in H k(n, p).

LEMMA 12. Let F1 and F2 be k-uniform hypergraphs such that mk(F1) >
mk(F2) > 0 and F1 is strictly balanced with respect to mk(·, F2). Let F be a
family of subgraphs of K (k)

n such that each member F ∈ F is a union of two
distinct F1-copies intersecting on at least one edge. For a positive constant C,
p = Cn−1/mk (F1,F2) and H ∈ H k(n, p), let X be the number of hypergraphs F ∈ F
contained in H. Then there exist a constant δ > 0 such that

E[X ] 6 C ′nk−1/mk (F2)−δ/2.

https://doi.org/10.1017/fms.2017.22 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.22


Symmetric and asymmetric Ramsey properties in random hypergraphs 13

Proof. Let F ∈ F be an arbitrary member of F . Let F ′, F ′′ ⊂ K (k)
n be two F1-

copies such that F = F ′ ∪ F ′′ and e(F ′ ∩ F ′′) > 1. Set S := F ′ ∩ F ′′. From
the assumption that F1 is strictly balanced with respect to mk(·, F2) and S is
isomorphic to a proper subgraph of F1 we have

e(S)
v(S)− k + 1/mk(F2)

< mk(F1, F2)− δS (4)

for some δS > 0. Since there are only constantly many subgraphs S ⊆ F1, there
exists a constant δ′ > 0 such that the previous inequality holds with δS = δ′

for every S ⊆ F1 with e(S) > 1. Using the assumption p = Cn−1/mk (F1,F2), a
straightforward calculation shows that the expected number of subgraphs of H
isomorphic to F ′ ∪ F ′′ is at most of order

nv(F
′
∪F ′′) pe(F ′∪F ′′)

= n2v(F1)−v(S) p2e(F1)−e(S)
=

O(n2(k−1/mk (F2)))

nv(S) pe(S)

(4)
= O(nk−1/mk (F2)−δ/2),

where δ > 0 depends only on δ′, F1 and F2. Since there are only constantly many
ways to obtain a graph as a union of two copies of F1, this concludes the proof.

We also need the following statement on the probability of existence of certain
hypergraphs in the random hypergraph H k(n, p). As the proof follows almost
directly from Janson’s inequality, we give just a sketch of the argument.

LEMMA 13. Let F1 and F2 be k-uniform hypergraphs such that mk(F1) >
mk(F2) > 0 and F1 is strictly balanced with respect to mk(·, F2), and let ε > 0
be a constant. Then there exists a constant β > 0 such that the following holds
for any constant C > 0: for p = Cn−1/mk (F1,F2) and any family F of subgraphs of
K (k)

n isomorphic to F1 with |F | > εnv(F1) we have

Pr
[
F ′ * H k(n, p) for all F ′ ∈ F

]
6 e−βCnk−1/mk (F2)

.

Proof. Let X be the number of members of F appearing in H k(n, p). We bound
E[X ] as follows,

E[X ] = |F |pe(F1) > εnv(F1)(Cn−1/mk (F1,F2))e(F1) > εCnk−1/mk (F2).

By Lemma 12 and Janson’s inequality (for example, see [12, Theorem 2.14]) we
have

Pr[X < (1− α)E[X ]] 6 e−α
2 E[X ]/3,

for any constant α > 0. Using the estimate on E[X ], this implies the lemma.
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Finally, we state our main tool, a container theorem of Saxton and Thomason
[26] (similar result was independently obtained by Balogh et al. [2]).

DEFINITION 14. For a given set S and ` ∈ N, let T`(S) denote the family of
`-tuples of subsets of S (not necessarily disjoint), that is,

T`(S) = {T = (S1, . . . , S`) | Si ⊆ S for 1 6 i 6 `} .

Given a set S and an `-tuple T = (S1, . . . , S`) ∈ T`(S), let |T | denote the size
of the union of Si ’s, that is, |T | :=

∣∣⋃
i∈[`] Si

∣∣. Moreover, for a subset S′ ⊆ S we
write T ⊆ S′ to denote that Si ⊆ S′ for every i ∈ [`].

THEOREM 15 [26, Theorem 2.3]. Let F be a k-uniform hypergraph with e(F) >
2 and let ε > 0 be a constant. Then there exists ` ∈ N such that for every n > `

there exists a function f : T`(E(K (k)
n ))→ 2E(K (k)

n ) with the following property: for
every F-free k-uniform hypergraph H ⊆ K (k)

n there exists T ∈ T`(E(K (k)
n )) such

that:

(a) T ⊆ E(H) ⊆ f (T );

(b) the number of edges in T is at most |T | 6 `nk−1/mk (F);

(c) the hypergraph induced by the edge set f (T ) contains at most εnv(F) copies
of F.

With these statements at hand, we are ready to prove Theorem 5.

Proof of Theorem 5. Let F1, . . . , Fr be k-uniform hypergraphs satisfying the
required conditions, that is mk(F1) > mk(F2) > · · · > mk(Fr ) and F1 is strictly
balanced with respect to mk(·, F2). Since the property

H → (F1, . . . , Fr )

is monotone increasing, we may assume that p = Cn−1/mk (F1,F2) for some constant
C > 0 which we determine later. This assumption is not necessary, but it will
make calculations easier.

The overall proof strategy is as follows. If a given k-uniform hypergraph H on
n vertices is not Ramsey, that is, H 6→ (F1, . . . , Fr ), then there exists a partition
E1, . . . , Er ⊆ E(H) such that the k-uniform hypergraph G i = (V (H), Ei) is Fi -
free for every 1 6 i 6 r . We clearly think of the edges from Ei as being coloured
in colour i . Next, we use the container theorem, Theorem 15, to ‘place’ each Ei

(where 2 6 i 6 r ) into some container Ci with less than αnv(Fi ) copies of Fi .

https://doi.org/10.1017/fms.2017.22 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.22


Symmetric and asymmetric Ramsey properties in random hypergraphs 15

This way Theorem 11 asserts that the hypergraph R on the remaining edges, that
is, R =

(
[n],

(
[n]
k

)
\
⋃r

i=2 Ei
)

contains at least αnv(F1) copies of F1. Assuming that
H ∼ H k(n, p), we infer that the edges from E(H) ∩ E(R) will be coloured in
colour 1, which will allow us to get sufficiently small probability that none of
the at least αnv(F1) copies of F1 lands in E1 (this is an application of Janson’s
inequality, Lemma 13). Of course, there are some subtleties as to how we define
certain probability events. In particular the options for Ci ’s and R have to be
considered ‘beforehand’ (via Theorem 15).

For H ∼ H k(n, p) with p as specified above, we expect that most copies of F1

do not have edges in common (that is, are isolated). This will be indeed the case
with high probability and the proof outline will be carried out in this case. The
unlikely case will simply follow from Markov’s inequality, which we first turn to.

Many non-isolated copies. Let F = F(F1, H) be the family of all subgraphs of
H isomorphic to F1 and let I = I(F1, H) ⊆ F be the subfamily of all isolated
subgraphs, that is,

I =
{

F ′ ∈ F | ∀F ′′ ∈ F\{F ′}, E(F ′) ∩ E(F ′′) = ∅
}
.

CLAIM 16. There exists a constant δ > 0 such that for H ∼ H k(n, p) we a.a.s.
have

|F\I| 6 nk−1/mk (F2)−δ. (5)

Proof. By Lemma 12 we know that the expected number of hypergraphs F ⊆ H
which can be obtained as a union of two distinct F1-copies intersecting on at least
one edge is at most nk−1/mk (F2)−δ/2, for some constant δ > 0. Note that for each
F ′ ∈ F\I there exists F ′′ ∈ F such that S := F ′ ∩ F ′′ contains at least one edge
and F := F ′ ∪ F ′′ ⊆ H . As there are only constantly many different copies of F1

contained in F = F ′ ∪ F ′′, by previous observations we have that the expected
size of |F\I| is O(nk−1/mk (F2)−δ/2). From Markov’s inequality we obtain that the
actual number of such subgraphs is a.a.s. at most nk−1/mk (F2)−δ.

Few nonisolated copies. Let us assume that H is such that the bound in (5) holds.
Next, note that for each F ′ ∈ F at least one edge from E(F ′) does not belong
to E1, as otherwise there exists a copy of F1 in G1, which is monochromatic.
Moreover, we can assume that this holds for exactly one edge if F ′ ∈ I: since each
edge of F ′ belongs to exactly one copy of F1 in H (follows from the definition
of I), by re-colouring all but one (arbitrarily chosen) edge from E(F ′)\E1 with
colour 1 we do not create a copy of F1 in colour 1. Since no new edge gets a
colour i > 2, this clearly does not create a monochromatic copy of any Fi in the
corresponding colour. Next, for i > 2 we partition each colour class Ei into Ii
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(‘isolated’ edges in Ei ) and L i (‘leftover’ edges),

Ii =
⋃
F ′∈I

E(F ′) ∩ Ei and L i = Ei\Ii .

By the previous assumption (that all but exactly one edge in F ′ ∈ I belong to E1)
we have that for each edge e ∈ I :=

⋃r
i=2 Ii there exists a unique Fe ∈ I with

e ∈ E(Fe), and E(Fe) ∩ E(Fe′) = ∅ for different edges e, e′ ∈ I . Finally, note
that we can also assume that every edge in H which does not belong to a copy of
F1 has colour 1. It then follows that each edge in L i belongs to some F ′ ∈ F\I ,
and from |F\I| 6 nk−1/mk (F2)−δ we conclude

|L i | = O(nk−1/mk (F2)−δ). (6)

Next, we use the container theorem to ‘approximate’ each of the sets Ii . Let α be
the constant given by Theorem 11 for F1, . . . , Fr and set ε = α/2. Furthermore,
let `i ∈ N and fi : T`i (E(K

(k)
n )) → 2E(K (k)

n ) be functions obtained by applying
Theorem 15 with ε and F = Fi , for each i > 2. Since the hypergraph induced by
the set of edges Ii is Fi -free there exists an `i -tuple T i

∈ T`i (E(K
(k)
n )) such that

T i
⊆ Ii ⊆ fi(T i).

Let

R = E(K (k)
n )
∖ r⋃

i=2

( fi(T i) ∪ L i).

Note that set R is uniquely determined by T = (T 2, . . . , T r ) and L = (L2, . . . ,

Lr ), where each L i ⊆ E(K (k)
n ) is a subset of size O(nk−1/mk (F2)−δ). Therefore, we

can enumerate all R by going over all possible choices for T and L. We refer to
the set R fixed by the choice of T and L as R(T,L). The following claim plays
the central role in our argument.

CLAIM 17. Given the tuples T = (T 2, . . . , T r ) and L = (L2, . . . , Lr ) as
described above, the hypergraph induced by the set of edges R = R(T,L)
contains at least αnv(F1) copies of F1.

