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A NOTE ON THE CONSTITUTIVE LA W FOR SEA le E 
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ABSTRACT. The derivation of a constitutive law to desc ribe large·scale sea-ice deformat ion commonl y uses 
the so-called " flow rule". This method introduces a m a thema ti call y imposed relationship between shear strength 
and dilatation which is not based on physical postulates . In thi s note a more general procedure is described which 
uses the Reiner- Rivlin equation as a starting point. The method is illustrated by deri ving a particular const ituti ve 
law and applying it to a simple problem of sea ice blown again t a shoreline. 

RESUME. Vne note sur la loi de constitlltion de la glace de mer. L'etabli ssement d'une loi constitutive pour 
decrire la deforma tion a grande echelle de la glace de mer utilise couramment ce qu 'on appe ll e la «regie 
d'ecoulement» . eette methode introduit une relatio n, m a thematiquement imposee. entre la contrainte de 
cisaillement et la dilatation qui n'est pas basee sur des hypotheses physiques. D a ns cette note on decrit un mode de 
caJcul plus general qui utilise I'equation de Reiner- Rivlin comme point de depart. La melhode est illuslree par 

I'etablissement d'une loi constitutive particuliere et en I'appliquant a un probleme simple d'accumulation de glace 
de mer par le vent contre un rivage. 

ZUSAMMENFASSUNG. Eine Bemerkung zum Grundgesetzjiir Meereis. Die Ableitung eines Grundgesetzes zur 
Beschreibung grossraumiger Meereisdeformationen benutzt gewiihnli ch das sog . .. Fliessgesetz" . Diese Methode 
fiihrt eine mathematisch hergeleitete Beziehung zwischen der Scherfestigkeit und der Verlagerung ein , die nichl auf 
physikalischen Postulaten beruht. tn dieser Bermerkun g wird ein allgemeineres Verfahren beschrieben. das vo n 
der Reiner- Rivlin-Gleichung ausgeht. Das Verfahren wird durch die Ableitung ei nes speziellen Grundgesetzes 
eriautert, das auf das einfache Problem des Andriftens vo n Meereis gegen ei ne Kuste angewandt wird. 

OVER the past ten years considerable attention has been paid to the deve lo pment of a continuum model of 
large-scale sea-ice deformation (see recent reviews by Hibler. 1980, and Coon. 1' 19801). The most 
commonly used constitutive law is derived from a yield curve using a " flow rule" (e.g. Coon. 1974 ; 
Rothrock , 1975; Hibler, 1977, 1979; Ralston [' 1980]). The purpose of this note is to point out an 
alternative derivation for the constitutive law which, while still using a yield curve, avoids using the flow 
rule and thereby avoids the mathematically imposed relationship between dilatation and pressure­
dependent shear strength which the flow rule implies. 

Consider the tear-shaped yield of Rothrock (1975) shown in Figure l. In region A, the 
yield curves widen indicating an increase in the shear strength with increasing isotropic co mpressive 
stress - Ko) + 02). This is a realistic feature of the model but, as is well known , the use of the fl ow rule 

(with f(o), 02) = 0 on the yield curve) in this region also implies a definite rate of steady divergence. It is 
certainly true that some materials do dilate initially when they are sheared, but there is no ph ys ical law 
which would require continuing dilatation for all materials whose yield curves diverge. 

In region B, the yield curve narrows and cuts across the isotropic stress axis. With the fl ow rule in 
mind, this geometry of yield curve is chosen to describe the tendency of the ice to converge under 
conditions of large compressive isotropic stress. Unfortunately, this geometry carries with it the prediction 
that the shear strength will weaken with increasing isotropic stress. 

It should be clear that to retain full flexibility in choosing a constitutive law, the mathematically 
convenient flow rule must be avoided. It cannot, after all , be derived rigorously for pressure-dependent 
materials (Hunter, 1976), and its implications are un physical. In its place we propose a more genera l 
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Fig. J. The tear-shaped yield curve of Rothrock (J 975). The axes a I and a2 are the two principal stresses at a point. 
The yield curve is described byf(aJ> av=O. A value of stress near point A would produce a shearing deformation 
and, according to the flow rule, a dilatation. Near point B, the yield curve narrows to describe ice convergence but 
this also implies a shear strength which decreases with increasing normal stress. 

procedure starting with the Reiner-Rivlin equation. To illustrate this procedure. consider a two­
dimensional continuum with the following properties. 

