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Dynamic mode decomposition (DMD) describes complex dynamic processes through
a hierarchy of simpler coherent features. DMD is regularly used to understand the
fundamental characteristics of turbulence and is closely related to Koopman operators.
However, verifying the decomposition, equivalently the computed spectral features of
Koopman operators, remains a significant challenge due to the infinite-dimensional nature
of Koopman operators. Challenges include spurious (unphysical) modes and dealing with
continuous spectra, which both occur regularly in turbulent flows. Residual dynamic mode
decomposition (ResDMD), introduced by Colbrook & Townsend (Rigorous data-driven
computation of spectral properties of Koopman operators for dynamical systems. 2021.
arXiv:2111.14889), overcomes such challenges through the data-driven computation of
residuals associated with the full infinite-dimensional Koopman operator. ResDMD
computes spectra and pseudospectra of general Koopman operators with error control and
computes smoothed approximations of spectral measures (including continuous spectra)
with explicit high-order convergence theorems. ResDMD thus provides robust and verified
Koopmanism. We implement ResDMD and demonstrate its application in various fluid
dynamic situations at varying Reynolds numbers from both numerical and experimental
data. Examples include vortex shedding behind a cylinder, hot-wire data acquired in a
turbulent boundary layer, particle image velocimetry data focusing on a wall-jet flow
and laser-induced plasma acoustic pressure signals. We present some advantages of
ResDMD: the ability to resolve nonlinear and transient modes verifiably; the verification
of learnt dictionaries; the verification of Koopman mode decompositions; and spectral
calculations with reduced broadening effects. We also discuss how a new ordering of
modes via residuals enables greater accuracy than the traditional modulus ordering
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(e.g. when forecasting) with a smaller dictionary. This result paves the way for more
significant dynamic compression of large datasets without sacrificing accuracy.

Key words: computational methods, turbulent boundary layers, big data

1. Introduction

We consider dynamical systems whose state xxx evolves over a state space Ω ⊆ Rd in
discrete time steps according to a function F : Ω → Ω . That is,

xxxn+1 = F(xxxn), n ≥ 0, (1.1)

for an initial state xxx0. At the nth time step the system is in state xxxn, and such a dynamical
system forms a trajectory of iterates xxx0,xxx1,xxx2, . . . in Ω . We consider the discrete-time
setting since we are interested in analysing data collected from experiments and numerical
simulations, where we cannot practically obtain a continuum of data. The dynamical
system in (1.1) could, for example, be experimental fluid flow measured in a particle image
velocimetry (PIV) window over a grid of discrete spatial points (see § 7 for an example).
In that case, the function F corresponds to evolving the flow one time step forward and
can, of course, be nonlinear.

Koopman operators (Koopman 1931; Koopman & von Neumann 1932) provide a
‘linearisation’ of nonlinear dynamical systems (1.1) (Mezić 2021). Sparked by Mezić
(2005) and Mezić & Banaszuk (2004), recent attention has shifted to using Koopman
operators in data-driven methods for studying dynamical systems from trajectory data
(Brunton et al. 2022). The ensuing explosion in popularity, dubbed ‘Koopmanism’
(Budišić, Mohr & Mezić 2012), includes thousands of articles over the last decade. The
Koopman operator for the system (1.1), K, is defined by its action on ‘observables’ or
functions g : Ω → C, via the composition formula

Kg = g ◦ F, g ∈ D(K), (1.2)

where D(K) is a suitable domain of observables. Note that observables typically differ
from the full state of the system in that they are only a given measure of the system.
For example, an observable g(xxx) could be the PIV-measured horizontal fluid velocity at a
single point, whereas xxx could correspond to the velocity values at all spatial grid points at
a given time. When applied to a state of the system

[Kg](xxxn) = g(F(xxxn)) = g(xxxn+1). (1.3)

Thus, K acts on observables by advancing them one step forward in time. By considering
gj(xxx) = [xxx]j for j = 1, . . . , d, we see that K encodes the action of F on xxxn. Nevertheless,
from (1.2), one can show that K is a linear operator, regardless of whether the dynamics
are linear or nonlinear.

The Koopman operator transforms the nonlinear dynamics in the state variable xxx into
an equivalent linear dynamics in the observables g. Hence, the spectral information of K
determines the behaviour of the dynamical system (1.1). For example, Koopman modes are
projections of the physical field onto eigenfunctions of the Koopman operator. For fluid
flows, Koopman modes provide collective motions of the fluid that are occurring at the
same spatial frequency, growth or decay rate, according to an (approximate) eigenvalue
of the Koopman operator. Since the vast majority of turbulent fluid interactions have
nonlinear properties, this ability to transition to a linear operator is exceedingly useful.
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Residual dynamic mode decomposition

For example, obtaining linear representations for nonlinear systems has the potential to
revolutionise our ability to predict and control such systems. However, there is price to
pay for this linearisation – K acts on an infinite-dimensional space, and this is where
computational difficulties arise.