Proof. From Theorem 15 we have that each fi(T i) (i > 2) contains at most
αnv(Fi )/2 copies of Fi . Furthermore, the number of copies of Fi in fi(T i) ∪ L i

which contain an edge from L i is at most nv(Fi )−k
|L i | and from (6) we conclude

that there are o(nv(Fi )) such copies. In total, fi(T i) ∪ L i contains less than αnv(Fi )

copies of Fi , for every i > 2.
Consider the auxiliary r -edge-colouring of K (k)

n defined as follows: an edge e
gets the colour 1 if e ∈ R and otherwise it gets an arbitrary colour i > 2 such
that e ∈ fi(T i) ∪ L i . From the previous discussion we have that each colour
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i > 2 contains less than αnv(Fi ) copies of Fi and Theorem 11 implies that R has
to contain at least αnv(F1) copies of F1.

Since Ei = Ii ∪ L i ⊆ fi(T i) ∪ L i and each F ′ ∈ F contains an edge from
some Ei with i > 2 we conclude that E(F ′) 6⊆ R for every F ′ ∈ F . That is,
the hypergraph H completely avoids all copies of F1 which are contained in R.
Recall that for T = (T 2, . . . , T r ) we have T i

j ⊆ Ii for all j ∈ [`i ]. We define the
set T = T (T) as follows:

T := T (T) :=
⋃
i>2

`i⋃
j=1

T i
j .

Observe that for each e ∈ T there exists a copy of F1 in H containing e, say Fe,
such that E(Fe)∩ E(Fe′) = ∅ for different e, e′ ∈ T (as we have already observed
this for all edges in I ⊇ T ). Thus, we obtain a set of copies of F1 in H which are
‘rooted’ at the edges from T .

To summarize, if H 9 (F1, . . . , Fr ) then eitherF\I is bigger than nk−1/mk (F2)−δ

or there exist T = (T2, . . . , Tr ) and L = (L2, . . . , Lr ) such that H satisfies
properties P1(R) and P2(T ), where R = R(T,L) and T = T (T) are as defined
earlier and

• P1(R) denotes the property that R ∩ E(H) does not contain a copy of F1,

• P2(T ) denotes the property that for each e ∈ T there exists a copy of F1 in H
(denoted by Fe) such that E(Fe) ∩ E(Fe′) = ∅ for different e, e′ ∈ T .

Estimating the probability H 9 (F1, . . . , Fr ). Finally, for H ∼ H k(n, p), we can
upper bound the probability that H 9 (F1, . . . , Fr ) as follows (recall F = F(F1,

H) and I = I(F1, H)):

Pr[H 9 (F1, . . . , Fr )]

6 Pr[|F\I| > nk−1/mk (F2)−δ] + Pr[∃T,L : H ∈ P1(R(T,L)) ∩ P2(T (T))]

6 o(1)+
∑

T

∑
L

Pr[H ∈ P1(R(T,L)) ∩ P2(T (T))].

The first probability is o(1) by Claim 16. Note that P1(R) is a decreasing and
P2(T ) is an increasing graph property, thus by the FKG inequality (see for
example, [1, Theorem 6.3.3]) we know they are negatively correlated, that is,

Pr[H 9 (F1, . . . , Fr )]6 o(1)+
∑

T

∑
L

Pr[H ∈P1(R(T,L))]·Pr[H ∈ P2(T (T))].

(7)
Our aim is to show that the double sum in (7) also sums up to o(1).
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For fixed choices of T and L, and therefore for fixed R, from Lemma 13 and
Claim 17 we get

Pr[P1(R)] 6 e−βCnk−1/mk (F2)
,

for some β > 0. On the other hand, the expected number of mappings T → F
which are witnesses for the property P2(T ) is at most

(nv(F1)−k pe(F1))|T | = C e(F1)|T |n−|T |/mk (F2).

Consequently, the probability that H has the property P2(T ) is at most this value.
We can now upper bound the sum in (7) as

Pr[H 9 (F1, . . . , Fr )] 6 o(1)+ e−βCnk−1/mk (F2)

(∑
T

∑
L

C e(F1)|T |n−|T |/mk (F2)

)
.

(8)
Next, from mk(F2) > mk(Fi) for i > 3 we observe that Theorem 15 implies that
|T i
| 6 `nk−1/mk (F2) for i > 2, where ` = maxi>2 `i . Therefore, for each t ∈ N

with t 6 r`nk−1/mk (F2) (the maximal size of T ) we can upper bound the number of
choices of T by picking t edges and for each T i

= (T i
1 , . . . , T i

`i
) ∈ T`i and each

j ∈ {1, . . . , `i} we decide which edges go to T i
j . We can do this in at most(

nk

t

)
2`r t

ways, where the 2`r t factor comes from the upper bound on the number of ways
how to distribute t edges among T i

j ’s. On the other hand, we can choose each L i

in at most (
nk

C ′nk−1/mk−δ

)
6 nk·C ′nk−1/mk (F2)−δ

= eo(nk−1/mk (F2)) (9)

ways, for some constant C ′ > 0, cf. (6). Using these estimates, we further bound
the double sum in (8) as follows∑

T

∑
L

· · · 6 eo(nk−1/mk (F2))

r`nk−1/mk (F2)∑
t=0

(
nk

t

)
2r`tC e(F1)t n−t/mk (F2).

Using the estimate
(n
`

)
6 (en/`)`, we further simplify the sum on the right hand

side,
r`nk−1/mk (F2)∑

t=0

(
nk

t

)
2r`tC e(F1)t n−t/mk (F2) 6

r`nk−1/mk (F2)∑
t=0

(
enk

t
2r`C e(F1)n−1/mk (F2)

)t

6 (r`nk−1/mk (F2) + 1)
(

e2r`C e(F1)

r`

)r`nk−1/mk (F2)

6 (e2r`C e(F1))r`n
k−1/mk (F2)

,
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where we used the fact that the maximal element of the sum is attained for
t = r`nk−1/mk (F2), since g(t) := (m/t)t is monotone increasing for x ∈ [0,m/e].
Finally, we obtain using (8):

Pr[H 9 (F1, . . . , Fr )] 6 o(1)+ e−βCnk−1/mk (F2)eo(nk−1/mk (F2))(e2r`C e(F1))r`n
k−1/mk (F2)

,

which is o(1) for sufficiently large C > 0.

4. Asymmetric Ramsey properties: 0-statement

In this section we prove Theorem 8, which we repeat here for the convenience
of the reader.

THEOREM. Let F1, . . . , Fr be k-uniform hypergraphs such that F2 has at least
three edges, mk(F1) > mk(F2) > · · · > mk(Fr ) > 0 and

(i) F1 and F2 are strictly balanced and m2(F2) > 1;

(ii) F1 is strictly balanced with respect to mk(·, F2);

(iii) F ∗(F1, F2) is asymmetric-balanced;

(iv) for every hypergraph G such that m(G) 6 mk(F1, F2) it follows that

G 9 (F1, F2).

Then there exists a constant c > 0 such that for p 6 cn−1/mk (F1,F2)

lim
n→∞

Pr[H k(n, p)→ (F1, . . . , Fr )] = 0.

Note that it is sufficient to prove the statement for the case of two colours. By
having more than two colours we can always restrict to only the first two, which
avoids a monochromatic copies of Fi for i > 3. Thus we assume r = 2 and we
call the colours red and blue.

We use a grow-sequences approach very similar to the one in [17, 18]. We say
an edge is closed if it is contained in a copy of F1 and a copy of F2 which are
otherwise edge-disjoint, and open otherwise. The reason for this distinction is
that open edges are easy to colour. Assume e is an open edge and there exists a
valid 2-colouring (that is, one without red copy of F1 and blue copy of F2) for
H − e, the hypergraph obtained from H by removing e from the edge set. Then
we can extend this colouring to H by using the fact that e is open: if there exists
a copy of F1 in H , say F̂1, which contains e and is already red up to e then colour
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e with blue, and otherwise colour it with red. This clearly avoids a red copy of F1

in H . Let us assume, towards a contradiction, that there exists a blue copy of F2.
First, note that any such copy has to contain e and therefore e has to be coloured
with blue. However, this implies that such copy of F2 does not intersect F̂1 on any
other edge except e (since every other edge of F̂1 is red), which contradicts the
assumption that e is open.

Using the notion of an open edge, we can find a valid 2-colouring of H k(n, p)
by running the following algorithm:

Ĥ := H k(n, p)
while Ĥ contains an open edge e do

Ĥ ← Ĥ − e
end
Colour Ĥ without a red F1 and a blue F2

Add the removed edges in reverse order and colour them appropriately.

Algorithm 1: Colouring algorithm.

Note that the obtained graph Ĥ is uniquely defined. Indeed, since if an edge is
open in H then it is also open in every H ′ ⊆ H , the order in which we remove
open edges is irrelevant.

Of course, the step ‘Colour Ĥ ’ in the Algorithm 1 is the difficult one and the
main part of the proof is to show that this is indeed possible with high probability.
Our strategy is to first show that Ĥ can be split into hypergraphs of constant
size which can be coloured separately (using properties (i)–(iii)). Then using the
bound on p we deduce that every such hypergraph has small density and, finally,
from the assumption (iv) we conclude that it can be coloured without red F1 or
blue F2. To state this precisely we need a couple of definitions.

DEFINITION 18 ((F1, F2)-core). We say a subgraph G ′ ⊆ Ĥ (where Ĥ is the
resulting graph obtained by the Algorithm 1) is an (F1, F2)-core if every copy of
F1 or F2 in Ĥ is either contained in G ′ or edge-disjoint from G ′.

Since Ĥ is closed by the definition of the algorithm, every (F1, F2)-core is
closed as well. However, to emphasize this fact we shall sometimes explicitly
write that the (F1, F2)-core under consideration is closed.

Next, let Ĥ1, . . . , Ĥt be a partition of Ĥ into edge-disjoint minimal (by
subgraph inclusion) closed (F1, F2)-cores. By the definition of the core and the
assumption that Ĥi ’s are edge-disjoint, if there exists a valid colouring of each Ĥi
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then the same colourings induce a valid colouring of Ĥ1 ∪ · · · ∪ Ĥt = Ĥ . The
following lemma is the key ingredient in the proof of Theorem 8.

LEMMA 19. Let F1 and F2 be as in Theorem 8. Then there exist constants c =
c(F1, F2) > 0 and L = L(F1, F2) > 0 such that if p 6 cn−1/mk (F1,F2) then w.h.p.
every minimal closed (F1, F2)-core of H k(n, p) has size at most L.

Before we go into the proof of the lemma, we first use it to derive Theorem 8.

