
Can. J. Math., Vol. XXI I I , No. 6, 1971, pp. 1051-1059 

NORMED LINEAR SPACES THAT ARE UNIFORMLY 
CONVEX IN EVERY DIRECTION 

M. M. DAY, R. C. JAMES, AND S. SWAMINATHAN 

The concept of uniform convexity in a normed linear space is based on the 
geometric condition that if two members of the unit ball are far apart, then 
their midpoint is well inside the unit ball. We consider here a generalization of 
this concept whose geometric significance is that the collection of all chords of 
the unit ball that are parallel to a fixed direction and whose lengths are bounded 
below by a positive number has the property that the midpoints of the chords 
lie uniformly deep inside the unit ball. This notion, called uniform convexity 
in every direction {UCED), was first used by A. L. Garkavi [5; 6] to charac
terize normed linear spaces for which every bounded subset has at most one 
Cebysev center. We discuss questions of renorming spaces so as to be UCED 
and forming products of spaces that are uniformly convex in every direction. 
We examine the relationship of this concept with normal structure and deduce 
some results of Belluce, Kirk, and Steiner and of V. Zizler as corollaries of our 
theorems. 

Definition 1. A normed linear space X is uniformly convex in every direction 
{UCED) if and only if, for every nonzero member z of X and e > 0, there 
exists a ô > 0 such that |X| < e if ||x|| = ||^|| = 1, x — y = As, and 

lli(* + 30ll> i - « . 
The following theorem gives several properties that are equivalent to UCED. 

Property (/) is a rather obvious restatement of Definition 1; (//) is interesting 
in that it is not assumed that each xn — yn is a multiple of z; and (III), for 
p = 2, was introduced by V. Zizler in a slightly different context (see [10, 
Proposition 1, (10)]. It might also be noted that, in (/) and in Definition 1, 
" < 1" can be substituted for " = 1" in the restrictions o n Xfiy y<nj X) and -v. 

THEOREM 1. Each of the following is a necessary and sufficient condition for a 
normed linear space X to be UCED. 

(I) If there are sequences {xn} and {yn} and a nonzero member z of X 
for which 

(a) ||xw|| = ||yn|| = 1, for every n, 
(b) xn - yn = anz, for every n, 
(c) |k + ^||->2, 

then an —» 0. 
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(77) If there are sequences {xn} and {yn} in X such that 
(a) \\xn\\ ^ 1 and \\yn\\ è 1, for every n, 
(13) xn - yn -> z, 
(y) ||*n + y» | | ->2, 

then z = 0. 
(III-p) For no nonzero z is there a bounded sequence {xn} in X such that 

2^(11*» + s||* + \\xn\\*) - \\2xn + *||*->0. 

(p can be any number for which 2 ^ p < oo.) 
(IV) For each nonzero z in X, there is a positive number A such that 

\\x + hz\\ < 1 — A, whenever \\x\\ S 1 and \\x + z\\ ^ 1. 

Proof. Suppose first that X is UCED and that [xn], {yn} and z satisfy 
(a)-(c) of (7). For e > 0, choose ô as described in Définition 1. Since 
Whfa + Jn)\\ > I — à and, therefore, \an\ < e if n is large enough, it follows 
that aw —> 0. Therefore, (7) is implied by UCED. 

(7) => (77). Suppose that (7) is satisfied and that z and sequences {xn} and 
{̂ w} satisfy (a), (J3) and (7), but that z ^ 0. For each n, let ^ be the smaller 
of 1 and \\xn — ̂ ||_1. Then let 

src "n^n > Vn "n Kp^n *> ) • 

Then 0 < 6n ^ 1, and it follows from (a) and (0) that 6n —•> 1. Thus, 

||?w|| = 1 and ||?7n|| ^ 1, for every w, 

Çn Vn =z "n^i 

lining 11 ?n + i7„|| = 2. 

For each n, let 

Wn = en + <*nZ, Vn = 7)n — /3nZ, 

where an and fin are nonnegative numbers for which 

(i) IKH = IHI = 1. 
Then 0 S an S 2/\\z\\, 0 g 0n ^ 2/| |s| | , and 

(2) un - vn = (6n + an + pn)z, 

where lim inf^ œ (^ + aw + ft,) è 1. Also, 

Un + 1>n = £n + Vn+ fa ~ A i ) * 

= 0»*n + ^ f e - z) + fa — $n)z 
(3) 

= Xn + yn+ fa ~ Pn) fa — ? „ ) 

+ [@n ~ I K + (Pn%n ~ fa ~ yn) + fa - ft*) (* ~ Xn + yn)]. 
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H an ^ ft, and \\xn + yn\\ > 2 — A, then 

\\Xn + Jn + («» - 0n)(Xn ~ yn)\\ = 1 1 ( 1 + 0 » - ft,) (xn + yn) 

- 2 ( 0 » - j 8 0 y i . i l 
(4) > ( 1 + a» - ft,) (2 - A) - 2(a„ - ft,) 

= 2 - A ( l + c * „ - f t , ) . 