In the data-driven setting of this paper, we do not assume knowledge of the function F
in (1.1). Instead, we aim to recover the spectral properties of K from measured trajectory
data. The leading numerical algorithm used to approximate K from trajectory data is
dynamic mode decomposition (DMD) (Tu et al. 2014; Kutz et al. 2016a). First introduced
by Schmid (2009, 2010) in the fluids community and connected to the Koopman operator
in Rowley et al. (2009), there are now numerous extensions and variants of DMD (Chen,
Tu & Rowley 2012; Wynn et al. 2013; Jovanović, Schmid & Nichols 2014; Kutz, Fu &
Brunton 2016b; Noack et al. 2016; Proctor, Brunton & Kutz 2016; Korda & Mezić 2018;
Loiseau & Brunton 2018; Deem et al. 2020; Klus et al. 2020; Baddoo et al. 2021, 2022;
Herrmann et al. 2021; Wang & Shoele 2021; Colbrook 2022). Of particular interest is
extended DMD (EDMD) (Williams, Kevrekidis & Rowley 2015a), which generalised
DMD to a broader class of nonlinear observables. The reader is encouraged to consult
Schmid (2022) for a recent overview of DMD-type methods, and Taira et al. (2017,
2020) and Towne, Schmidt & Colonius (2018) for an overview of modal-decomposition
techniques in fluid flows. DMD breaks apart a high-dimensional spatio-temporal signal
into a triplet of Koopman modes, scalar amplitudes and purely temporal signals. This
decomposition allows the user to describe complex flow patterns by a hierarchy of simpler
processes. When linearly superimposed, these simpler processes approximately recover the
full flow.

DMD is undoubtedly a powerful data-driven algorithm that has led to rapid progress
over the past decade (Grilli et al. 2012; Mezić 2013; Motheau, Nicoud & Poinsot 2014;
Sarmast et al. 2014; Sayadi et al. 2014; Subbareddy, Bartkowicz & Candler 2014; Chai,
Iyer & Mahesh 2015; Brunton et al. 2016; Hua et al. 2016; Priebe et al. 2016; Pasquariello,
Hickel & Adams 2017; Page & Kerswell 2018, 2019, 2020; Brunton & Kutz 2019;
Korda, Putinar & Mezić 2020). However, the infinite-dimensional nature of K leads to
several fundamental challenges. The spectral information of infinite-dimensional operators
can be far more complicated and challenging to compute than that of a finite matrix
(Ben-Artzi et al. 2020; Colbrook 2020). For example, K can have both discrete and
continuous spectra (Mezić 2005). Recently, Colbrook & Townsend (2021) introduced
Residual DMD (ResDMD) aimed at tackling some of the challenges associated with
infinite dimensions. The idea of ResDMD is summarised in figure 1 (see § 3). ResDMD is
easily used in conjunction with existing DMD methods – it does not require additional
data and is no more computationally expensive than EDMD. ResDMD addresses the
challenges of:

• Spectral pollution (spurious modes). A well-known difficulty of computing spectra
of infinite-dimensional operators is spectral pollution, where discretisations to a
finite matrix cause the appearance of spurious eigenvalues that have nothing to
do with the operator and typically have no physical meaning (Lewin & Séré
2010; Colbrook, Roman & Hansen 2019). DMD-type methods typically suffer from
spectral pollution and can produce modes with no physical relevance to the system
being investigated (Budišić et al. 2012; Williams et al. 2015a). It is highly desirable
to have a principled way of detecting spectral pollution with as few assumptions as
possible. By computing residuals associated with the spectrum with error control,
ResDMD allows the computation of spectra of general Koopman operators with
rigorous convergence guarantees and without spectral pollution. ResDMD verifies
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〈ψk, ψj〉 ≈
ψ1(x(1))

ψ1(x(M ))

ψN (x(1))

ψN (x(M ))

ψ1(x(1))

ψ1(x(M ))

ψN (x(1))

ψN (x(M ))

ΨX ΨX

w1

wM
w jk

〈Kψk, ψj〉 ≈
ψ1(x(1))

ψ1(x(M ))

ψN (x(1))

ψN (x(M ))

ψ1(y(1))

ψ1(y(M ))

ψN (y(1))

ψN (y(M ))

ΨX ΨY

w1

wM
w jk

∗

∗

〈Kψk, Kψj〉 ≈

≈
∫Ω |[Kg](x) – λg(x)|2 dω(x)

NB: g(x) = ΣN
j=1 ψj(x)[g]j for g ∈ �N and basis functions ψ1, …, ψN.