Proof of Theorem 8. Let c and L be as given by Lemma 19. First, note that w.h.p.
every hypergraph G ⊂ H k(n, p) of size at most L satisfies m(G) 6 mk(F1, F2).
This can be derived as follows. For every hypergraph G with at most L vertices
and m(G) > mk(F1, F2) we have

1/mk(F1, F2) > 1/m(G)+ α,

for some α > 0. Moreover, there exists α = α(L) such that this holds for all such
hypergraphs G simultaneously. Consider some G with m(G) > mk(F1, F2) and
let G ′ ⊆ G be such that m(G) = e(G ′)/v(G ′). Note that the expected number of
copies of G ′ in H k(n, p) is at most

nv(G
′) pe(G ′) 6 nv(G

′)
(
cn−1/mk (F1,F2)

)e(G ′)
6 nv(G

′)n−v(G
′)−α
= n−α.

Therefore, by Markov’s inequality we have that G ′, and therefore G, does not
appear in H k(n, p) with probability at least n−α/2. Since there are at most L2L2

such hypergraphs and L does not depend on n, by union bound we have that w.h.p.
none of them appears.

Next, let Ĥ be the hypergraph obtained using the Algorithm 1 and let Ĥ1,

. . . , Ĥt be a partition of Ĥ into edge-disjoint minimal closed (F1, F2)-cores. By
Lemma 19 we have that each Ĥi has size at most L , and from the previous
observation we conclude that m(Ĥi) 6 mk(F1, F2). Now using the property (iv)
we obtain a colouring of Ĥi without a monochromatic F1 and F2 which, by the
discussion preceding the proof, gives a valid colouring of Ĥ . This, in turn, gives
a valid colouring of the whole H k(n, p) which finishes the proof.

In the rest of this section we prove Lemma 19. The proof of the lemma will rely
on a somewhat technical claim which we postpone to the next section.

Proof of Lemma 19. Our strategy is to show that every minimal closed (F1, F2)-
core is either of size at most L or is much larger, namely of size Ω(log n). Then,
using some further properties of such hypergraphs, we deduce that the latter
case does not happen in H k(n, p). Our main tool in proving this is a procedure
(Algorithm 2) which generates each (F1, F2)-core in a systematic way.
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1 Let F∗1 be a copy of F1 in G
2 G1 ← F∗1
3 i ← 1
4 while G i 6= G do
5 i ← i + 1
6 if G i−1 contains an open edge then
7 j ← smallest index j < i such that F∗j contains open edges
8 e← the minimal open edge in F∗j
9 if there exists a copy F̂1 of F1 in G, not contained in G i−1, which

contains e then
10 F∗i ← F̂1

11 else
12 F∗i ← a copy of some hypergraph from F ∗ in G but not in G i−1,

which contains e as an attachment edge
13 end
14 else
15 if there exists a copy F̂1 of F1 in G, not contained in G i−1, which

intersects G i−1 in at least one edge then
16 F∗i ← F̂1

17 else
18 F∗i ← a copy F∗ of a hypergraph in F ∗ in G, not contained in

G i−1, such that its attachment edge is contained in G i−1

19 end
20 end
21 G i ← G i−1 ∪ F∗i
22 end

Algorithm 2: Decomposing minimal closed (F1, F2)-cores.

Let G be some minimal closed (F1, F2)-core. We assume that some arbitrary
total ordering on the vertices of G is given. By lexicographic ordering this
induces a total ordering on the edges of G as well, that is, we can always choose
a well-defined minimal edge out of any edge set. For the enumeration aspect
of the problem we map any minimal closed (F1, F2)-core G to a sequence of
hypergraphs F∗i ’s via Algorithm 2, where F∗i is either a member of F ∗(F1, F2)

(see Definition 6) or is isomorphic to F1. We denote the family F ∗(F1, F2) by F ∗,
as it will always be used with respect to F1 and F2.

Let us first prove that Algorithm 2 is well defined. If G i−1 has an open edge e,
then either there is a copy of F1 or F2 not contained in G i−1, but which contains e.
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Moreover, note that every copy of F2 is contained in some F∗ ∈ F(F1, F2), since
each edge of G is closed. These observations prove that if G i−1 has an open edge,
then one of the two requirements of the lines 9 and 12 are satisfied.

Similarly, if G i−1 does not have an open edge and G i−1 6= G then there is a copy
of F1 or F2 which intersects G i−1, but which is not contained in it. By the previous
argument, one of the two requirements of the lines 15 and 18 are satisfied. The
algorithm is therefore correct and terminates.

Note that the sequence S := (F∗1 , . . . , F∗` ) fully describes a run of the algorithm.
We call it a grow sequence for G and each F∗i in it a step of the sequence, where
1 6 i 6 `. Set Si = (F∗1 , . . . , F∗i ) to be the grow sequence consisting of the first i
steps. With this we turned the problem of enumerating all minimal closed (F1, F2)-
cores into the one of enumerating all grow sequences which may appear as output
of Algorithm 2. We aim to estimate the expected number of grow sequences. As
already hinted in the beginning of the proof, we show that the algorithm either
terminates with a grow sequence of size O(1), or it has to produce a sequence
S of size Ω(log n). However, in the latter case we show that a subsequence of S
truncated after the first Θ(log n) steps does not appear in H k(n, p), which in turn
implies that S does not appear either. We now make this precise.

We distinguish various step types. F∗1 is the first step. Steps chosen in lines 12
and 18 are called regular if e(F∗i )−e(Hi))/(v(F∗i )−v(Hi)) = mk(F1, F2), where
Hi := F∗i ∩ G i−1, otherwise they are called degenerate. Furthermore, regular
step is open or closed, depending whether it was chosen in line 12 or 18. The
steps chosen in lines 9 and 15 are by definition always degenerate. We say F∗1 is
degenerate by definition.

Consider any open regular step F∗i . By asymmetric-balancedness of F ∗, its
intersection Hi with G i−1 is exactly one edge and F∗i is generic, and thus we can
bound the contribution of each such step to the expected number of sequences by

k! · nv(F
∗

i )−k pe(F∗i )−1. (10)

By using p 6 cn−1/mk (F1,F2) and assumption (iii) from Theorem 8 we obtain

nv(F
∗

i )−k pe(F∗i )−1 6 ce(F∗i )−1nv(F
∗

i )−k−(e(F∗i )−1)/mk (F1,F2) 6 ce(F∗i )−1.

It follows that
k! · nv(F

∗

i )−k pe(F∗i )−1 6 k! · ce(F∗i )−1 6 c, (11)

where the last inequality holds as we may choose the constant c small enough,
and such that log(c) < −1 holds.

At every step, we add some new vertices, but never more than the number of
vertices in some generic FQ. That means that after i − 1 steps there are at most
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v(FQ) · (i − 1) vertices in G i−1. Hence, if F∗i is a closed regular step, we can
bound the contribution to the expected number of sequences by

k!(v(FQ) · (i − 1))knv(F
∗

i )−k pe(F∗i )−1 6 c(v(FQ) · i)k . (12)

Now consider the case of a degenerate step F∗i which is a copy of some F∗ ∈
F ∗. By the asymmetric-balancedness condition we can choose a constant α1 > 0
such that regardless of the choice of F∗ ∈ F ∗ we have (recall that Hi = F∗i ∩G i−1)

v(F∗)− v(Hi)−
e(F∗)− e(Hi)

mk(F1, F2)
< −α1.

In the case of a degenerate step consisting of just a copy of F1 (that is, one as in
line 9 or 15) we can choose α2 > 0 such that for all Hi ( F1, e(Hi) > 1, we have

v(F1)− v(Hi)−
e(F1)− e(Hi)

mk(F1, F2)
< −α2,

by the fact that F1 is strictly balanced with respect to mk(·, F2). Note that this
holds even for Hi being exactly one edge, as mk(F1) > mk(F1, F2). We then set
α = min{α1, α2}.

With this we obtain an upper bound for the contribution of a degenerate step
F∗i ,

|F ∗| · v(F∗i )v(Hi )(i · v(FQ))v(Hi ) · nv(F
∗

i )−v(Hi ) pe(F∗i )−e(Hi ) 6 Ci v(F
Q)n−α, (13)

where C is a suitably chosen constant.
To finish the argument we use the following claim whose proof is presented in

the next section.

CLAIM 20. There exist positive constants C1,C2 (depending on F1 and F2) such
that the following holds. Let S be a grow sequence of length t.

(i) If S contains at most d degenerate steps, then t 6 d(1+ C2/C1).

(ii) If a prefix Si of S contains at most d degenerate steps, then Si contains no
closed regular steps F j with j > d(1+ C2/C1)+ 1.

Let C1,C2 be as in the claim above. We can now finish our first moment
argument. Set dmax := v(F1)/α + 1 and L = (1 + C2/C1) · dmax + 1. By
Claim 20 all sequences longer than L must contain at least dmax degenerate steps.
Set tmax := v(F1) log(n) + dmax + 1. We consider two cases: the first are those
sequences which have their dmaxth degenerate step before tmax. We truncate them
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after the dmaxth step. The second are those sequences whose dmaxth step appears
after tmax. We truncate these at length tmax. Note that by Claim 20 in both of these
cases closed regular steps can only happen in the first L steps of the sequence.

Let us now analyse the first case when dmaxth degenerate step happens before
tmax. Using (12) and (13) and summing over all possible steps t when dmaxth
degenerate step happened we bound the expected number of such grow sequences

tmax−1∑
t=L+1

nv(F1)
( t

dmax

)(
Ctv(F

Q)n−α
)dmax

(v(FQ)L)kL
=

= O(polylog(n) · nv(F1)n−α·dmax) = O(polylog(n) · nv(F1)−v(F1)−α) = o(1).

Here we bound the contribution of the first step by nv(F1), drop the contribution
of c < 1 for all regular steps, and use the fact that only the first L steps may be
closed regular.

In the second case, by summing over the number of degenerate steps d before
step tmax, we obtain

dmax∑
d=0

nv(F1)
(tmax

d

)(
Ctv(F

Q)
max n−α

)d
(v(FQ)L)kLctmax−d−1

= O(polylog(n) · nv(F1)ctmax−1−d) = O(polylog(n) · nv(F1)(1+log c)) = o(1),

where the last step holds because log c < −1. With this we proved that only
grow sequences of length at most the constant L can appear in H k(n, p) for p 6
cn1/mk (F1,F2).

It remains to prove Claim 20, which we do in the next section.

4.1. Bounding grow sequences—Proof of Claim 20. Let us first prove an
auxiliary claim.

CLAIM 21. Let G be an arbitrary hypergraph and let F1, F2 be as in Theorem 8.
Furthermore, let F be an F1-copy which intersects G in exactly one edge e in
E(G). Set G F to be a hypergraph (V (G) ∪ V (F), E(G) ∪ E(F)). Then every
edge in E(F)\e is open in G F .

