ON NONREFLEXIVE BANACH SPACES WHICH CONTAIN NO c_{0} OR l_{p}

P. G. CASAZZA, BOR-LUH LIN AND R. H. LOHMAN

Introduction. The first infinite-dimensional reflexive Banach space X such that no subspace of X is isomorphic to c_{0} or $l_{p}, 1 \leqq p<\infty$, was constructed by Tsirelson [8]. In fact, he showed that there exists a Banach space with an unconditional basis which contains no subsymmetric basic sequence and which contains no superreflexive subspace. Subsequently, Figiel and Johnson [4] gave an analytical description of the conjugate space T of Tsirelson's example and showed that there exists a reflexive Banach space with a symmetric basis which contains no superreflexive subspace; a uniformly convex space with a symmetric basis which contains no isomorphic copy of $l_{p}, 1<p<\infty$; and a uniformly convex space which contains no subsymmetric basic sequence and hence contains no isomorphic copy of $l_{p}, 1<p<\infty$. Recently, Altshuler [2] showed that there is a reflexive Banach space with a symmetric basis which has a unique symmetric basic sequence up to equivalence and which contains no isomorphic copy of $l_{p}, 1<p<\infty$. This space complements nicely an earlier theorem of Altshuler $[\mathbf{1}]$ which states that a Banach space X with a symmetric basis $\left\{x_{n}, f_{n}\right\}$ is isomorphic to c_{0} or $l_{p}, 1 \leqq p<\infty$, if and only if both X and the closed linear subspace $\left[f_{n}\right]_{n=1}^{\infty}$ in X^{*} have unique symmetric basic sequences up to equivalence.

In this paper, we consider the problem of constructing nonreflexive Banach spaces which contain no isomorphic copy of c_{0} or $l_{p}, 1 \leqq p<\infty$. It is well-known that the nonreflexive James space J contains no isomorphic copy of c_{0} or l_{1}. However, it was proved [5] that every infinite dimensional subspace of J contains an isomorphic copy of l_{2}. The construction of the space J has been generalized to a large class of nonreflexive Banach spaces [3]. We show that in this class of generalized James spaces there exist quasi-reflexive spaces of order one which have a basis and contain no isomorphic copy of c_{0} or $l_{p}, 1 \leqq p<\infty$. We also show that there exist separable, non-quasi-reflexive spaces which contain no isomorphic copy of c_{0} or $l_{p}, 1 \leqq p<\infty$.

Let E be a Banach space with monotone, normalized, symmetric

[^0]basis $\left\{e_{n}\right\}$. The generalized James space is the Banach space
\[

$$
\begin{aligned}
J(E)=\left\{x=\left(a_{1}, a_{2}, \ldots\right): \lim _{n} a_{n}\right. & =0 \\
\|x\| & \left.=\sup \left\|\sum_{i=1}^{n}\left(a_{p_{i+1}}-a_{p_{i}}\right) e_{i}\right\|<\infty\right\},
\end{aligned}
$$
\]

where the supremum is taken over all integers $1 \leqq p_{1}<p_{2}<\ldots<p_{n}$. It was proved [3], where $J(E)$ was defined using an equivalent norm, that the sequence of unit vectors $\left\{x_{n}\right\}$ is a basic sequence and that if $\left\{e_{n}\right\}$ is boundedly complete, then $\left\{x_{n}\right\}$ is a basis of $J(E)$. For the terminology used in this paper and the Banach spaces mentioned above which are constructed respectively by Altshuler, Figiel and Johnson, and Tsirelson, we refer to [7].

1. It is well-known that if X is a Banach space with basis $\left\{x_{n}\right\}$ then every symmetric basic sequence in X is equivalent to a block basic sequence of $\left\{x_{n}\right\}$. To consider subspaces of X which are isomorphic to either c_{0} or $l_{p}, 1 \leqq p<\infty$, it suffices to consider the subspaces which are spanned by symmetric block basic sequences of $\left\{x_{n}\right\}$. For the rest of the paper, we shall assume that E is a Banach space with a monotone, normalized symmetric basis $\left\{e_{n}\right\}$.