∫Ω |g(x)|2 dω(x) g∗Ψ∗
XWΨX g

g∗(Ψ∗
YWΨY – λ[Ψ∗

XWΨY]∗ – λ
–
Ψ∗

XWΨY + |λ|2Ψ∗
XWΨX)g

ψ1(y(1))

ψ1(y(M))

ψN (y(1))

ψN (y(M ))

ψ1(y(1))

ψ1(y(M))

ψN (y(1))

ψN (y(M ))

ΨY ΨY

w1

wM
w jk

∗

EDMD

matrices

New matrix

Residuals

Figure 1. The basic idea of ResDMD – by introducing an additional matrix Ψ ∗
Y WΨY (compared with EDMD),

we compute a residual in infinite dimensions. The matrices ΨX and ΨY are defined in (2.8a,b) and correspond to
the dictionary evaluated at the snapshot data. The matrix W = diag(w1, . . . ,wM) is a diagonal weight matrix.
The approximation of the residual becomes exact in the large data limit M → ∞.

computations of spectral properties and provides a data-driven study of dynamical
systems with error control (e.g. see Koopman modes in figure 16).

• Invariant subspaces. A finite-dimensional invariant subspace of K is a space
of observables G = span{g1, . . . , gk} such that Kg ∈ G for all g ∈ G. Non-trivial
finite-dimensional invariant spaces need not exist (e.g. when the system is mixing),
can be challenging to compute, or may not capture all of the dynamics of interest.
Typically, one must settle for approximate invariant subspaces, and DMD-type
methods can result in closure issues (Brunton et al. 2016). By computing upper
bounds on residuals, ResDMD provides a way of measuring how invariant a
candidate subspace is. It is important to stress that ResDMD computes residuals
associated with the underlying infinite-dimensional operator K (the additional
matrix in figure 1 allows us to do this using finite matrices), in contrast to
earlier work that computes residuals of observables with respect to a finite DMD
discretisation matrix (Drmac, Mezic & Mohr 2018). In contrast to ResDMD,
residuals with respect to a finite DMD discretisation of K can never be used
as error bounds for spectral information of K and suffer from issues such as
spectral pollution. Residuals computed by ResDMD also allow a natural ranking or
ordering of approximated eigenvalues and Koopman modes, that can be exploited
for efficient system compression (see § 8).

• Continuous spectra. The operator K can have a continuous spectrum, which is a
generic feature of chaotic or turbulent flow (Basley et al. 2011; Arbabi & Mezić
2017b). A formidable challenge is dealing with the continuous spectrum (Mezić
2013; Colbrook 2021; Colbrook, Horning & Townsend 2021), since discretising to
a finite-dimensional operator destroys its presence. Most existing non-parametric
approaches for computing continuous spectra of K are restricted to ergodic systems
(Arbabi & Mezić 2017b; Giannakis 2019; Korda et al. 2020; Das, Giannakis &
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Spectra and Koopman

mode decompositions

(general Koopman operators)

Spectral measures and

continuous spectra

(measure-preserving systems)

Choice of dictionary

(others can also be used)

Cleanup procedure to

avoid spurious modes

Pseudospectra and

spectra with error control

Linear

Nonlinear

From autocorrelations

From dictionary matrices
See additional algorithm from

Colbrook & Townsend (2021)

Algorithm 4

Algorithm 5

Algorithm 3

Algorithm 2

Algorithm 1

Figure 2. A diagrammatic chart for the algorithms used in this paper. The computational problem is shown
on the left, and the relevant algorithms on the right.

Slawinska 2021), as this allows relevant integrals to be computed using long-time
averages. ResDMD (Colbrook & Townsend 2021) provides a general computational
framework to deal with continuous spectra through smoothed approximations of
spectral measures, leading to explicit and rigorous high-order convergence (see the
examples in § 6). The methods deal jointly with discrete and continuous spectra, do
not assume ergodicity, and can be applied to data collected from either short or long
trajectories.

• Nonlinearity and high-dimensional state space. For many fluid flows, e.g. turbulent
phenomena, the corresponding dynamical system is strongly nonlinear and has
a very large state-space dimension. ResDMD can be combined with learned
dictionaries to tackle this issue. A key advantage of ResDMD compared with
traditional learning methods is that one still has convergence theory and can
perform a posteriori verification that the learned dictionary is suitable. In this
paper, we demonstrate this for two choices of dictionary: kernelised extended
dynamic mode decomposition (kEDMD) (Williams, Rowley & Kevrekidis 2015b)
and (rank-reduced) DMD.