Proof. Let e∗ be an arbitrary edge from E(F)\e. We first prove that any F1-copy
that contains e∗, must contain all edges from E(F)\e. Note that this is equivalent
to proving that all F1-copies that contain e∗ have exactly one edge intersecting
e(G). In order to arrive at a contradiction let F ′ be an F1-copy such that
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|E(F ′) ∩ E(G)| > 2. Set Fnew = F ′[(V (F)\V (G)) ∪ e] and Fold = F ′[V (G)].
Furthermore, let us denote F+e

new as the hypergraph obtained by adding edge e
to Fnew (if the edge is already in Fnew then Fnew = F+e

new). Note that both F+e
new

and Fold are strict subgraphs of F1. Since e(F ′) = e(F+e
new) + e(Fold) − 1 and

v(F ′) > v(F+e
new)+ v(Fold)− k we obtain

m`(F ′) =
e(F ′)− 1
v(F ′)− k

6
e(F+e

new)− 1+ e(Fold)− 1
v(F+e

new)− k + v(Fold)− k
.

Since F ′ is strictly balanced we know that mk(F+e
new) and mk(Fold) are strictly

smaller than mk(F ′). Together with inequality above, this implies

mk(F ′) 6
e(F+e

new)− 1+ e(Fold)− 1
v(F+e

new)− k + v(Fold)− k
< mk(F ′),

which is a contradiction.
In order to prove the lemma, it is sufficient to prove that any F2-copy that

contains e∗ must intersect E(F)\e on at least one edge other than e∗. Assume
H is an F2-copy which contains e∗ but otherwise is fully contained in G. Let
us denote Hold be H [V (G)]. Since H ∼= F2 is strictly mk-balanced, we have
mk(H) > (e(Hold)− 1)/(v(Hold)− k). Therefore we obtain with mk(H) > 1 that

mk(H) >
e(Hold)− 1+ 1
v(Hold)− k + 1

.

This is, however, a contradiction as mk(H) = (e(H)− 1)/(v(H)− k) =
e(Hold)/(v(Hold)+ (v(H)− v(Hold))− k) and H contains at least one vertex
more than Hold. We conclude that any F1-copy and F2-copy that contain e∗

intersect on at least two edges and thus e∗ is closed.

Before we continue with the proof of Claim 20, we introduce some definitions.
For any regular step F∗i , we call the edge e = E(G i−1) ∩ E(F∗i ) the attachment
edge of F∗i and the vertices in V (F∗i )\V (G i−1) the inner vertices of F∗i . If F∗i is
a regular step, then F∗i contains (e(F2) − 1)(e(F1) − 1) open edges in G i (that
is, every edge in a petal of F∗i , not contained in the centre of F∗i ). In fact, we
call a step F∗j , j 6 i , fully open in Si if it is a regular step and no other step F∗j ′ ,
j < j ′ 6 i , intersects any vertex of F∗j which is not in the attachment edge of F∗j .
Note that by Claim 21 a fully open step F∗j in Si contains (e(F2)− 1)(e(F1)− 1)
open edges in G i . The next claim states that a fully open step F∗i stays fully open
if none of the following steps intersects its inner vertices.

CLAIM 22. Let S = (F∗1 , . . . , F∗l ) be a grow sequence and F∗j , j 6 i a regular
step, for some i 6 l. Then if no step F∗j ′ , for j ′ ∈ { j + 1, . . . , i}, contains an inner
vertex of F∗j , then F∗j is fully open in Si .
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Proof. Let G i be the graph obtained at i th step of the grow sequence and let F2

be the ‘centre’ and F1
1 , . . . , F e(F2)−1

1 be the ‘petals’ of F∗j . Set

H j := G i−1 ∪ F2 ∪
⋃

t∈[e(F2)−1]\{ j}

F t
1 .

By applying Claim 21 to Ht (as G) and F t
1 as (F) for all t ∈ [e(F2)] we obtain

the lemma.

For i > 1 let κ(i) denote the number of fully open copies ‘destroyed’ by step i ,
that is,

κ(i) = |{ j < i : F∗j is fully open in Si−1 but not in Si}|.

The following claims show how regular and degenerate steps influence κ(·).

CLAIM 23. If F∗i is a regular step, then κ(i) 6 1.

Proof. Since the attachment edge of F∗i can intersect inner vertices of only one
regular step, together with Claim 22 the proof is concluded.

CLAIM 24. If F∗i is a degenerate step, then κ(i) 6 v(F∗i ).

Proof. Let us first prove that any vertex from G i−1 is an inner vertex of at most
one regular copy F∗j which is fully open in Si−1. Let v ∈ G i−1 be an arbitrary
vertex from G i−1 which is an inner vertex of some regular copy F∗j such that F∗j
is fully open in Si−1. By definition of a fully open copy, no step F∗t , for j < t < i ,
can contain v. On the other hand, v 6∈ G j−1 as v is an inner vertex of a regular
step.

By Claim 22, a fully open step F∗j in Si−1 is a fully open step in Si if F∗i does
not intersect inner vertices of F∗j . This together with the observation above proves
the claim.

CLAIM 25. Set d = (e(F2)− 2). Let F∗i , . . . , F∗i+d be a sequence of consecutive
regular steps such that κ(i) = 1. Then κ(i + 1) = · · · = κ(i + d) = 0.

Proof. As κ(i) = 1 it holds that F∗i is the first step which intersects the inner
vertices of some fully open step F∗j , j < i . From previous observations we have
that F∗j has (e(F2) − 1)(e(F1) − 1) open edges before the step F∗i is made. It
is sufficient to prove that after steps F∗i , . . . , F∗i+s , for s < e(F2) − 2, there is
still at least one open edge in F∗j . Let F ′1, . . . , F ′e(F2)−1 be the petals of F∗j (which
are copies of F1). Note that F∗i+1, . . . , F∗i+s can intersect at most s of different
petals and without loss of generality let us assume they are F ′1, . . . , F ′q , for q 6 s.
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By applying Claim 21 to F ′q+1 (as F) and G i+s (as G) we obtain that all the
edges in F ′q+1, except for maybe one, are open in G i+s . Observe that this is the
case since we always choose ‘minimal’ open edges (cf. Algorithm 2) and for two
fully open steps in some Si those edges are smaller that appear first in the grow
sequence.

Using the previous three claims we are able to show a connection between the
number of fully open steps in Si and the number of regular and degenerate steps
in Si . To simplify notation, we denote by reg(Si), deg(Si) and fo(Si) the number
of regular, degenerate and fully open steps in Si , respectively.

CLAIM 26. Set C1 := 1−1/(e(F2)− 2) and C2 := v(F2)+ (e(F2)−1)(v(F1)−

k)+ 1. Then fo(Si) > reg(Si) · C1 − deg(Si) · C2.

Proof. Set ϕ(i) = fo(Si)− reg(Si) ·C1+ deg(Si) ·C2.We prove by induction the
following, stronger, claim: for every i > 1

ϕ(i) >

{
1 F∗i is a degenerate step,
0 F∗i is a regular step.

Since the first step is by definition degenerate the hypothesis is true for i = 1.
Assume the claim holds for all i < i ′. If κ(i ′) = 0, then since C1 < 1 and
C2 > 1 one can easily check that the claim holds. Thus, let us assume κ(i ′) > 0.
Furthermore, if F∗i ′ is a degenerate step then by Claim 24 we know ϕ(i ′) >
ϕ(i ′ − 1)+ 1. From the induction hypothesis, this implies ϕ(i ′) > 1.

From now on we assume κ(i ′) = 1 and F∗i ′ is a regular step. Let j < i ′ be
the largest integer such that κ( j) > 0 or that F∗j is a degenerate step. One easily
obtains

ϕ(i ′) = ϕ( j)+ i ′ − j − 1− (i ′ − j)C1. (14)

If F∗j is a degenerate step, then ϕ( j) > 1 and by (14) and C1 6 1 we have ϕ(i ′) >
0. Let us consider the case when F∗j is a regular step. By Claim 25 we know that
i ′ − j > e(F2)− 1. Thus

ϕ(i ′) = ϕ( j)+ (i − j)(1− C1)− 1 > ϕ( j)+ 1− 1 > 0,

where the last inequality holds as F2 has at least three edges. This concludes the
proof.

We have all the necessary tools to finish the proof of Claim 20. Let C1,C2 be as
in Claim 26. Let S be any grow sequence of length t , and Si , i 6 t such that i = t
or F∗i+1 is a closed regular step. Furthermore, let us assume Si contains at most d
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degenerate steps. By construction, graph G i does not have an open edge and thus
it does not have a fully open copy, that is, fo(Si) = 0. Using Claim 26 we obtain

fo(Si) = 0 > reg(Si) · C1 − deg(Si) · C2.

Since there are at most d degenerate steps in Si , by using the previous observation
we obtain

dC2 > (i − d)C1,

which implies i 6 d(1+ C2/C1). This concludes the proof of Claim 20.

5. Threshold for H k(n, p) → (K +k
3 , Ctk)

In this section we prove Lemma 10, one of the ingredients in the proof of
Theorem 3. We do that by applying Theorem 8. Since it is easy to check that
property (i) in Theorem 8 holds and that K+k

3 is strictly balanced with respect to
mk(·,Ctk ), in the next two sections we verify properties (iii) and (iv).

5.1. Property (iv). In this section we prove that property (iv) of Theorem 8
holds for F1 = K+k

3 and F2 = Ctk . For convenience we state this as a lemma.

LEMMA 27. For k > 4 and every k-uniform hypergraph H such that m(H) 6
mk(K+k

3 ,Ctk ) we have
H 6→ (K+k

3 ,Ctk ).

First we introduce some notation and definitions. We denote with T k
` a k-

uniform hypergraph on the vertex set {v1, . . . , v`} and the edge set given by {vi ,

. . . , vi+k−1} for each 1 6 i 6 `−k+1. We refer to T k
` as a tight path of size `. An

ordering (e1, . . . , e`−k+1) of the edges of T k
` is called natural if |ei ∩ ei+1| = k− 1

for every 1 6 i 6 `−k. Finally, we say that a set S of hyperedges is s-intersecting,
for some s ∈ N, if every two edges in S intersect on at most s vertices.

The proof of Lemma 27 relies on the following two lemmas.

LEMMA 28. Let k > 4 be an integer and let H be k-uniform hypergraph with at
most d 3

2 (k + 1)e edges. Then there exists a (k − 2)-intersecting subset S ⊆ E(H)
of edges such that H\S does not contain T k

2k .

In the proof of Lemma 27 we require Lemma 28 for a value of k that is one
smaller than the starting value. Thus for the case k = 4 we would need Lemma 28
for k = 3. Here we can only show a slightly weaker bound on the number of
edges that nevertheless requires much work and whose proof can be found in the
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Appendix (since the lemma deals with hypergraphs on 7 edges, it can in principle
be checked ‘easily’).

LEMMA 29. Let H be a 3-uniform hypergraph with 7 edges. Then there exists a
1-intersecting subset S ⊆ H of edges such that H\S does not contain a copy of
T 3

6 .