The following result follows easily from the definition of $J(E)$.
Lemma 1. If

$$
y_{n}=\sum_{i=p_{n}}^{q_{n}} a_{i} x_{i}, n=1,2, \ldots
$$

is a block basic sequence of $\left\{x_{n}\right\}$ in $J(E)$ with $q_{n}+2<p_{n+1}, n=1,2, \ldots$ then there exists a block basic sequence

$$
z_{n}=\sum_{i=h_{n}}^{k_{n}} b_{i} e_{i}, \quad n=1,2, \ldots
$$

in E such that $\left\{y_{n}\right\}$ dominates $\left\{z_{n}\right\}$. Furthermore, if $\lim _{n} a_{n}=0$ then we may require that $\lim _{n} b_{n}=0$.

Proof. For each $n=1,2, \ldots$ there exist $i_{1}{ }^{n}<i_{2}{ }^{n}<\ldots<i_{m_{n}}{ }^{n}$ such that

$$
\left\|y_{n}\right\|=\left\|\sum_{j=1}^{m_{n}}\left(a_{i j+1^{n}}-a_{i j^{n}}\right) e_{j}\right\| .
$$

Without loss of generality, we may assume that $p_{n}-1 \leqq i_{1}{ }^{n}$ and $i_{m_{n}}{ }^{n} \leqq q_{n}+1$, for each $n=1,2, \ldots$ Define

$$
z_{n}=\sum_{j=1}^{m_{n}}\left(a_{i j+1^{n}}-a_{i j^{n}}\right) e_{i_{j} n}, \quad n=1,2, \ldots
$$

Since $q_{n}+2<p_{n+1}, n=1,2, \ldots$, and $\left\{e_{n}\right\}$ is symmetric, $\left\{z_{n}\right\}$ is a block basic sequence in E such that $\left\|z_{n}\right\|=\left\|y_{n}\right\|, n=1,2, \ldots$ It is clear that $\left\{y_{n}\right\}$ dominates $\left\{z_{n}\right\}$ and if $\lim _{n} a_{n}=0$ then the coefficients of $\left\{z_{n}\right\}$ are approaching zero.

Theorem 2. If $\left\{e_{n}\right\}$ is a boundedly complete basis of E, then $J(E)$ does not contain a subspace isomorphic to c_{0}.

Proof. Let

$$
y_{n}=\sum_{i=p_{n}}^{q_{n}} a_{i} x_{i}, \quad n=1,2, \ldots
$$

be a bounded block basic sequence in $J(E)$ which is equivalent to the unit vector basis of c_{0}. By taking a subsequence if necessary, we may assume that $q_{n}+2<p_{n+1}, n=1,2, \ldots$ By Lemma $1,\left\{y_{n}\right\}$ dominates a bounded block basic sequence $\left\{z_{n}\right\}$ in E. However, $\left\{z_{n}\right\}$ dominates the unit vector basis of c_{0}. Hence $\left[z_{n}\right]_{n=1}^{\infty}$ is isomorphic to c_{0}, a contradiction.
2. Let E be any reflexive Banach space with a monotone, normalized symmetric basis $\left\{e_{n}\right\}$. If $J(E)$ contains an isomorphic copy of $l_{p}, 1 \leqq$ $p<\infty$, we don't know, in general, whether this implies that E contains an isomorphic copy of $l_{p}, 1 \leqq p<\infty$. However, if E is the reflexive space constructed either by Altshuler [2] or Figiel and Johnson [4], then we will show that $J(E)$ is a quasi-reflexive space of order one which contains no isomorphic copy of c_{0} or $l_{p}, 1 \leqq p<\infty$.

Let us recall the definition of the space T. Let T_{0} be the space of all sequences of scalars which are eventually zero and let $\left\{t_{n}\right\}$ be the unit vector basis of T_{0}. For $x=\sum_{n} a_{n} t_{n} \in T_{0}$, define

$$
\|x\|_{0}=\max _{n}\left|a_{n}\right|
$$

and

$$
\|x\|_{n+1}=\max \left\{\|x\|_{n}, \frac{1}{2} \max \sum_{j=1}^{k}\left\|\sum_{i=p_{j}+1}^{p_{j+1}} a_{i} t_{i}\right\|_{n}\right\}
$$

where the inner max is taken over all p_{j} 's with $k \leqq p_{1}<p_{2}<\ldots<p_{k+1}$, $k=1,2, \ldots$ Let $\|x\|=\lim _{n}\|x\|_{n}$ for all x in T_{0}. The space T is the completion of $\left(T_{0},\|\cdot\|\right)$. We need the following properties of T (e.g., p. 96, 7].