This paper demonstrates ResDMD in a wide range of fluid dynamic situations, at
varying Reynolds numbers, from both numerical and experimental data. We discuss how
the new ResDMD methods can be reliably used for turbulent flows such as aerodynamic
boundary layers, and we include, for the first time, a link between the spectral measures of
Koopman operators and turbulent power spectra. By windowing in the frequency domain,
ResDMD avoids the problem of broadening and also allows convergence theory. We
illustrate this link explicitly for experimental measurements of boundary layer turbulence.
We also discuss how a new modal ordering based on the residual permits greater accuracy
with a smaller DMD dictionary than traditional modal modulus ordering. This result
paves the way for greater dynamic compression of large data sets without sacrificing
accuracy.
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The paper is outlined as follows. In § 2, we recap EDMD, for which DMD is a special
case, and interpret the algorithm as a Galerkin method. ResDMD is then introduced
in § 3, where we recall and expand upon the results of Colbrook & Townsend (2021).
We stress that ResDMD does not make any assumptions about the Koopman operator or
dynamical system. In § 4, we recall one of the algorithms of Colbrook & Townsend (2021)
for computing spectral measures (dealing with continuous spectra) under the assumption
that the dynamical system is measure preserving, and make a new link between an
algorithm for spectral measures of Koopman operators and the power spectra of signals.
We then validate and apply our methods to four different flow cases. We treat flow past
a cylinder (numerical data) in § 5, turbulent boundary layer flow (hot-wire experimental
data) in § 6, wall-jet boundary layer flow (PIV experimental data) in § 7 and laser-induced
plasma (experimental data collected with a microphone) in § 8. In each case, only the
flow fields or pressure fields are used to extract relevant dynamical information. We
end with a discussion and conclusions in § 9. Code for our methods can be found at
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition, and we provide
a diagrammatic chart for implementation in figure 2.

2. Recalling DMD

Here, we recall the definition of EDMD from Williams et al. (2015a) and its interpretation
as a Galerkin method. As a particular case of EDMD, DMD can be interpreted as
producing a Galerkin approximation of the Koopman operator using linear basis functions.

2.1. Trajectory data
We assume that (1.1) is observed for M2 time steps, starting at M1 initial conditions. It is
helpful to view the trajectory data as an M1 × M2 matrix

Bdata =

⎡⎢⎢⎣
xxx(1)0 · · · xxx(1)M2−1
...

. . .
...

xxx(M1)
0 · · · xxx(M1)

M2−1

⎤⎥⎥⎦ . (2.1)

Each row of Bdata corresponds to an observation of a single trajectory of the dynamical
system that is witnessed for M2 time steps. In particular, xxx(j)i+1 = F(xxx(j)i ) for 0 ≤ i ≤
M2 − 2 and 1 ≤ j ≤ M1. For example, these snapshots could be measurements of unsteady
velocity field across M1 initial state configurations. One could therefore use just consider
M2 = 2. One could also consider a single trajectory, M1 = 1, and large M2. The exact
structure depends on the data acquisition method. In general, (2.1) could represent
measurements of the velocity along M1 trajectories for M2 time steps, a total of M1M2
measurements. One can also use our algorithms with data consisting of trajectories of
different lengths (i.e. general snapshots).

Letting {xxx(m)}M
m=1 and {yyy(m)}M

m=1 be enumerations of the first M2 − 1 columns and the
second to final columns of Bdata, respectively, with M = M1(M2 − 1), we can conveniently
represent the data as a finite set of M pairs of measurements of the state

{xxx(m),yyy(m)}M
m=1 such that yyy(m) = F(xxx(m)), m = 1, . . . ,M. (2.2)

One could also consider measurements of certain observables g, {g(xxx(m)), g(yyy(m))}M
m=1,

and interpret the following algorithms as such. EDMD provides a way of using these
measurements to approximate the operator K via a matrix K ∈ CN×N .
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Residual dynamic mode decomposition

2.2. Extended DMD
We work in the Hilbert space L2(Ω,ω) of square-integrable observables with respect to
a positive measure ω on Ω . We do not assume that this measure is invariant. A common
choice of ω is the standard Lebesgue measure. This choice is natural for Hamiltonian
systems, for which the Koopman operator is unitary on L2(Ω,ω) (Arnold 1989). Another
common choice is for ω to correspond to an ergodic measure on an attractor (Mezić 2005).

Given a dictionary (a set of basis functions) {ψ1, . . . , ψN} ⊂ D(K) ⊆ L2(Ω,ω) of
observables, EDMD constructs a matrix K ∈ CN×N from the snapshot data (2.2) that
approximates K on the finite-dimensional subspace VN = span{ψ1, . . . , ψN}. The choice
of the dictionary is up to the user, with some common hand-crafted choices given in
Williams et al. (2015a, table 1). When the state-space dimension d is large, as in this paper,
it is beneficial to use a data-driven dictionary. We discuss this in § 3.3, where we present
DMD (Kutz et al. 2016a) and kEDMD (Williams et al. 2015b) in a unified framework.