Since the expression in brackets in (3) approaches zero, it follows from (4) and 
a similar inequality for the case an ^ ft,, that 

(5) l i m ^ J I ^ + vn\\ = 2. 

We now have a contradiction, since (1), (2), and (5) imply that the space does 
not satisfy (I). 

(II) =» (III-p). If (III-p) is not satisfied, then there is a nonzero z and a 
bounded sequence {xn} such that 

(6) 2*-1(||x„ + z\\* + |Wl*) - ||2x„ + s | |*->0. 

Since s ^ 0, ||x„|| is bounded away from zero and there is no loss of generality 
to assuming that ||x„|| —•> 1. It follows from the inequality 

2p~l(ap + bp) ^ (a - 6)p + (a + 6)p, 

for £ ^ 2 and a ^ b ^ 0, that 

2 ^ ( 1 1 ^ + *\\p + lk l l p ) - l|2x„ + «H' è 2 ^ ( I k + z\\* + | |x„|h 

- (||a* + s|| + \\xn\\y 

^ Q\xn + Z\\ - H^IIK 

so \\xn + JS|| — ||#n|| —> 0 and ||x„ + z\\ —> 1. It then follows from (6) that 
\\2xn + s|| -» 2. If £„ = *»/l W l and rçn = (#„ + s)/||x„ + z\\, then 2 and the 
sequences {£n} and {rçn} satisfy (a) — (y), so z = 0. 

(III-p) => ( IF) . It follows from (III-p) that, for each nonzero 2, there is a 
number A such that 0 < A < J and 

2p~l(\\x + z\\p + ||x||p) - ||2x + s;||* > 2?pA, if ||x|| ^ 1. 

If ||x|| ^ 1 and \\x + s|| ^ 1, this implies that 

\\2x + z\\p < 2P - 2ppA, 

so 

||* + | s | | < (1 -pA)1/p < 1 - A. 

To complete the proof of Theorem 1, we need to show that (IV) implies 
UCED. Suppose that z ^ 0 and that e > 0. Use (IV) to obtain a positive 
number A such that 

||É + ï<2|| < 1 - A, if HSU ^ 1 and ||£ + es|| ^ 1. 
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Let x and y satisfy ||x|| = 1, ||^|| = 1, and x — y = \z. If | \ | ^ e, let 
£ = — (siign \)x. Then ||£|| = 1 and ||£ + |\ |z | | = \\y\\ = 1, so 

||É + es|| = ( l - U\\+ 7 tt+ |A|*) è 1, 
Il \ I A I / I A I || 

and ||£ + h&\\ < 1 — A. Therefore, 

||i(* + y)|| = | | * - *X*|| 

HI*+*|X|*II 

1X1(1 — A) |X| - e 
2|X| - e "*" 2|X| - e 

_ (2 — A)|X| - e 
2|X| - e 

This and A > 0 imply that \\%(x + y) | | < 1 — |A, and we can let ô in 
Definition 1 be JA. 

If X is UCED, then X is strictly convex. The converse is not true. For 
example, the space C[0, 1] of all real continuous functions on the unit interval 
with the norm 

= sup {|/(01} + ( / > > ! ' * ) * 

is strictly convex, but this space is not UCED [6, pp. 126-127]. For a set, 
T, C 0 ( r ) is the space of all functions on V such that, for each e > 0, | / ( / ) | < e, 
for all but finitely many values of t, with | | / | | = max {|/(0h * £ T}. For all T 
the space Co(r) can be renormed so as to be strictly convex [4, Theorem 10, 
p. 523], but if T is not countable, then C0(T) can not be renormed so as to 
be UCED. 

THEOREM 2. If X = CQ(T) and T is uncountable, then X is not isomorphic 
to a space that is UCED. 

Proof. Suppose t h a t X has been given an equivalent norm ||| ||| with respect 
to which X is UCED. Let 

M = sup {||| x |||: ||x|| ^ 1 and x Ç X}. 

Let {un) be a sequence for which \\un\\ = 1 and 111 un \\\ —> /x. Since T is uncount
able, there is a nonzero z such that 

z(t)un(t) = 0, 

for all n and for all t in V. For 0 < e < 1 and ô > 0, choose un for which 
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HI un III > ju(l — b). Then, if x = un + \z and y = un — \z, we have 

| | | * | | | ^M, | | | y | | | ^M, | | | i ( * + y ) l l l > M ( i - 8 ) , 
but x — y = z. 