Lemma 3. (i) For any integer $k=1,2, \ldots$ and any normalized block

$$
v_{n}=\sum_{i=p_{n}+1}^{p_{n+1}} a_{i} t_{i}, \quad n=1,2, \ldots, k
$$

with $k \leqq p_{1}<p_{2}<\ldots<p_{k+1}$, then

$$
\sum_{n=1}^{k}\left|\alpha_{n}\right| \geqq\left\|\sum_{n=1}^{k} \alpha_{n} v_{n}\right\| \geqq \frac{1}{2} \sum_{n=1}^{k}\left|\alpha_{n}\right|
$$

for all scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$.
(ii) Given $1 \leqq p_{0}<p_{1}<\ldots$, there exists an integer r such that for any normalized block

$$
v_{n}=\sum_{i=p_{n}+1}^{p_{n+1}} a_{i} t_{i}, \quad n=0,1,2, \ldots, r
$$

in T, then

$$
\left\|v_{0}+\frac{1}{r} \sum_{i=1}^{r} v_{i}\right\| \leqq \frac{7}{4} .
$$

Now, for each $n=1,2, \ldots$ and $x=\left(a_{1}, a_{2}, \ldots\right) \in c_{0}$ let
(1) $\|x\|_{n}=\sup _{k} \sum_{i=1}^{k} \hat{a}_{i} w_{i} /\left(2^{n}+2^{-n} s_{k}\right)$
where $\left\{\hat{a}_{i}\right\}$ is a rearrangement of $\left\{\left|a_{i}\right|\right\}$ in non-increasing order, $w_{i}=1 / i$, $i=1,2, \ldots$ and

$$
s_{k}=\sum_{i=1}^{k} w_{i}, \quad k=1,2, \ldots
$$

Notice that
(2) $2^{-n-1} \sup _{i}\left|a_{i}\right| \leqq\|x\|_{n} \leqq 2^{n} \sup _{i}\left|a_{i}\right|$
for all $n=1,2, \ldots$ and $x=\left(a_{1}, a_{2}, \ldots\right) \in c_{0}$. Let
(3) $E=\left\{x=\left(a_{1}, a_{2}, \ldots\right) \in c_{0}:\left(\|x\|_{1},\|x\|_{2}, \ldots,\|x\|_{n}, \ldots\right) \in T\right\}$.

If $x \in E$, we define $\|x\|=\left\|\sum_{n}\right\| x\left\|_{n} t_{n}\right\|_{T}$. Altshuler [2] proved that E is a reflexive space such that the unit vector basis $\left\{e_{n}\right\}$ is a symmetric basis of E and E contains no isomorphic copy of $l_{p}, 1 \leqq p<\infty$.

If the sequence of norms in (1) are replaced by

$$
\|x\|_{n}=\sup _{k} \sum_{i=1}^{k}\left|\hat{a}_{i}\right| /\left(2^{n}+2^{-n} k\right), \quad n=1,2, \ldots
$$

then properties (2) also hold. The space E obtained in (3) by this sequence of norms is the reflexive space constructed in [4]. They showed that the unit vectors $\left\{e_{n}\right\}$ form a symmetric basis of E and E contains no isomorphic copy of $l_{p}, 1<p<\infty$. For the rest of the paper, we shall let E denote the reflexive space constructed above by either Altshuler or Figiel and Johnson. Using the properties (2) and induction as in the proof of Lemma 3.b. 11 [7], we have the following result.