(I) No equilibium pressure- the ice has no tendency lO expand of ilS own accord (although it might 
do so because of random wind or current forcing). 

(2) No ability to support tension- the ice is presumed to be already cracked in several directions. 
(3) Resistance to deviatoric shearing is proportional to the isotropic compressive stress holding the ice 

fioes together. and independent of the strain -rate and ice thickness- this is analogous to the Coulomb law 
for granular materials (Coon, 1974). 

(4) The ice is nearly non -divergent until a critical value of isotropic stress is reached. Choosing this 
critical stress proportional to the ice thickness is consistent with the ice-ridging energy analysis of 
Rothrock (1975). We further assume, for the present purposes, that this process is independent of on -going 
shearing. 

(5) The ice is horizontally isotropic. 
The Reiner- Rivlin equation is the most general local constitutive relation that satisfies condition (5). In 

two dimensions it reduces to 

( I) 

where the SI are any of a number of scalar state variables and 8 1.82 are the two invariants of the strain­
rate tensor 

and 

elj =~ (OUI + OU}), 
2 ox} OXI 

i,j= 1, 2. 

(2) 

(3) 

(4) 

The functions ji and jJ are to be chosen to satisfy conditions (1)- (4). This procedure is simplified if we split 
the stress tensor into its isotropic and deviatoric parts in the usual way. 

Then 

(5) 
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where 

(6) 

(7) 

and ~ = {i. The pressure. defined as 

P=-!Oii (8) 

is 

(9) 

while the deviatoric stress 

(10) 

Condition (4) can be satisfied by choosing the viscosit y function y to be any fun ction which is zero during 
ice divergence, but which allows the stress to rise quickly to a limiting value (dependent on ice thickness) 
for ice convergence. An example of such a fun ction is 

y= y(h, BI)=-C(h)(BI/OI)I /n 

= 0 
(I I) 

where C(h) is a thickness-dependent yield stress for the onset of rapid convergence. With the constant 11 

taken to be large, Equation (11) is nearly unaffected by the choice of the normalizing factor tJ l , and the 
dilatation rate BI becomes vanishingly small unless the isotropic stress is close to C. Note that (I) is 
sati sfied by Equation (I I) as 

p = y= O when BI = 0. 

The desired behavior for the deviatoric stress (condition (3» can be obtained by choosing 

/.l = /.l(p, ( 2 ). 

( 12) 

( 13) 

The crucial step here is using the pressure p as a state variable in the Reiner- Rivlin constitutive 
rel at ion. This choice is physically and mathematically correct as the pressure is a scalar invariant of the 
system. The fact that it makes the constitutive relation tran cendental (i.e. the viscosity function now 
depends on a stress) causes no difficulty, either for statically determinate or indeterminate problems. This 
is so because the constitutive relation must in any case be solved simultaneously with the other field 
equations. 

For incompressible material s this method is the only way of representing Coulomb behavior within the 
Reiner- Rivlin system as the rate-of-divergence ell contains no information about the level of isotropic 
stress. For compressible materials other procedures could be used. but this is probably the most 
convenient way as it explicitly displays the influence of isotropic stress on shear strength . Note also that 
there is no conflict between the use of pressure as a state variable in~, and the lack of volumetric elasticity 
implied by condition (I). 

Art example of Equation (13) which satisfies condition (3) i 

~(p, (J2) = Dp(Bz/fJ 2) - 1/ 2(1 - I/n) 

= 0 
(14) 

If again 11 is taken to be large, the constant D may be interpreted as a coefficient of sliding or internal 
friction. The magnitude of D determines the angle between the yield curve and the isotropic stress axis. We 
require D <. I in order to satisfy condition (2). 