As follows from the next two theorems, there are many spaces—even 
reflexive Banach spaces—that are UCED, but are not isomorphic to a uni
formly convex space. However, it is not known whether every reflexive space 
can be renormed so as to be UCED. 

It has been shown by V. Zizler [10, Proposition 14] that X can be renormed 
so as to be UCED if there is a continuous one-to-one linear map T of X into 
a space Y that is UCED. The argument is easy, the new norm being given by 

111*111 = (11*11*+ IW)*. 
Use is then made of (7/7-2) of Theorem 1, assuming that there is a z 7^ 0 and 
a bounded sequence {xn} in X for which 

2(| | | xn + z | | | ' + HI * J | | 2 ) - HI 2xn + z HI* ->0 . 

It then follows that {Txn} is a bounded sequence in Y for which 

2(| |rx„ + 7s| |2 + II7XII2) - \\2Txn + r*||2 -> 0, 

so that Y is not UCED. Zizler then used this argument in [10] to establish (a) 
of the next theorem. 

THEOREM 3. A normed linear space X is isomorphic to a space that is UCED 
if any one of the following conditions is satisfied. 

(a) B* contains a countable set total over B {e.g., if B is separable, or if B is the 
conjugate of a separable space). 

(b) B is li(T),for any set T. 
(c) B is Z>OO(M), for a a-finite measure 1*. 

Proof. In view of the preceding paragraph, it is sufficient to show, in each 
case, that there is a continuous one-to-one linear map of B into a Hilbert space. 
As noted by V. Zizler [10, Proposition 14, Corollary], the map for (a) can be 
given by Tx = {fi(x)/2i}, where T maps B into /2 and {ft} is total over B with 
\\fi\\ = 1. For (&), we can use the identity map of /i(T) into ^ (T) . For (c), 
the identity map of Lœ(/x) into L2(M) can be used, if jit is a finite measure, while 
the identity need only be weighted on a countable number of subsets of finite 
measure in the general case. 

The next theorem uses the concept of uniform non-squareness, originally 
introduced in [7]. A normed linear space X is uniformly non-square if there is 
a positive number 8 such that there do not exist x and y in X for which \\x\\ ^ 1, 
Ibll ^ 1, I l iO + y)\\ > 1 - 5, and | |J(* ~ 3011 > 1 - 5. A uniformly convex 
space is uniformly non-square, but it is not known whether uniform non-
squareness and uniform convexity are isomorphically equivalent. 

THEOREM 4. Let B = TLXay where a Ç T and each Xa is UCED. Then B is 
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isomorphic to a space that is UCED if the product norm has either of the following 
properties. 

(i) There is a positive function cj> on V and a p, with 1 ^ p < GO, such that 

ii{*(«)in^i;<K«)ii*(a)ih 
for allx = {x(a)} belonging to B. 

(ii) There is a uniformly non-square normed linear space Y of real-valued 
functions on Y for which the set of unit vectors {ea} is an unconditional basis and 

{\\x(a)\\\ 6 Y,if{x(a)} G B. 

Proof. If condition (ii) is satisfied, then [8] there is a p, with 1 < p < oo, 
and a number k such that 

ii{*(«)}ii = HE n*(«)iwi ^ M L \\x(amvp. 
Therefore, condition (i) is satisfied. If p < r, then 

[ : <*>(«) ||*(«)| l*]1'* è [£ *(a)">||*(a)||T', 
so there is no loss of generality in assuming for (i) that p ^ 2. 

Let .£>' be the same linear space as 5 , but with norm defined by 

| | | x ( a ) | | | = E ^ ( a ) | | x ( a ) | h ^ . 

If B' is not UCED, then it follows from (III) of Theorem 1 that there is a 
nonzero z and a bounded sequence {xn} in B' for which 

(7) 2*-i(lll xn + z HI* + HI xn | | h - HI 2xn + 2 HI* -> 0. 

Choose a for which s (a) is nonzero. Since each term is nonnegative when (7) 
is written as a sum over T, it follows that 

2*"1(lk(«) +z(a)\\>+ \\xn(a)\\v) - | | 2 x » + z(a)\\* -> 0. 

Since 2(a) ^ 0 and {xw(a)j is bounded, this contradicts the fact that Xa is 
UCED. We know that the identity map of B onto B' is continuous and that 

B' is UCED. Therefore, -B is isomorphic to a space that is UCED. 

COROLLARY. The space B is isomorphic to a space that is UCED if any of the 
following conditions is satisfied. 