Lemma 4. Given $\epsilon>0,1 \leqq q_{1}<q_{2}<\ldots$ and $\delta_{1}>\delta_{2}>\ldots$ with $\lim _{n} \delta_{n}=0$, there exist integers $1 \leqq m_{1}<m_{2}<\ldots$ and $1=N_{0}<$ $N_{1}<\ldots$ such that for any block basic sequence $\left\{z_{i}\right\}$ of $\left\{e_{i}\right\}$ with

$$
\begin{aligned}
& z_{i}=\sum_{j=q_{m_{i+1}}}^{q_{m}+1} c_{j} e_{j}, \quad\left\|z_{i}\right\| \leqq \quad \text { and } \\
& \sup _{q_{m i}<j \leqq g_{m_{i+1}}}\left|c_{j}\right| \leqq \delta_{m i}, \quad i=1,2, \ldots
\end{aligned}
$$

we have

$$
\left\|\sum_{i=1}^{\infty} \beta_{i} z_{i}\right\| \leqq\left\|\sum_{i=1}^{\infty} \beta_{i} v_{i}\right\|_{T}+\epsilon
$$

for all $\left\{\beta_{i}\right\}$ with $\sup _{i}\left|\beta_{i}\right| \leqq 1$ where

$$
v_{i}=\sum_{j=N i-i}^{N_{i}-1}\left\|z_{j}\right\|_{j} t_{j}, \quad i=1,2, \ldots
$$

Moreover, $\left\|v_{i}\right\| \leqq 1+\epsilon, i=1,2, \ldots$.
Thus for any block basic sequence

$$
z_{m}=\sum_{i=q_{m}+1}^{q_{m+1}} c_{i} e_{i}, \quad m=1,2, \ldots
$$

in E such that $\lim _{i} c_{i}=0$, there is a subsequence of $\left\{z_{m}\right\}$ which is equivalent to a block basic sequence of $\left\{t_{n}\right\}$ in T.

Remark. The unit vectors in E all have norm

$$
A=\left\|\sum_{n}\left(2^{n}+2^{-n}\right)^{-1} t_{n}\right\|<1
$$

Thus for the technical convenience of having a normalized basis, we renorm E by using A^{-1} times the original norm of E.

Theorem 5. The space $J(E)$ is quasi-reflexive of order one and no subspace of $J(E)$ is isomorphic either to c_{0} or $l_{p}, 1 \leqq p<\infty$.

Proof. Since E contains no isomorphic copy of c_{0}, Theorem 2 guarantees that $J(E)$ contains no subspace which is isomorphic to c_{0}.

Suppose that $J(E)$ contains an isomorphic copy of $l_{p}, 1 \leqq p<\infty$. Since the unit vector basis of $l_{p}, 1 \leqq p<\infty$, is equivalent to every bounded block basic sequence, we may assume that there exists a normalized block basic sequence

$$
y_{n}=\sum_{i=p_{n}+1}^{p_{n+1}} a_{i} x_{i}, \quad i=1,2, \ldots
$$

in $J(E)$ such that $\lim _{n} a_{n}=0$ and $\left\{y_{n}\right\}$ is equivalent to the unit vector basis of $l_{p}, 1 \leqq p<\infty$. By Lemma 1, there exists a block

$$
z_{n}=\sum_{i=q_{n}+1}^{q_{n+1}} c_{i} e_{i}, \quad n=1,2, \ldots
$$

in E such that $\lim _{n} c_{n}=0$ and $\left\{y_{n}\right\}$ dominates $\left\{z_{n}\right\}$. By Lemma 4, there is a subsequence $\left\{z_{n i}\right\}$ of $\left\{z_{n}\right\}$ which is equivalent to a block $\left\{v_{i}\right\}$ of $\left\{t_{n}\right\}$ in T. Thus there are constants K_{1}, K_{2}, K_{3} such that for each $k=1,2, \ldots$

$$
K_{1} k^{1 / p} \geqq\left\|\sum_{i=1}^{k} y_{n_{i}}\right\| \geqq\left\|\sum_{i=1}^{k} z_{n_{i}}\right\| \geqq K_{2}\left\|\sum_{i=1}^{k} v_{i}\right\| \geqq K_{3}\left(\frac{k}{2}\right)
$$

This is impossible when $1<p<\infty$. Hence $J(E)$ contains no isomorphic copy of $l_{p}, 1<p<\infty$.