Before we prove Lemma 28 we first derive Lemma 27.

Proof of Lemma 27. Let us assume towards a contradiction that Lemma 27 is
false for some k > 4. Then there exists a k-uniform hypergraph H with m(H) 6
mk(K+k

3 ,Ctk ) and H → (K+k
3 ,Ctk ) such that for every H ′ obtained from H by

removing a single vertex (and all adjacent edges) we have H ′ 6→ (K+k
3 ,Ctk ) (that

is, H is a vertex-minimal counterexample). Since we have

1
k|V (H)|

∑
x∈V (H)

deg(x) 6 m(H) 6 mk(K+k
3 ,Ctk )

it follows that there exists a vertex x ∈ V (H) such that deg(x) 6 bk · mk(K+k
3 ,

Ctk )c. By the choice of H we know that there exists a colouring of the edges in
H\x (that is, the subgraph induced by the vertex set V (H)\{x}) without a red
K+k

3 and a blue Ctk . We now extend this colouring to the edges of H incident to x .
Consider the link hypergraph Hx of the vertex x , which is the (k − 1)-uniform

hypergraph with the edges {e\{x} : e ∈ E(H), x ∈ e}. Let us assume that there
exists a (k − 3)-intersecting set of edges S ⊆ E(Hx) such that Hx\S does not
contain a copy of T k−1

2(k−1) (we show later that we can indeed find such a set). Let R
and B denote the edges of H obtained by adding back the vertex x to the edges
of S and Hx\S, respectively. Note that the set R is (k − 2)-intersecting since S
is (k − 3)-intersecting. We claim that colouring the edges in R with red and the
edges in B with blue gives a contradiction to the assumption H → (K+k

3 ,Ctk ):

• By the assumption on the colouring of H\x any red copy of K+k
3 has to contain

x and, therefore, at least two edges from R. However, as every two edges of
K+k

3 intersect on k−1 vertices, the existence of such copy would contradict the
fact that R is (k − 2)-intersecting.

• Similarly as in the previous case, a blue copy of Ctk necessarily contains x
which implies that the subgraph given by the edges in B contains T k

2k−1 (since
B is the set of blue edges incident to x and tk > 2k). Removing the vertex x
from every edge of such a copy gives a copy of T k−1

2(k−1) in Hx\S, which is a
contradiction.
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To conclude, we obtained a colouring of H which contains no red K+k
3 and no

blue Ctk , thus a contradiction with H → (K+k
3 ,Ctk ).

It remains to prove that we can find an (k−3)-intersecting set of edges S ⊆ Hx

such that Hx\S does not contain T k−1
2(k−1). Recall that

mk(K+k
3 ,Ctk ) =

3tk − 3
2tk − k − 1

.

If k = 4 then from the choice of x we have

deg(x) 6 b4 · m4(K+4
3 ,C8)c = 7,

and hence Hx is a 3-uniform hypergraph with at most 7 edges. Now we can apply
Lemma 29 to Hx to obtain a set S with the desired properties. Otherwise, if k > 5
then one can check that

deg(x) 6 bk · mk(K+k
3 ,Ctk )c 6 d

3
2 ke

and thus Hx is a (k − 1)-uniform hypergraph with at most d 3
2 ke edges. Therefore,

Lemma 28 guarantees the existence of the desired set S. This concludes the proof.

In the next subsection we prove Lemma 28.

5.1.1. Proof of Lemma 28. We use the following two observations on the
structure of tight paths.

LEMMA 30. Let k > 3 and let a0, a1 be two different edges of the graph T k
2k .

Let m := |a0 ∩ a1| > 1. Then there exist k − m − 1 different edges {e1, . . . ,

ek−m−1} ⊆ E(T k
2k)\{a0, a1} such that for each i ∈ {1, . . . , k−m−1} the following

holds:

(1) |ei ∩ a0 ∩ a1| = m;

(2) |ei ∩ (a0\a1)| = i ; and

(3) |ei ∩ (a1\a0)| = k − m − i .

Moreover, for each edge e′ ∈ E(T k
2k)\{a0, a1, e1, . . . , ek−m−1} there exists b ∈ {0,

1} such that:

(i) |e′ ∩ a0 ∩ a1| 6 m − 1;

(ii) |e′ ∩ (ab\a1−b)| = 0; and

(iii) |e′ ∩ (a1−b\ab)| = k − m.
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Proof. Let f1, . . . , fk+1 be a natural ordering of the edges of T k
2k . As a0 and a1

have exactly m vertices in intersection it follows that there exists an index i ∈
{1, . . . ,m} such that a0 = fi . Since the reversed ordering of the edges (that is,
f ′i = fk+1−i ) is also a natural ordering, we can assume that a0 is ‘to the left’ of
a1 and thus a1 = fi+k−m . It is easy to see that the set of edges ek−m− j = fi+ j

(for 1 6 j 6 k − m − 1) satisfies properties 1–3. Consequently, each edge e′ ∈
E(T k

2k)\{a0, a1, e1, . . . , ek−m−1} has to correspond to an edge from either { f1, . . . ,

fi−1} or { fi+k−m+1, . . . , fk+1}. In both of these cases it is easy to see that properties
(i)–(iii) hold.

CLAIM 31. The largest (k − 2)-intersecting set in T k
k+`−1 is of size d`/2e.

Proof. Let {e1, . . . , e`} be a natural order of the edges of T k
k+`−1. Observe that the

set
{e1, e3, . . . , e2d`/2e−1}

is (k − 2)-intersecting and has size d`/2e. Any set of more than d`/2e edges
contains two edges ei and ei+1, for some i ∈ {1, . . . , `− 1}. Such a set cannot be
(k − 2)-intersecting as by definition |ei ∩ ei+1| = k − 1.

We are now ready to prove Lemma 28.

Proof of Lemma 28. If H does not contain T k
2k then S := ∅ satisfies the required

properties. Otherwise, from Claim 31 we have that H contains a (k − 2)-
intersecting set S of size d(k + 1)/2e. Let H ′ := H\S and note that H ′ has at
most ⌈

3
2 (k + 1)

⌉
− d(k + 1)/2e = k + 1 (15)

edges. If H ′ is not isomorphic to T k
2k then S satisfies the required properties.

Otherwise, let E(H ′) = {h1, . . . , hk+1} be a natural order of the edges of H ′ and
label the vertices V (H ′) = {v1, . . . , v2k} such that

hi = {vi , . . . , vi+k−1}

for all 1 6 i 6 k + 1. Note that

C1 := {h1, h3, . . . , h2d(k+1)/2e−1} and C2 := {h2, h4, . . . , h2b(k+1)/2c}

are (k − 2)-intersecting sets of size |C1| = d(k + 1)/2e and |C2| = b(k + 1)/2c.
We show that H\Ci does not contain T k

2k for some i ∈ {1, 2}.
Let us assume towards a contradiction that this is not the case and let F1 and F2

denote arbitrarily chosen copies of T k
2k in C1 ∪ S and C2 ∪ S, respectively. Since

|C1 ∪ S| 6 k + 2 there can be at most one edge in C1 ∪ S which is not part of F1.
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We first show that h1 ∈ E(F1) implies h3 ∈ E(F1). Let us assume towards the
contradiction that h1 ∈ E(F1) and h3 /∈ E(F1). Since F1 contains all but at most
one edge in C1 ∪ S, this implies that a subgraph induced by edges S ∪ C1\{h3} is
isomorphic to T k

2k . Let E(F1) = { f1, . . . , fk+1} be a natural order of the edges of
F1 and let j be such that f j = h1. We can assume that j 6 dk/2e as otherwise we
can just reverse the order of the edges. Since j + 2 6 k for k > 5, the edges f j+1

and f j+2 are such that

| f j+1 ∩ f j+2| = k − 1, | f j+1 ∩ f j | = k − 1, and | f j+2 ∩ f j | = k − 2.

However, no edge from C1\{h1, h3} intersects h1 on more than k − 4 vertices,
which implies that both f j+1 and f j+2 are contained in S. As S is a (k − 2)-
intersecting set and | f j+1 ∩ f j+2| = k− 1, this gives a contradiction. To conclude,
we showed that if h1 ∈ E(F1) then h3 ∈ E(F1).

Note that the previous observation together with the fact that F1 contains all
but at most one edge in C1 ∪ S implies that either {h1, h3} ⊆ E(F1) or {h3,

h5} ⊆ E(F1) (or both). We only consider the first case as the latter follows by a
symmetric argument. From Lemma 30 with a0 = h1 and a1 = h3 (and m = k−2)
we conclude that there exists an edge x ∈ E(F1) such that

|x ∩ h1 ∩ h3| = k − 2, |x ∩ (h1\h3)| = 1 and |x ∩ (h3\h1)| = 1. (16)

Therefore we have |x ∩h1| = k−1 and as C1 is a (k−2)-intersecting set we have
x ∈ S.

Next, let us look at F2. As |C2| = b(k + 1)/2c we have |S ∪ C2| 6 k + 1.
Therefore, E(F2) = S ∪ C2 and from x ∈ S we conclude x ∈ E(F2). Using (16)
we obtain

|x ∩ h2 ∩ h4| = k − 3+ I (vk+1),

|x ∩ (h2\h4)| = 1+ I (v2), and
|x ∩ (h4\h2)| = I (vk+2)+ I (vk+3),

where

I (v) :=

{
1 v ∈ x,
0 otherwise.

Observe that by (16) we also have V (x)⊆ V (h1)∪ V (h3) and since vk+3 /∈

V (h1)∪ V (h3) we get I (vk+3) = 0. Moreover, as |x ∪ (h3\h1)| = 1 and h3\h1 =

{vk+1, vk+2} we conclude

I (vk+1) = 1− I (vk+2).

These observations imply that there are only two possibilities:
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• |x ∩ h2 ∩ h4| = k − 2 and |x ∩ (h4\h2)| = 0; or

• |x ∩ h2 ∩ h4| = k − 3, |x ∩ (h4\h2)| = 1 and |x ∩ (h2\h4)| > 1.

By applying Lemma 30 with a0 = h2 and a1 = h4 (and m = k − 2) one can see
that no edge from F2\{h2, h4} can satisfy either of the two possibilities. This gives
a contradiction with the assumption that both H\C1 and H\C2 contain T k

2k , which
concludes the proof of the lemma.

5.2. Property (iii). In this subsection we prove that property (iii) from
Theorem 8 (the asymmetric-balancedness) holds for F1 = K+k

3 and F2 = Ctk .
For convenience of the reader, we state it as a lemma.

LEMMA 32. The family C∗ = F ∗(K+k
3 ,Ctk ) is asymmetric-balanced for every

k > 4 (see Definition 7).