(i) B is a countable product of spaces that are UCED. 
(ii) B is uniformly non-square and B has an unconditional (not necessarily 

countable) basis (see [8, Theorem 5]). 

(iii) 1 S P < °°, and B is an lp[T] product of spaces that are UCED. 

Although UCED is inherited by all subspaces, it need not be inherited by a 
factor space of a UCED space. For each Banach space B and each dense subset 
5 of its unit sphere, there is a continuous linear map from h(S) onto By defined 
by 

Tx = X x(s)s. 

Hence, B is isomorphic to / i (5 ) / r _ 1 (0 ) . If / is uncountable, then m (I) has no 
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strictly convex norm [4, Corollary, p. 521]. But if S is dense in the unit sphere 
of m (I), then m (I) is isomorphic to a factor space of h(S). There is an isomor
phic norm that makes h(S) UCED, but the factor space isomorphic to m (I) 
cannot even be strictly convex. 

The Cebysev centers of a subset A of a normed linear space X are those 
members x0 of X such that 

supy6A||tfo - y\\ = inf^x supy€A||x - y\\. 

In order that each bounded set A in a normed linear space X have at most one 
Cebysev center, it is necessary and sufficient t h a t X be UCED [6, pp. 124-125]. 
Thus, the preceding theorems describe a large class of spaces that can be 
renormed so as to have at most one Cebysev center. 

We shall now recall the definitions of normal structure and complete normal 
structure and relate them to UCED. 

Definition 2. For a bounded subset 5 of a normed linear space, a diametral 
point is a member 5 of S such that 

sup {\\s — x\\: x 6 S] = diameter of 5. 

A convex subset K of a normed linear space has normal structure if and only if 
for each bounded convex subset W of K which contains more than one point 
there is a member x of W that is not a diametral point of W (see [3]). 

For bounded subsets H and 5 of a normed linear space, let 

rs(H) = sup{||s — x\\: x £ H], 

r(H,S) = inî{rs(H):se S}, 

W(H,S) = {s: s e S a n d r s ( # ) = r(H,S)}. 

The members of ^ (H, S) are the Cebys'ev centers of H in S. 

Definition 3. Let K be a closed convex subset of a Banach space X. Then K 
has complete normal structure if and only if each bounded closed convex subset 
W of K has the property that the closure of U«ÇA ^ (Wa, W) is a nonempty 
proper subset of W whenever {Wa: a G A} is a decreasing net of subsets of W 
such that r(Wa, W) = r(W, W), for each a [1, p. 475]. 

THEOREM 5. Let X be a normed linear space which is UCED and let H be a 
nonempty bounded subset of a convex subset S of X. Then ^f (H, S) has at most 
one member. 

Proof. Let H be a nonempty bounded subset of a convex subset S of a normed 
linear space X. Suppose that *$ (H, S) contains Si and s2 with si 9e s2. If x Ç Hy 

then 
l k i - * | | £r9l(H) =r(H,S), 

\\s2-x\\ ^rS2(H) =r(H,S). 
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Let <r = | ( s i + $2). Uniform convexity in the direction Si — s2 implies the 
existence of a positive number 8 such that 

(8) \\c-x\\£(l-ô)r(H,S), 

where ô does not depend on x. Since (8) is true for all x in H, we have 

r,(H) < r(H,S). 

Since r{H, S) = rs(H), for all 5 in S, it follows that si = s2, and that & (H, S) 
has at most one member. 

By letting W of Definition 2 be both H and S of Theorem 5, we can obtain 
the following corollaries. Corollary 3 also implies that a normed linear space 
has normal structure if it is uniformly convex. 

COROLLARY 3. A normed linear space has normal structure if it is UCED (see 
[10, Proposition 23]). 

It is known that, if H is bounded and if S is weakly compact and convex, 
then & (H, S) is nonempty [1, Lemma p. 475]. This and Theorem 4 imply: 

COROLLARY 4. A reflexive Banach space has complete normal structure if it is 
UCED. 

Corollary 4 implies the theorem of Belluce and Kirk which states that K has 
complete normal structure if K is a bounded closed convex subset of a uni
formly convex Banach space [1, Theorem 4.1, p. 477]. 

The following corollary was proved by Belluce, Kirk, and Steiner [2, Theorem 
3.1, p. 437]. It follows easily from Theorem 4, since any space that is UCED is 
strictly convex and has normal structure. 

COROLLARY 5. (Belluce, Kirk, and Steiner). There exists a Banach space 
which is reflexive, strictly convex, and which possesses normal structure, but which 
is not isomorphic to any uniformly convex Banach space. 
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