Given a dictionary of observables, we define the vector-valued observable or
‘quasimatrix’

Ψ (xxx) = [ψ1(xxx) · · · ψN(xxx)] ∈ C
1×N . (2.3)

Any new observable g ∈ VN can then be written as g(xxx) = ∑N
j=1 ψj(xxx)gj = Ψ (xxx)ggg for

some vector of constant coefficients ggg = [g1 · · · gN]� ∈ CN . It follows from (1.2) that

[Kg](xxx) = Ψ (F(xxx))ggg = Ψ (xxx)(Kggg)+ R(ggg,xxx), (2.4)

where

R(ggg,xxx) =
N∑

j=1

ψj(F(xxx))gj − Ψ (xxx)(Kggg). (2.5)

Typically, the subspace VN generated by the dictionary is not an invariant subspace of
K, and hence there is no choice of K that makes the error R(ggg,xxx) zero for all choices of
g ∈ VN and xxx ∈ Ω . Instead, it is natural to select K as to minimise∫

Ω

max
‖ggg‖=1

|R(ggg,xxx)|2 dω(xxx) =
∫
Ω

‖Ψ (F(xxx))− Ψ (xxx)K‖2 dω(xxx), (2.6)

where ‖ggg‖ denotes the standard Euclidean norm of a vector ggg. Given a finite amount of
snapshot data, we cannot directly evaluate the integral in (2.6). Instead, we approximate
it via a quadrature rule by treating the data points {xxx(m)}M

m=1 as quadrature nodes with
weights {wm}M

m=1. The discretised version of (2.6) is the following weighted least-squares
problem:

K ∈ argmin
B∈CN×N

M∑
m=1

wm‖Ψ (yyy(m))− Ψ (xxx(m))B‖2. (2.7)

We define the following two matrices:

ΨX =

⎛⎜⎝Ψ (xxx
(1))
...

Ψ (xxx(M))

⎞⎟⎠ ∈ C
M×N, ΨY =

⎛⎜⎝Ψ (yyy
(1))
...

Ψ (yyy(M))

⎞⎟⎠ ∈ C
M×N, (2.8a,b)

and let W = diag(w1, . . . ,wM) be the diagonal weight matrix of the quadrature rule. A
solution to (2.7) is

K = (Ψ ∗
X WΨX)

†(Ψ ∗
X WΨY) = (

√
WΨX)

†
√

WΨY , (2.9)
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where ‘†’ denotes the pseudoinverse. In some applications, the matrix Ψ ∗
X WΨX may be

il -conditioned, so it is common to consider a regularisation such as a truncated singular
value decomposition (SVD).

2.3. Quadrature and Galerkin methods
We can view EDMD as a Galerkin method. Note that

Ψ ∗
X WΨX =

M∑
m=1

wmΨ (xxx(m))∗Ψ (xxx(m)), Ψ ∗
X WΨY =

M∑
m=1

wmΨ (xxx(m))∗Ψ (yyy(m)). (2.10a,b)

If the quadrature approximation converges, it follows that

lim
M→∞

[Ψ ∗
X WΨX]jk = 〈ψk, ψj〉 and lim

M→∞
[Ψ ∗

X WΨY ]jk = 〈Kψk, ψj〉, (2.11a,b)

where 〈·, ·〉 is the inner product associated with the Hilbert space L2(Ω,ω). Let PVN
denote the orthogonal projection onto VN . As M → ∞, the above convergence means that
K approaches a matrix representation of PVNKP∗

VN
. Thus, EDMD is a Galerkin method in

the large data limit M → ∞. There are typically three scenarios where (2.11a,b) holds:

(i) Random sampling: in the initial definition of EDMD, ω is a probability measure and
{xxx(m)}M

m=1 are drawn independently according toωwith the quadrature weights wm =
1/M. The strong law of large numbers shows that (2.11a,b) holds with probability
one (Klus, Koltai & Schütte 2016, § 3.4), provided that ω is not supported on a
zero level set that is a linear combination of the dictionary (Korda & Mezić 2018,
§ 4). Convergence is typically at a Monte Carlo rate of O(M−1/2) (Caflisch 1998).
From an experimental point of view, an example of random sampling could be {xxx(m)}
observed with a sampling rate that is lower than the characteristic time period of the
system of interest.

(ii) Highorder quadrature: if the dictionary and F are sufficiently regular and we are
free to choose the {xxx(m)}M

m=1, then it is beneficial to select {xxx(m)}M
m=1 as an M-point

quadrature rule with weights {wm}M
m=1. This can lead to much faster convergence

rates in (2.11a,b) (Colbrook & Townsend 2021), but can be difficult if d is large.
(iii) Ergodic sampling: for a single fixed initial condition xxx0 and xxx(m) = Fm−1(xxx0) (i.e.

data collected along one trajectory with M1 = 1 in (2.1)), if the dynamical system
is ergodic, then one can use Birkhoff’s ergodic theorem to show (2.11a,b) (Korda &
Mezić 2018). One chooses wm = 1/M but the convergence rate is problem dependent
(Kachurovskii 1996). An example of ergodic sampling could be a time-resolved PIV
dataset of a post-transient flow field over a long time period.

In this paper, we use (i) random sampling, and (iii) ergodic sampling, which are typical
for experimental data collection since they arise from long-time trajectory measurements.