Consider some graph C∗ ∈ C∗. Recall that by the definition of F ∗(K+k
3 ,Ctk )

there exists a subgraph C∗tk ⊆ C∗ isomorphic to Ctk and an ordering e0, . . . , etk−1

of the edges of C∗tk such that for each 1 6 i 6 tk − 1 there exists a subgraph
F i
⊆ C∗ which contains an edge ei and is isomorphic to K+k

3 . Recall that we refer
to the edge e0 as an attachment edge. For simplicity, we assume that the vertices of
C∗tk are labelled with numbers {0, . . . , tk−1} such that ei = {i, i+1, . . . , k−1+i}
(where all additions are modulo tk) for 0 6 i 6 tk − 1. Moreover, let vi denote the
vertex such that ei ∪ {vi} = V (F i) (for 1 6 i 6 tk − 1). Notice that vi s need not
be distinct.

We make a few observations that will lead us to a crucial calculation.

CLAIM 33. Let I ⊆ {i : vi 6∈ V (C∗tk )} and S = {vi : i ∈ I }. Then the number of
edges from C∗ incident to S is at least |I | + |S|.

Proof. Set s := |S| and let u1, . . . , us be the vertices of S. Since every edge in C∗

contains at most one vertex in S, we are interested in estimating
∑s

j=1 degC∗(u j).
For every vertex u j we denote by W ( j) the set of the indices i ∈ I such that F i

contains u j and we set w( j) := |W ( j)|. Observe that the sets W ( j) partition I .
Consider two distinct indices i1 and i2 from W ( j), for some 1 6 j 6 s. First,

note that F i1 and F i2 have at most one edge in intersection. Otherwise we would
have V (F i1) = V (F i2) which implies ei1 = ei2 , contradicting i1 6= i2. Moreover,
if F i1 and F i2 share an edge then, because any two edges of K+k

3 have intersection
of size k − 1, we necessarily have that ei1 and ei2 are consecutive edges, that is,
|i1 − i2| = 1 (note that 0 /∈ W ( j)).
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Let W ( j) = { j1, . . . , jq} where ji 6 ji+1. Using the previous observation we
estimate degC∗(u j) > w( j) + 1 by counting the contribution of each F ji in the
increasing order. In particular, F j1 contributes two edges and every further F ji at
least one new edge. This is clearly true for i < q . If F jq does not contribute any
new edge then from the previous observation we conclude that e jq−1, e jq and e j1
are consecutive edges. This, however, cannot be because 0 /∈ W ( j). To conclude,
we obtain

s∑
j=1

degC∗(u j) > s +
s∑

j=1

w( j) = |S| + |I |.

CLAIM 34. Suppose an edge e ∈ C∗ belongs to F i , F j and F`, for some 1 6 i <
j < ` 6 tk − 1. Then the edges ei , e j and e` are consecutive (that is, j = i + 1
and ` = i + 2) and

e = {i, i+2, . . . , i+k} or e = {i+1, . . . , i+k−1, i+k+1} or e = ei+1.

In particular, we have e ⊆ V (C∗tk ).

Proof. Since any two edges of K+k
3 have intersection of size k − 1 it follows that

ei , e j and e` must pairwise intersect in at least k−2 vertices. This is only possible
if these edges are three consecutive edges on the cycle C∗tk .

If e ∈ E(C∗tk ) then from |e ∩ ei+ j | > k − 1 for j ∈ {0, 1, 2} we conclude
e = ei+1. Next, suppose that e 6∈ E(C∗tk ). Note that then e has to contain ei ∩ ei+2.
This can be seen as follows: from |e ∩ ei | = |e ∩ ei+2| = k − 1 we have |e ∩ (ei ∩

ei+2)| > k − 3 (that is, e can ‘miss’ at most one vertex from ei ∩ ei+2). However,
if |e ∩ (ei ∩ ei+2)| = k − 3 then necessarily ei\ei+2 ⊂ e and ei+2\ei ⊂ e which
implies |e| > k + 1, thus a contradiction. Consequently, exactly one vertex from
{i, i + 1} and one vertex from {i + k, i + k + 1} belongs to e. Moreover, from
|e ∩ ei+1| = k − 1 we deduce {i, i + k + 1} 6⊂ e and from e 6∈ E(C∗tk ) we have
{i + 1, i + k} 6⊂ e (as otherwise e = ei+1). This leads to the two remaining shapes
of e.

Given j ∈ [tk − 1] such that V (F j) ⊆ V (C∗tk ), we denote by E j the set of the
noncycle edges from F j , that is,

E j
:= {e ∈ E(F j) : e 6∈ E(C∗tk ) and e ⊆ V (C∗tk )}.

CLAIM 35. If an edge e 6∈ C∗tk belongs to F i , F i+1 and F i+2 then there is an edge
e′ in E i

∪ E i+1
∪ E i+2 such that {i, i + k + 1} ⊆ e′ and e′ belongs to at most two

hypergraphs F j .
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Proof. From Claim 34 we know that either e = {i, i+2, . . . , i+k}, e = {i+1, . . . ,
i+k−1, i+k+1} or e = ei+1. Assume first that e = {i+1, . . . , i+k−1, i+k+1}.
Then the edge e′ ∈ E i

\{e}must contain i and i+k+1. If e = {i, i+2, . . . , i+k}
then the edge e′ ∈ E i+2

\{e}must contain i and i+k+1. Again from Claim 34 we
conclude that if e′ is contained in three different F j s then it cannot contain both i
and i + k + 1, thus a contradiction. Therefore, e′ is the desired edge.

CLAIM 36. Let F i be such that V (F i) ⊆ V (C∗tk ). If |E i
| = 1 then either ei−1 or

ei+1 ∈ E(F i).

Proof. This follows immediately from the fact that any two edges of K+k
3 have

intersection of size k − 1.

For a given subset X ⊆ {k, . . . , tk − 1} we define EX to be the set of all edges
e of C∗tk such that either the leftmost vertex of e lies in X or min X ∈ e, that is,

EX = {ei : i ∈ X} ∪ {e ∈ E(C∗tk ) : min X ∈ e}.

CLAIM 37. Let X ⊆ {k, . . . , tk − 1}, and let

I = {i : ei ∈ EX and vi 6∈ V (C∗tk )}

and I ′ ⊆ I . If |X | > 3 then the number of edges in C∗ that intersect X and are
either contained in V (C∗tk ) or intersect {vi : i ∈ I ′} is at least

(|X | + k − 1)+
|X | + k − 1− |I |

2
+
|I ′|
2
. (17)

Proof. We write X = {x1 < · · · < xm} (m > 4). There are exactly m edges in C∗tk
whose leftmost vertex lies in X (namely ex1, . . . , exm ). Moreover, there are further
k−1 edges e ∈ E(C∗tk )with x1 ∈ e (note that from x1 > k we have that these edges
are different from exi ) and therefore |EX | = |X |+ k−1. Clearly, by the definition
we have that each e ∈ EX intersects X and e ⊆ V (C∗tk ) thus this establishes the
first group of summands in (17).

Next, we estimate those edges which contain a vertex from {vi : i ∈ I ′} and
X . Since vi 6∈ V (C∗tk ) and ei ∩ X 6= ∅ for i ∈ I ′ (this follows from ei ∈ EX ), we
deduce that at least one of the edges from E(F i)\{ei}must intersect X and contain
vi (recall that in K+k

3 any pair of vertices is connected by an edge). Moreover,
from Claim 34 we have that every such edge e belongs to at most two F i s, as
otherwise we have vi ∈ e ⊆ V (C∗tk ) which contradicts vi 6∈ V (C∗tk ). This shows
that the number of edges incident both to X and {vi}i∈I ′ is at least |I ′|/2, which
establishes the third summand in (17).
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It remains to show that there are at least

|X | + k − 1− |I |
2

(18)

edges e ∈ E(C∗)\EX such that e ∩ X 6= ∅ and e ⊆ V (C∗tk ). Let

E := {ei ∈ EX : vi ∈ V (C∗tk )},

E1 := {ei ∈ EX : vi ∈ V (C∗tk ) and ∃e ∈ E i such that e ∩ X = ∅},

E2 := {ei ∈ EX : vi ∈ V (C∗tk ) and ∀e ∈ E i we have e ∩ X 6= ∅}.

Observe that E = E1∪̇E2 holds. Furthermore set

E ′ :=
⋃

e j∈E2

E j ,

Ê = {e ∈ E(C∗tk )\EX : e ∩ X 6= ∅}.

Note that E ′ ∩ Ê = ∅ (recall that E j
∩ E(C∗tk ) = ∅ by the definition). Moreover,

for every edge e ∈ E ′ ∪ Ê we have e∩ X 6= ∅ and e 6∈ EX . Here the first property
follows directly from the definition of the sets E ′ and Ê , whereas the second one
follows from the definition of the sets E j and Ê ∩ EX = ∅.

Moreover, for every ei ∈ E we have i 6∈ I , thus

|E1| + |E2| = |E | = |EX | − |I | = |X | + k − 1− |I |. (19)

We estimate the sizes of E ′ and Ê separately.

• |E ′| > |E2|/2

Let S3 be the set of those edges from E ′ that belong to at least three sets E j

for some j such that e j ∈ E2. From Claims 34 and 35 we deduce that if an
edge e ∈ E ′ belongs to some F i1, F i2 and F i3 then there is another edge e′ ∈ E ′

which also belongs to E i1 ∪ E i2 ∪ E i3 but lies in at most two copies of some F i .
Therefore, the number of E j s (where j ∈ {i : ei ∈ E2}) such that E j

⊆ S3 is at
most 2|S3| (as otherwise there is an edge e ∈ E i1 ∪ E i2 ∪ E i+3

⊆ S3 which is
contained in only two different F i ’s, which is a contradiction). It follows that
|E ′| > (|E2| − 2|S3|)/2+ |S3| = |E2|/2 holds.

• |Ê | > |E1|/2

By the definition of E1, any edge ei ∈ E1 intersects X in exactly one vertex. In
what follows we construct a function f : E1 → Ê where every edge of Ê has
at most two preimages. This will then imply |Ê | > |E1|/2.
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Given an edge e ∈ E1 let xi be the only vertex from X that is contained in e.
If e 6= ex1−k+1 then xi is not the rightmost vertex in the edge e. If in addition
i < m then we define another edge f (e) as follows: let f (e) ∈ E(C∗tk ) be an
edge which contains xi+1, where xi+1 is preceded by as many vertices as there
are vertices in e that come after xi . Clearly, f (e) 6∈ EX and f (e) ∩ X 6= ∅. We
observe that such edges f (e) are all distinct and in particular f : E1\{ex1−k+1,

exm } → Ê is injective. Thus, |Ê | > |E1\{ex1−k+1, exm }| and if |E1\{ex1−k+1,

exm }| > |E1|/2 then we are done.