For the case $p=1$, by a result of [6], let $1 \geqq \epsilon_{0}>7 / 8$ be such that for all scalars α_{n},
(*) $\quad \epsilon_{0} \sum_{n}\left|\alpha_{n}\right| \leqq\left\|\sum_{n} \alpha_{n} y_{n}\right\| \leqq \sum_{n}\left|\alpha_{n}\right|$.
Let $\delta_{n}=2\left(\sup _{p_{n}<i \leqq p_{n+1}}\left|a_{i}\right|\right), n=1,2, \ldots$ Choose $\epsilon>0$ such that

$$
(1+\epsilon) 7 / 4+2 \epsilon<2 \epsilon_{0} .
$$

Since $\lim _{n} a_{n}=0$, by taking a subsequence of $\left\{y_{n}\right\}$ if necessary, we may assume that $1 \geqq \delta_{1}>\delta_{2}>\ldots$ and $\sum_{n} \delta_{n}<\epsilon$.

Apply Lemma 4 to $\epsilon>0, p_{1}<p_{2}<\ldots$ and $\left\{\delta_{n}\right\}$. Then there exist $\left\{m_{i}\right\}_{i=1}^{\infty}$ and $\left\{N_{i}\right\}_{i=0}^{\infty}$ such that the properties in Lemma 4 hold. For the sequence $\left\{N_{i}\right\}_{i=0}^{\infty}$, by Lemma 3, there exists an integer r such that property (ii) in Lemma 3 holds. By (*), we have

$$
2 \epsilon_{0} \leqq\left\|y_{m_{i}}+\frac{1}{r} \sum_{i=2}^{r+1} y_{m_{i}}\right\| .
$$

The norm on the right above is of the form

$$
\left\|\sum_{i=1}^{k}\left(c_{q_{i+1}}-c_{q_{i}}\right) e_{i}\right\|
$$

where for each $j=1,2, \ldots, r+1$ there are at most two i 's such that $p_{m_{j}}<q_{i} \leqq p_{m_{j+1}}$ and $p_{m_{j+1}}<q_{i+1} \leqq p_{m_{j+1}+1}$. Notice that if $p_{m_{j}}<$ $q_{i} \leqq p_{m+1}$ then

$$
\left|a_{q i}\right| \leqq \frac{1}{2} \delta_{m_{j}}
$$

Since $\left\{e_{n}\right\}$ is symmetric, for each $j=1,2, \ldots, r+1$ there exist $q_{i}{ }^{m_{j}}$, $i=1,2, \ldots, k_{j}$ such that

$$
\begin{aligned}
& p_{m_{j}}<q_{1}{ }^{m_{j}}<q_{2}{ }^{m_{j}}<\ldots<q_{k_{j}}{ }^{m_{j}} \leqq p_{m_{j+1}} \quad \text { and } \\
& \left\|y_{m_{1}}+\frac{1}{r} \sum_{j=2}^{r+1} y_{m_{j}}\right\| \leqq \| \sum_{i=1}^{k_{1}}\left(a_{q_{i+1} m_{1}}-a_{q_{2} m_{1}}\right) e_{q_{i} m_{1}} \\
& +\frac{1}{r} \sum_{j=2}^{r+1} \sum_{i=1}^{k_{j}}\left(a_{q_{i+1} m_{j}}-a_{q_{i} m_{j}}\right) e_{q_{i} m_{j}} \|+\delta_{m_{1}}+\frac{1}{r} \sum_{j=2}^{r+1} \delta_{m_{j}} \\
& \quad \leqq\left\|z_{m_{1}}+\frac{1}{r} \sum_{j=2}^{r+1} z_{m_{j}}\right\|+\epsilon
\end{aligned}
$$

where

$$
z_{j}=\sum_{i=1}^{k_{j}}\left(a_{q i+1^{m_{j}}}-a_{q_{i} m_{j}}\right) e_{q_{i} m_{j}}, \quad j=1,2, \ldots, r+1
$$

Notice that $\left\|z_{j}\right\| \leqq\left\|y_{m_{j}}\right\|=1$ and

$$
\sup _{i}\left|a_{q_{i+1} m_{j}}-a_{q_{i} m_{j}}\right| \leqq \delta_{m_{j}}, \quad j=1,2, \ldots, r+1
$$

Hence by Lemma 4,

$$
\left\|z_{1}+\frac{1}{r} \sum_{j=2}^{r+1} z_{j}\right\| \leqq\left\|v_{1}+\frac{1}{r} \sum_{j=2}^{r+1} v_{j}\right\|
$$

where

$$
v_{i}=\sum_{j=N i-1}^{N i-1}\left\|z_{j}\right\|_{j} t_{j} \quad \text { and } \quad\left\|v_{i}\right\| \leqq 1+\epsilon, \quad i=1,2, \ldots, r+1 .
$$