The convergence in (2.11a,b) implies that the EDMD eigenvalues approach the spectrum
of PVNKP∗

VN
as M → ∞. Thus, approximating the spectrum of K, σ (K), by the

eigenvalues of K is closely related to the so-called finite section method (Böttcher &
Silbermann 1983). Since the finite section method can suffer from spectral pollution
(spurious modes), spectral pollution is also a concern for EDMD (Williams et al. 2015a).
It is important to have an independent way to measure the accuracy of the candidate
eigenvalue–eigenvector pairs, which is what we propose in our ResDMD method presented
in § 3.
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Residual dynamic mode decomposition

2.3.1. Relationship with DMD
Williams et al. (2015a) observed that if we choose a dictionary of observables of the
form ψj(xxx) = e∗

j xxx for j = 1, . . . , d, where {ej} denote the canonical basis, then the matrix
K = (

√
WΨX)

†
√

WΨY with wm = 1/M is the transpose of the usual DMD matrix

KDMD = Ψ�
Y Ψ

�†
X = Ψ�

Y

√
W(Ψ�

X

√
W)†=((

√
WΨX)

†
√

WΨY)
� = K

�. (2.12)

Thus, DMD can be interpreted as producing a Galerkin approximation of the Koopman
operator using the set of linear monomials as basis functions. EDMD can be considered
an extension allowing nonlinear functions in the dictionary.

2.4. Koopman mode decomposition
Given an observable h : Ω → C, we approximate it by an element of VN via

h(xxx) ≈ Ψ (xxx)(Ψ ∗
X WΨX)

†Ψ ∗
X W(h(xxx(1)) · · · h(xxx(M)))�. (2.13)

Assuming that the quadrature rule converges, the right-hand side converges to the
projection PVN h in L2(Ω,ω) as M → ∞. Assuming that KV = VΛ for a diagonal matrix
Λ of eigenvalues and a matrix V of eigenvectors, we obtain

h(xxx) ≈ Ψ (xxx)V[V−1(
√

WΨX)
†
√

W(h(xxx(1)) · · · h(xxx(M)))�]. (2.14)

As a special case, and vectorising, we have the Koopman mode decomposition

xxx ≈ Ψ (xxx)V︸ ︷︷ ︸
Koopman e-functions

[V−1(
√

WΨX)
†
√

W(xxx(1) · · · xxx(M))�]︸ ︷︷ ︸
N×d matrix of Koopman modes

. (2.15)

The jth Koopman mode corresponds to the jth row of the matrix in square brackets, and
ΨV is a quasimatrix of approximate Koopman eigenfunctions.

3. Residual DMD

We now present ResDMD for computing spectral properties of Koopman operators,
that in turn allows us to analyse fluid flow structures such as turbulence. ResDMD,
first introduced in Colbrook & Townsend (2021), uses an additional matrix constructed
from the measured data, {xxx(m),yyy(m)}M

m=1. The key difference between ResDMD and other
DMD-type algorithms is that we construct Galerkin approximations for not only K, but
also K∗K. This difference allows us to have rigorous convergence guarantees for ResDMD
and obtain error guarantees on the approximation. In other words, we can tell a posteriori
which parts of the computed spectra and Koopman modes are reliable, thus rectifying
issues such as spectral pollution that arise in previous DMD-type methods.

3.1. ResDMD and a new data matrix
Whilst EDMD obtains eigenvalue–eigenvector pairs for an approximation of the Koopman
operator, it cannot verify the accuracy of the computed pairs. However, we show below
how one can confidently identify true physical turbulent flow structures by rigorously
rejecting inaccurate predictions (spurious modes). This rigorous measure of accuracy is
the linchpin of our new ResDMD method and is shown pictorially in figure 1.
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M.J. Colbrook, L.J. Ayton and M. Szőke

We approximate residuals to measure the accuracy of a candidate eigenvalue–eigenvector
pair (λ, g) (which could, for example, be computed from K or some other method). For
λ ∈ C and g = Ψ ggg ∈ VN , the squared relative residual is∫

Ω

|[Kg](xxx)− λg(xxx)|2 dω(xxx)∫
Ω

|g(xxx)|2 dω(xxx)

=

N∑
j,k=1

gjgk[〈Kψk,Kψj〉 − λ〈ψk,Kψj〉 − λ̄〈Kψk, ψj〉 + |λ|2〈ψk, ψj〉]

N∑
j,k=1

gjgk〈ψk, ψj〉
. (3.1)

We approximate this residual using the same quadrature rule in § 2.2

res(λ, g)2 = ggg∗[Ψ ∗
Y WΨY − λ[Ψ ∗

X WΨY ]∗ − λ̄Ψ ∗
X WΨY + |λ|2Ψ ∗

X WΨX]ggg
ggg∗[Ψ ∗

X WΨX]ggg
. (3.2)