Therefore, it remains to consider the cases when ex1−k+1 ∈ E1 or exm ∈ E1

holds, where we define some more edges of the ‘type’ f (e). This amounts to
a somewhat tedious case distinction. If ex1−k+1 ∈ E1 then we first additionally
assume that either (x1 + 1) 6∈ X or (x1 + 2) 6∈ X is the case. In particular, if
(x1 + 1) 6∈ X then we define f (ex1−k+1) := ex2−1 and if (x1 + 2) 6∈ X (and
(x1 + 1) ∈ X is) then we set f (ex1−k+1) := ex3−1. Similarly, if exm ∈ E1 and
(xm−1) 6∈ X then we set f (exm ) := exm−1 and if (xm−2) 6∈ X (and (xm−1) ∈ X
is) we set f (exm ) := exm−1−1. Notice that f (ex1−k+1) 6= f (exm ) unless m = 4,
x2 = x1 + 1, x4 = x3 + 1 and (x1 + 2) 6∈ X (recall that by assumption m >
4). In any case, it is easy to check that at most two f (e)s are pairwise equal.
Therefore, |Ê | > |E1|/2.

Finally we treat the case where at least one of the remaining options holds:
ex1−k+1 ∈ E1, (x1 + 1), (x1 + 2) ∈ X or exm ∈ E1 and (xm − 1), (xm − 2) ∈ X .
If ex1−k+1 ∈ E1 and (x1 + 1), (x1 + 2) ∈ X , it follows from Claim 35 and
ex1−k 6∈ EX , that none of the edges from E x1−k+1 lies in three copies F i

(where all i ∈ { j : e j ∈ E}) – otherwise these have to be F x1−k+1, F x1−k+2

and F x1−k+3. But then with Claim 34 it follows that F x1−k+1 intersects X in
two vertices, which implies ex1−k+1 ∈ E2 (a contradiction). Moreover, it holds
by definition that |E x1−k+1

| ∈ {1, 2}. And it follows further from Claim 36
that if |E x1−k+1

| = 1 then either ex1−k or ex1−k+2 lies in F x1−k+1, which again
implies that ex1−k+1 ∈ E2. Thus, we have |E x1−k+1

| = 2. Next we delete one
edge from E x1−k+1 which does not intersect X (and still denote the set by
E x1−k+1). Similarly, if exm ∈ E1 and (xm − 1), (xm − 2) ∈ X then none of
the edges from E xm lies in three copies F i (where all i ∈ { j : e j ∈ E}). Again
we have |E xm | = 2 and we delete from E xm the edge that does not intersect X .
In each of the cases, we add ex1−k+1 (respectively exm ) to E2 (and remove them
from E1) and the edges from E x1−k+1 (respectively E xm ) to E ′ (but keeping the
same notation). Now, a short meditation reveals that the same argumentation as
above applies to these slightly altered sets E1 and E2 to show |E ′| > |E2|/2 and
|Ê | > |E1|/2. Indeed, the inequality |E ′| > |E2|/2 holds since edges ex1−k+1

and exm belong to at most two copies of F j (with j ∈ {i : ei ∈ E2}) and thus the
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estimate |E ′| > (|E2| − 2|S3|)/2 + |S3| = |E2|/2 remains valid. Whereas the
inequality |Ê | > |E1|/2 holds since we exclude ex1−k+1 and/or exm from E1 that
leads to a simpler function f : E1 → Ê , whose property that each element has
at most two preimages remains valid.

The claim now follows from (19) and previously obtained bounds.

Now we are ready to prove Lemma 32.

Proof of Lemma 32. Consider some C∗ ∈ C∗ and suppose H ⊆ C∗ contains the
attachment edge e0 and v(H) < v(C∗). Let

SC := V (C∗)\(V (C∗tk ) ∪ V (H)) and SH := V (H)\V (C∗tk )

be the set of ‘outside’ vertices of C∗ partitioned into those which are contained in
H and the rest. Furthermore, set

I := {i : vi 6∈ V (C∗tk ) ∪ V (H)}.

Clearly, SC = {vi : i ∈ I }. Furthermore, let X ⊂ V (C∗tk ) be such that SC ∪̇X =
V (C∗)\V (H), that is,

X := V (C∗tk )\V (H).

Recall that EX consists of those edges e of C∗tk such that either their leftmost vertex
of e lies in X or min X ∈ e. We aim to lower bound e(C∗) − e(H) in terms of
|SC | and |X |. Since v(C∗)− v(H) = |SC | + |X | this enables us to bound the ratio
(e(C∗)− e(H))/(v(C∗)− v(H)) from below.

Assume first that |X | > 4. Let us denote by E1 ⊆ E(C∗) the subset of all edges
which intersect SC . From Claim 33 we obtain

|E1| > |I | + |SC |. (20)

Note that from the definition of SC we have that no edge e ∈ E(H) intersects SC ,
and thus it holds E1 ⊆ E(C∗)\E(H). Let us denote

J := { j : v j 6∈ V (C∗tk ) and e j ∈ EX }.

From Claim 37 we know that the number of edges e ∈ E(C∗)\E(H) that intersect
X and are either contained in V (C∗tk ) or intersect {vi : i ∈ J\I } ⊆ SH is at least

|X | + k − 1+
|X | + k − 1− |J |

2
+
|J\I |

2
. (21)

Let us denote such set of edges with E2. Note that in order to apply Claim 37
we also need that X ∩ {0, . . . , k − 1} = ∅, which follows from the assumption
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e0 ∈ E(H). We have E2 ∩ E(H) = ∅ as each edge in E2 intersects X which
is a set disjoint from V (H). Furthermore, we claim that E2 is disjoint from E1.
Every edge in C∗ intersects the set of ‘outside’ vertices V (C∗)\V (C∗tk ) on at most
one vertex. Let e′ ∈ E2 be an arbitrary edge from E2. If e′ is contained in V (C∗tk )
then e′ 6∈ E1. Otherwise, we know that e′ intersects {vi : i ∈ J\I } ⊆ SH . As
SH is disjoint from SC we conclude e′ /∈ E1 and thus E1 ∩ E2 = ∅. Having this
observation, together with the fact E1 ∪ E2 ⊆ E(C∗)\E(H), we bound e(C∗) −
e(H) by using (20) and (21) as follows,

e(C∗)− e(H) > |E1| + |E2| > |I | + |SC | + |X | + k − 1

+
|X | + k − 1− |J |

2
+
|J\I |

2
. (22)

On the other hand we have v(C∗)− v(H) = |SC | + |X |. Therefore we obtain

e(C∗)− e(H)
v(C∗)− v(H)

>
|I | + |SC | + |X | + k − 1+

|X | + k − 1− |J |
2

+
|J\I |

2
|SC | + |X |

= 1+
2|I | + 3(k − 1)+ |X | − |J | + |J\I |

2(|SC | + |X |)

> 1+
|I | + 3(k − 1)+ |X | − |J | + |J |

2(|SC | + |X |)
(|I |>|SC |)

> 1+
|SC | + |X | + 3(k − 1)

2(|SC | + |X |)

=
3
2
+

3(k − 1)
2(|SC | + |X |)

.

By comparing this with

mk(K+k
3 ,Ctk ) =

3tk − 3
2tk − k − 1

=
3
2
+

3(k − 1)
2(2tk − k − 1)

,

we see that

e(C∗)− e(H)
v(C∗)− v(H)

>
3
2
+

3(k − 1)
2(|SC | + |X |)

>
3
2
+

3(k − 1)
2(2tk − k − 1)

= mk(K+k
3 ,Ctk ).

The second inequality follows from |X | = |V (C∗tk )\V (H)| 6 tk − k (since H
contains e0) and |SC | = |V (C∗)\(V (C∗tk ) ∪ V (H))| 6 |V (C∗)\V (C∗tk )| 6 tk − 1.
Therefore, the equality is possible only if |X | = tk− k and |SC | = tk−1, in which
case C∗ is generic and H consists only of the attachment edge.

It remains to consider the case where |X | ∈ {0, 1, 2, 3}. Suppose X = ∅. Then
v(C∗) − v(H) = |SC | > 1. From Claim 33 we have that there are at least
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|I | + |SC | > 2|SC | edges e ∈ C∗ which intersect SC , and by the definition none of
these edges belongs to H . Therefore e(C∗)− e(H) > 2|SC | and we get

e(C∗)− e(H)
v(C∗)− v(H)

> 2
tk>2k
> mk(K+k

3 ,Ctk ).

Finally, suppose 1 6 |X | 6 3. There are at least |X | + k − 1 edges in
E(C∗tk )\E(H) which intersect X . In particular, those are ex for each x ∈ X and
k − 1 edges preceding ex1 where x1 = min X (since x1 > k there is no double
counting). Moreover, by the same argument as in the previous case we have at
least |I | + |SC | > 2|SC | edges which intersect SC . This gives

e(C∗)− e(H)
v(C∗)− v(H)

>
|X | + k − 1+ 2|SC |

|X | + |SC |

> 2+
k − 1− |X |
|X | + |SC |

k>4
> 2

tk>2k
> mk(K+k

3 ,Ctk ),

as required.

6. Concluding remarks

The 1-statement in Theorem 5 requires F1 be strictly balanced with respect to
mk(·, F2). We use this condition in Lemmas 12 and 13 to bound the expected
number of pairs of distinct copies of F1 that share at least one edge and to apply
Janson’s inequality. This is exploited subsequently in the proof of Theorem 5 in
the probability estimate (8) via (6). At the expense of an additional log-factor we
can drop the condition on the strict balancedness and prove the following.

THEOREM 38. Let r > 2 and F1, . . . , Fr be k-uniform hypergraphs such that
mk(F1) > mk(F2) > · · · > mk(Fr ) > 0. Then there exists a constant C > 0 such
that for p > Cn−1/mk (F1,F2) log n we have

lim
n→∞

Pr
[
H k(n, p)→ (F1, . . . , Fr )

]
= 1.

The proof is a slight modification of the proof of Theorem 5 and we briefly
sketch the argument. We exploit H k(n, p) 6→ (F1, . . . , Fr ) by applying the
container theorem, Theorem 15, as before with F = Fi for i > 2 and with Hi

being the edges of H k(n, p) coloured i without a copy of Fi . The tuples T i

consist then of sets of sizes at most `nk−1/mk (Fi ) each. Thus, a colouring of the
edges of H ∼ H k(n, p) which certifies H 6→ (F1, . . . , Fr ) allows us to place the
i-coloured edges Hi , for i > 2, into some container Ci with fewer than αnv(Fi )
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copies of Fi . Thus, Lemma 11 yields, that H ′ := K (k)
n \

⋃
i>2 E(Ci) contains at

least αnv(F1) copies of F1 for some absolute α > 0. Therefore, all edges in H ′∩H
are coloured in colour 1 and since H1 = H ′ ∩ H , none of the copies of F1 from
H ′ is in H1. But then Janson’s inequality, viz. Lemma 13, yields the probability
of at most e−βCnk−1/mk (F2) log n that none of the copies of F1 in H1 is present in H .
More precisely, let F ′1 be the subgraph of F1 that is strictly balanced with respect
to mk(·, F2). Then, Lemmas 12 and 13 are applicable to F ′1 instead of F1 and if H1

does not contain a copy of F ′1 then it does not contain a copy of F1 as well. The
probability for the latter event is, by Lemma 13, at most e−βCnk−1/mk (F2) log n . The
number of choices for T i ’s is at the same time at most(

nk

r`nk−1/mk (F2)

)
2r2`2nk−1/mk (F2)

= eOr,`(nk−1/mk (F2) log n).