The choice of how large to make n in Equations (11) and (14) depends on how sharp a transition exists 
between rigid and plastic behavior. For large 11. a description in terms of a yield curve (Fig. 2) is 
appropriate. Note that in this model , the effect of ice thickness on shear strength is indirect. Under 
compression, the thicker ice can withstand a larger pressure and therefore, through its Coulomb behavior. 
have an increased shear strength. 
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Fig. 2. An example 0/ a yield curve consistent with postulates (l)-{5), and with isotropic and deviatoric stresses 
treated independently. The angle D describes the increase 0/ shear strength with normal stress. The/unction C(h) 
describes the thickness-dependent strength by which the ice resists convergence. 

The use of this constitutive relation can be illustrated by examining the (statically determinate) problem 
of a belt of sea ice blown against a straight infinite coastline by a wind stress with on-shore and lon g-shore 
components T1. and '11 respectively. (This problem is equivalent to the problem of a viscous or granular 
material resting on an inclined plane under the influence of gravity. In both problems. the normal and 
tangential stress increase proportionately away from the free boundary . The tilt angle of the plane is 
equivalent to the angle of the wind-stress vector). Neglecting the Coriolis force and the frictional forces 
beneath the ice, the stress supported by the ice is 

Gxx = ' 1. X ,} 

G XY = 'IIX' 
( 15) 

where x is measured shoreward of the ice edge (see Fig. 3). The value of Gyy is determined by the following 
argument. Along a very long coast even a slight long-shore divergence would produce large long-shore 
velocities which would be resisted by friction. Thus locally , Gyy will take on a value equal to G xx . A similar 
result would follow if the shoreline were slightly curved forming a large closed basin. Thi s stress field cO'uld 
be represented on Figure 2 as a straight line emanating from the origin at an angle t/> from the isotropic 
stress axis. In the case of small t/> (nearly on-shore winds) the stress trajectory remains in the nearly rigid 
field until the normal stress condition for the initial thickness (ho) is exceeded at position x,. 

From Equations (9), (J I), and (J 5) 

( 16) 

v 
,/ 

Fig. 3. A belt o/sea ice o/initial thickness ho blown against a shoreline. The wind stress vector has both on-shore '1 
and long-shore '11 components. Beyond the point x, the ice thickens to withstand the increasing normal stress. 
When the wind angle f/J increases to f/J = D , the ice will begin to move along the coast. 
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Beyond that point the ice thickness increases according to 

r.!..x = C(h). 
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(17) 

A s the wind stres s angle rj; increases, the stress trajectory eventually coincides with the shearing yield 
curve rj; = D. Under these conditions shearing motion begins simultaneously all across the ice belt. in both 
the thickened and un thickened regions. (This is analogous to the angle-of-repose in the inclined pl ane 
problem). This result is very sensitive to choice of yield-curve shape. If the product Dp in Equation (14) 
were replaced by a more general function g(p), the curvature of this function (and therefore the curvature 
of the yield curve) wo uld determine whether shearing wo uld be initiated at the shore or at the ice edge. 

The use of the flow rule in this problem would lead to a somewhat different result. When the on -shore 
wind -angle rj; increased sufficiently to produce shearing motion. the flow rule predicts that the ice would 
begin to expand outwards away from the coast. Thi s expansion would continue indefinitely. or at least 
until the ice became so thin that it could not withstand the existing isotropic stresses. 

SUMMARY 

The object of this note is to suggest a procedure whereby the transition between nearly rigid and nearly 
plastic sea-ice behavior can be represented mathematically. The method is to use the Reioer- Rivlin 
equation with pressure included as a state variable and the two viscosity functi o ns chosen to satisfy 
various empirical constraints. The "flow rule" is not appropriate for this kind of problem as sea ice is a 
compressible medium. The relationship between shear strength and compressibility predicted by the flow 
rule is not physically or empirically based, although it may in so me circumstances appear reasonable. 

The particular viscosity functions in Equations (11) and (14) are derived from conditions (1)- (4). and 
the solutions to the ice-belt problem are presented for illustrative purposes only. They are not meant to be 
representative of actual sea-ice dynamics. The author hopes that with a more careful and extensive list of 
empirical and physical constraints, a useful constitutive relation could be derived. 
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