As well as the matrices Ψ ∗
X WΨX and Ψ ∗

X WΨY found in EDMD, (3.2) has the additional
matrix Ψ ∗

Y WΨY . Note that this additional matrix is no more expensive to compute than
either of the EDMD matrices, and uses the same data for its construction as EDMD. Since
Ψ ∗

Y WΨY = ∑M
m=1 wmΨ (yyy(m))∗Ψ (yyy(m)), if the quadrature rule converges then

lim
M→∞

[Ψ ∗
Y WΨY ]jk = 〈Kψk,Kψj〉. (3.3)

Hence, Ψ ∗
Y WΨY formally corresponds to an approximation of K∗K. We also have

lim
M→∞

res(λ, g)2 =

∫
Ω

|[Kg](xxx)− λg(xxx)|2 dω(xxx)∫
Ω

|g(xxx)|2 dω(xxx)
. (3.4)

In Colbrook & Townsend (2021), it was shown that the quantity res(λ, g) can be used
to rigorously compute spectra and pseudospectra of K. Next, we summarise some of the
algorithms and results of Colbrook & Townsend (2021).

3.2. ResDMD for computing spectra and pseudospectra

3.2.1. Avoiding spurious eigenvalues
Algorithm 1 uses the residual defined in (3.2) to avoid spectral pollution (spurious modes).
As is usually done, we assume that K is diagonalisable. We first find the eigenvalues
and eigenvectors of K, i.e. we solve (Ψ ∗

X WΨX)
†(Ψ ∗

X WΨY)ggg = λggg. One can solve this
eigenproblem directly, but it is often numerically more stable to solve the generalised
eigenproblem (Ψ ∗

X WΨY)ggg = λ(Ψ ∗
X WΨX)ggg. Afterwards, to avoid spectral pollution, we

discard eigenpairs with a relative residual larger than a specified accuracy goal ε > 0.
The procedure is a simple modification of EDMD, as the only difference is a clean-up

step where spurious eigenpairs are discarded based on their residual. This clean-up step is
typically faster to execute than the eigendecomposition in step 2 of algorithm 1. The total
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Residual dynamic mode decomposition

Algorithm 1 : ResDMD for computing eigenpairs without spectral pollution.
The corresponding Koopman mode decomposition is given in (3.6).

Input: snapshot data {xxx(m),yyy(m) = F(xxx(m))}M
m=1, quadrature weights {wm}M

m=1, a
dictionary of observables {ψj}N

j=1 and an accuracy goal ε > 0.

1: Compute Ψ ∗
X WΨX , Ψ ∗

X WΨY , and Ψ ∗
Y WΨY , where ΨX , ΨY are given in (2.8a,b).

2: Solve (Ψ ∗
X WΨY)ggg = λ(Ψ ∗

X WΨX)ggg for eigenpairs {(λj, g(j) = Ψgggj)}.
3: Compute res(λj, g(j)) for all j (see (3.2)) and discard (λj, g(j)) if res(λj, g(j)) > ε.

Output: a collection of accurate eigenpairs {(λj, Ψgggj) : res(λj, g(j)) ≤ ε}.

computational cost of algorithm 1 is O(N2M + N3), which is the same as EDMD. The
clean up avoids spectral pollution and also removes eigenpairs that are inaccurate due to
numerical errors associated with non-normal operators, up to the relative tolerance ε. The
following result (Colbrook & Townsend 2021, theorem 4.1) makes this precise.

THEOREM 3.1. Let K be the associated Koopman operator of the dynamical system (1.1)
from which snapshot data are collected. Let ΛM denote the eigenvalues in the output
of algorithm 1. Then, assuming convergence of the quadrature rule in § 2.2

lim sup
M→∞

max
λ∈ΛM

‖(K − λ)−1‖−1 ≤ ε. (3.5)

We can also use algorithm 1 to clean up the Koopman mode decomposition in (2.15). To
do this, we simply let V(ε) denote the matrix whose columns are the eigenvectors gggj with
res(λj, g(j)) ≤ ε and compute the Koopman mode decomposition with respect to Ψ (ε)

X =
ΨXV(ε) and Ψ (ε)

Y = ΨYV(ε). Since (
√

WΨXV(ε))†
√

WΨYV(ε) is diagonal, the Koopman
mode decomposition now becomes

xxx ≈ Ψ (xxx)V(ε)︸ ︷︷ ︸
Koopman e-functions

[(
√

WΨXV(ε))†
√

W(xxx(1) · · · xxx(M))�]︸ ︷︷ ︸
N×d matrix of Koopman modes

. (3.6)

3.2.2. Computing the full spectrum and pseudospectra
Theorem 3.1 tells us that, in the large data limit, algorithm 1 computes eigenvalues inside
the ε-pseudospectrum of K. Hence, algorithm 1 avoids spectral pollution and returns
reasonable eigenvalues. The ε-pseudospectrum of K is (Trefethen & Embree 2005)