But then the union bound over all choices of T i finishes the claim, if we choose C
large enough, since the failure probability e−βCnk−1/mk (F2) log n times the number of
choices for T i s is o(1). It would be of interest to further remove the log n factor
in Theorem 38.

Another research direction concerns sharp thresholds, already mentioned in
the introduction. For example, in the case of a triangle and two colours, G(n,
p) → (K3) has a sharp threshold as proved by Friedgut et al. [10]. Building on
the work of Friedgut et al. [8] on the sharpness of the threshold for the van der
Waerden property in random subsets, Schacht and Schulenburg [27] gave a proof
for sharpness of a threshold for a class of strictly balanced and nearly bipartite
graphs, that is, those graphs that contain an edge whose deletion makes them
bipartite. Such a class contains all odd cycles, and thus gives a shorter proof of
the result in [10]. The new proof of the sharpness result uses an application of
Friedgut’s sharpness criterion [7] in combination with container theorems [2, 26].
It would be interesting to obtain sharpness results for some asymmetric graph
Ramsey properties or even for hypergraphs.

In [17, 28] we proved the 0-statement for the threshold probability for H k(n,
p) → (F)r , where r > 2 and F is the complete k-uniform hypergraph. This 0-
statement is of the form cn−1/mk (F) and thus it matches the corresponding bounds
for the 1-statement due to Conlon and Gowers [5] and Friedgut et al. [11] up to a
multiplicative constant. In [28], similar 0-statements are proved for larger classes
of hypergraphs apart from complete graphs. We refer the interested reader to [28,
Theorem 6.13]. However, we are far from having a complete characterization
of the thresholds for H k(n, p) → (F)r for general F and r > 2. It would be
interesting to decide whether the connection between asymmetric and symmetric
Ramsey properties (Theorem 3) occurs in the case of 3-uniform hypergraphs as
well.
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Appendix A. Proof of Lemma 29

For convenience of the reader we restate Lemma 29.

LEMMA. Let H be a 3-uniform hypergraph with 7 edges. Then there exists a 1-
intersecting subset S ⊆ H of edges such that H\S does not contain a copy of T 3

6 .

Recall that T 6
3 is a 3-uniform tight path with 6 vertices. First we show a simple

claim, which is used later in the proof.

CLAIM 39. Let H be a 3-uniform hypergraph which does not contain a 1-
intersecting set of size three and let x, y ∈ E(H) be two disjoint edges of H.
Then each edge e ∈ E(H)\{x, y} has to intersect exactly one of the edges from
{x, y} and on exactly two vertices.

Proof. Let e be an arbitrary edge from E(H)\{x, y}. If e intersects both x and
y on at most one vertex then set {x, y, e} is a 1-intersecting set of size three,
which is a contradiction with the assumption of the lemma. On the other hand, if
e intersects both x and y on two vertices, then x and y cannot be disjoint.

Next, we show that Lemma 29 holds if H , additionally, does not contain a
1-intersecting set of size three.

LEMMA 40. Let H be a 3-uniform hypergraph with 7 edges and no 1-intersecting
set of size three. There is a 1-intersecting subset S ⊆ E(H) such that H\S does
not contain a copy of T 3

6 .

Proof. In order to obtain a contradiction, suppose that for every 1-intersecting
set S ⊆ E(H) the graph H\S contains a T 3

6 -copy. We show that this assumption
gives us enough information to deduce important information about the structure
of H . Let a and b be two edges of an arbitrary T 3

6 -copy of H such that a ∩ b = ∅.
The set of edges {a, b} is a 1-intersecting set and thus H\{a, b} contains a T 3

6 -
copy. Pick an arbitrary such copy and denote it by F . Let E(F) = {e1, e2, e3, e4}

be a natural order of edges of F and let us denote the only remaining edge from
E(H)\{a, b, e1, e2, e3, e4} by e∗. By applying Claim 39 to a and b we know that
edges e1, e4 and e∗ have to intersect a or b on exactly two vertices. Note that e1
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and e4 must not intersect the same edge on two vertices as then they would not be
disjoint. Let us assume without loss of generality that

|e1 ∩ a| = 2, |e∗ ∩ a| = 2, and |e4 ∩ b| = 2.

From previous observation it then directly follows that

|e1 ∩ b| 6 1, |e∗ ∩ b| 6 1, and |e4 ∩ a| 6 1. (A.1)

If e∗ intersects e4 on two vertices, then e∗ intersects e1 on at most one vertex
and together with (A.1) we conclude {e1, b, e∗} is a 1-intersecting set, which is a
contradiction. Thus, we have

|e∗ ∩ e4| 6 1. (A.2)

Next, let us look at the edge e2. If |e2 ∩ a| 6 1 then since |a ∩ e4| 6 1 by (A.1)
and by the definition of the natural order of the edges E(F) from the path T 3

6 we
conclude that {e2, a, e4} is a 1-intersecting set, which is not possible. Thus, we
know

|e2 ∩ a| = 2. (A.3)

Similarly, by (A.2) and the fact that |e2 ∩ e4| = 1 we obtain

|e2 ∩ e∗| = 2. (A.4)

To finish the proof, it suffices to show that H\{e1, e3} does not contain a copy of
T 3

6 . Let F̃ be an arbitrary T 3
6 -copy from H\{e1, e3}. As there are only five edges

in H\{e1, e3} either both e2 and b or both e∗ and a are contained in E(F̃). We
split the rest of the proof into these two cases:

Case 1: {e2, b} ⊆ E(F̃)
By (A.3) we know |e2 ∩ b| 6 1, but we show that actually |e2 ∩ b| = 1. It

must be that |e3 ∩ b| = 2 as otherwise by (A.1) the set {e3, b, e1} is 1-intersecting.
Since |e3 ∩ b| = 2 and |e3 ∩ e2| = 2 we get |e2 ∩ b| > 1 and thus |e2 ∩ b| = 1.
By applying Lemma 30 to F̃ , e2 (as a0) and b (as a1) we conclude that there
exists an edge x ∈ {e4, a, e∗} such that |x ∩ e2| = 2 and |x ∩ b| = 2. As
a ∩ b = ∅, |e4 ∩ e2| = 1 and |e∗ ∩ b| 6 1 we know that x /∈ {e4, a, e∗}, which
is a contradiction.

Case 2: {e∗, a} ⊆ E(F̃)
Since |e∗ ∩ a| = 2 by applying Lemma 30 to F̃ , e∗ (as a0) and a (as a1) we

conclude that there exist an edge x ∈ {b, e2, e4} such that |x ∩ a| + |x ∩ e∗| = 3.
As b∩ a = ∅ it cannot be that x = b. Furthermore, using (A.3) and (A.4) we
know that |e2 ∩ a| + |e2 ∩ e∗| = 4 and thus x 6= e2. Finally, using (A.1) and (A.2)
we know |e4 ∩ a| + |e4 ∩ e∗| 6 2 and thus x 6= e4. This concludes the proof.
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Finally, by using lemma above we prove Lemma 29.

Proof of Lemma 29. If H does not contain a 1-intersecting set of size three, then
the lemma follows directly by Lemma 40. Let us assume that H contains a 1-
intersecting set of size three {a, b, c}. Moreover, in order to arrive at contradiction
we assume that for every 1-intersecting set S ⊆ E(H) there exist a T 3

6 -copy
contained in H\S. Consequently, as |E(H)\{a, b, c}| = 4, the hypergraph H\{a,
b, c} must be isomorphic to T 3

6 . Let {v1, . . . , v6} and {e1, e2, e3, e4} be a natural
order of vertices and edges of the T 3

6 -copy spanned by |E(H)\{a, b, c}| such that
ei = {vi , vi+1, vi+2}. We claim that either the edge e1 or e4 must be 1-intersecting
with at least two edges from {a, b, c}. If we assume otherwise, then there must be
an edge in {a, b, c}, say a, such that both e1 and e4 intersect a on two vertices.
However, that is not possible as e1 ∩ e4 = ∅. Without loss of generality, let us
assume {e1, a, b} is a 1-intersecting set. If e1 is 1-intersecting with all the edges
from {a, b, c}, then H\{e1, a, b, c} contains only three edges and cannot contain
a T 3

6 -copy, thus a contradiction. In the rest of the proof we consider the case when
|e1 ∩ c| = 2.

Since {e1, a, b} is a 1-intersecting set we know that {c, e2, e3, e4} induces a
copy of T 3

6 . Furthermore, the assumption |e1 ∩ c| = 2 implies |c ∩ e2| > 1. From
|e1∩e4| = 0 we have |c∩e4| 6 1. If |c∩e4| = 1 and since {c, e2, e3, e4} induces a
copy of T 3

6 , it follows that |c ∩ e3| = 0 and |e2 ∩ e4| = 2, which is a contradiction
to |e2 ∩ e4| = 1. Therefore we obtain

|c ∩ e4| = 0 and |c ∩ e2| = 2. (A.5)

Next, as e2 and e4 are 1-intersecting we know H\{e2, e4} contains a T 3
6 -copy,

denoted by F . To conclude the proof, we show that this is impossible. Let us now
consider the following two cases:

Case 1: {e1, e3} 6⊆ E(F)
Since at most one edge from {e1, e3} is part of F we conclude {a, b, c} ⊆ E(F).

This is a contradiction as by Observation 31 we know that F cannot contain a
1-intersecting set of size three.

Case 2: {e1, e3} ⊆ E(F)
Using Lemma 30 we conclude that one of the edges from E(F)\{e1, e3}

intersects both e1 and e3 on two vertices. Neither a or b can be such edge as
they are 1-intersecting with e1. On the other hand, we know |c ∩ e4| = 0 which
implies |c ∩ e3| 6 1. Therefore no edge from set E(F)\{e1, e3} intersects both e1

and e3 on two vertices, which is a contradiction.
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[17] R. Nenadov, Y. Person, N. Škorić and A. Steger, ‘An algorithmic framework for obtaining

lower bounds for random Ramsey problems’, J. Combin. Theory Ser. B 124 (2017), 1–38.
[18] R. Nenadov and A. Steger, ‘A short proof of the random Ramsey theorem’, Combin. Probab.

Comput. 25(01) (2016), 130–144.
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