By Lemma 3,

$$
2 \epsilon_{0} \leqq\left\|y_{m_{1}}+\frac{1}{r} \sum_{j=2}^{r+1} y_{m_{j}}\right\| \leqq\left\|v_{1}+\frac{1}{r} \sum_{j=2}^{r+1} v_{j}\right\|+\epsilon<(1+\epsilon) \frac{7}{4}+2 \epsilon .
$$

This contradicts the choice of ϵ. This completes the proof that $J(E)$ contains no isomorphic copy of l_{1}. We conclude that $\left\{x_{n}\right\}$ is a shrinking basis of $J(E)$ and $J(E)$ is quasi-reflexive space of order one [3].

Remark. In [3], it is proved that if $\left\{e_{n}\right\}$ is block p-Hilbertian for some $1<p<\infty$, then $J(E)$ is quasi-reflexive of order one. Hence if E is a uniformly convex space with symmetric basis then $J(E)$ contains no subspace which is isomorphic to l_{1}.
3. Let X be a quasi-reflexive space of positive order with basis $\left\{x_{n}\right\}$ such that X contains no isomorphic copy of c_{0} or $l_{p}, 1 \leqq p<\infty$. For each $n=1,2, \ldots$, let $X_{n}=X$ and let

$$
\begin{aligned}
& Y=\left(\sum_{n} \oplus X_{n}\right)_{E}=\left\{y=\left(y_{1}, y_{2}, \ldots\right): y_{n} \in X_{n}\right. \\
&\left.\left(\left\|y_{1}\right\|,\left\|y_{2}\right\|, \ldots,\left\|y_{n}\right\|, \ldots\right) \in E\right\}
\end{aligned}
$$

where E is Altshuler's space and $\|y\|=\left\|\left(\left\|y_{1}\right\|, \ldots,\left\|y_{n}\right\|, \ldots\right)\right\|_{E}$. Then clearly, Y is a non-quasi-reflexive space with basis such that $Y^{* *}$ is separable. For any block $\left\{y_{n}\right\}$ in Y, there exists a subsequence $\left\{y_{n i}\right\}$ of $\left\{y_{n}\right\}$ such that either $\left\{y_{n i}\right\}$ is equivalent to a block in X_{n} or a block in E [4]. Since X and E contain no isomorphic copy of c_{0} or $l_{p}, 1 \leqq p<\infty$, it follows that Y contains no isomorphic copy of c_{0} or $l_{p}, 1 \leqq p<\infty$.

Finally, it is obvious that if X is a quasi-reflexive space of order one which contains no copy of c_{0} or $l_{p}, 1 \leqq p<\infty$ then the direct sum of k copies of X is a quasi-reflexive space of order k which contains no c_{0} or $l_{p}, 1 \leqq p<\infty$.

References

1. Z. Altshuler, Characterization of c_{0} and l_{p} among Banach spaces with a symmetric basis, Israel J. Math. 24 (1976), 39-44.
2. -_ A Banach space with a symmetric basis which contains no l_{p} or c_{0} and all its symmetric basis sequences are equivalent, Compositio Math. 35 (1977), 189-195.
3. P. G. Casazza and R. H. Lohman, A general construction of spaces of the type of R. C. James, Can. J. Math. 27 (1975), 1263-1270.
4. T. Figiel and W. B. Johnson, A uniformly convex Banach space which contains no l_{p}, Compsotio Math. 29 (1974), 179-190.
5. R. Herman and R. Whitley, An example concerning reflexivity, Studia Math. 28 (1967), 289-294.
6. R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550.
7. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, I (Springer-Verlag, 1977).
8. B. S. Tsirelson, Not every Banach space contains l_{p} or c_{0}, Functional Anal. Appl. 8 (1974), 138-141.

University of Alabama,
Huntsville, Alabama;
University of Iowa,
Iowa City, Iowa;
Kent State University,
Kent, Ohio

[^0]: Received March 2, 1979 and in revised form June 29, 1979. The research of the third author was partially supported by a Kent State University Summer Research Grant.