σε(K) := cl({λ ∈ C : ‖(K − λ)−1‖ > 1/ε}) = cl(∪‖B‖<εσ(K + B)), (3.7)

where cl denotes the closure of a set, and limε↓0 σε(K) = σ(K). Despite theorem 3.1,
algorithm 1 may not approximate the whole of σε(K), even as M → ∞ and N → ∞.
This is because the eigenvalues of PVNKP∗

VN
may not approximate the whole of σ(K) as

N → ∞ (Colbrook & Townsend 2021; Mezic 2022), even if ∪NVN is dense in L2(Ω,ω).
To overcome this issue, algorithm 2 computes practical approximations of

ε-pseudospectra with rigorous convergence guarantees. Assuming convergence of the
quadrature rule in § 2.2, in the limit M → ∞, the key quantity

τN(λ) = min
ggg∈CN

res(λ, Ψggg), (3.8)

is an upper bound for ‖(K − λ)−1‖−1. The output of algorithm 2 is guaranteed to be inside
the ε-pseudospectrum of K. As N → ∞ and the grid of points is refined, algorithm 2
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M.J. Colbrook, L.J. Ayton and M. Szőke

Algorithm 2 : ResDMD for estimating ε-pseudospectra.
Input: snapshot data {xxx(m),yyy(m) = F(xxx(m))}M

m=1, quadrature weights {wm}M
m=1, a

dictionary of observables {ψj}N
j=1, an accuracy goal ε > 0 and a grid z1, . . . , zk ∈ C.

1: Compute Ψ ∗
X WΨX , Ψ ∗

X WΨY , and Ψ ∗
Y WΨY , where ΨX , ΨY are given in (2.8a,b).

2: For each zj, compute τN(zj) = minggg∈CN res(zj, Ψggg) (see (3.2)), which is a generalised
SVD problem, and the corresponding singular vectors gggj.

Output: estimate of the ε-pseudospectrum {zj : τN(zj) < ε} and ε-approximate
eigenfunctions {gggj : res(zj, Ψggg) < ε}.

converges to the pseudospectrum uniformly on compact subsets of C (Colbrook &
Townsend 2021, theorems B.1 and B.2). In practice the grid {zj}k

j=1 is chosen for
plotting purposes (e.g. in figure 3). Strictly speaking, we converge to the approximate
point pseudospectrum, a more complicated algorithm leads to computation of the full
pseudospectrum – see Colbrook & Townsend (2021, appendix B). For brevity, we have not
included a statement of the results. We can then compute the spectrum by taking ε ↓ 0.
Algorithm 2 also computes observables g with res(λ, g) < ε, known as ε-approximate
eigenfunctions. The computational cost of algorithm 2 is O(N2M + kN3). However, the
computation of τN can be done in parallel over the k grid points, and we can refine the grid
adaptively near regions of interest.

3.3. Choice of dictionary
When d is large, it can be impractical to store or form the matrix K since the initial value
of N may be huge. In other words, we run into the curse of dimensionality. We consider
two common methods to overcome this issue:

(i) DMD: in this case, the dictionary consists of linear functions (see § 2.3.1). It is
standard to form a low-rank approximation of

√
WΨX via a truncated SVD as

√
WΨX ≈ UrΣrV∗

r . (3.9)

Here, Σr ∈ Cr×r is diagonal with strictly positive diagonal entries, and Vr ∈ CN×r

and Ur ∈ CM×r have V∗
r Vr = U∗

r Ur = Ir. We then form the matrix

K̃ = (
√

WΨXVr)
†
√

WΨYVr = Σ−1
r U∗

r

√
WΨYVr = V∗

r KVr ∈ C
r×r. (3.10)

Note that to fit into our Galerkin framework, this matrix is the transpose of the DMD
matrix that is commonly computed in the literature.

(ii) Kernelised EDMD (kEDMD): kEDMD (Williams et al. 2015b) aims to make
EDMD practical for large d. Supposing that ΨX is of full rank, kEDMD constructs
a matrix with an identical formula to (3.10) when r = M, for which we have the
equivalent form

K̃ = (Σ
†
MU∗

M)(
√

WΨYΨ
∗
X

√
W)(UMΣ

†
M). (3.11)

Suitable matrices UM and ΣM can be recovered from the eigenvalue decomposition√
WΨXΨ

∗
X

√
W = UMΣ

2
MU∗

M . Moreover, both matrices
√

WΨXΨ
∗
X

√
W

and
√

WΨYΨ
∗
X

√
W can be computed using inner products. The kEDMD applies

the kernel trick to compute the inner products in an implicitly defined reproducing
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Residual dynamic mode decomposition

Hilbert space H with inner product 〈·, ·〉H (Scholkopf 2001). A positive–definite
kernel function S : Ω ×Ω → R induces a feature map ϕ : Rd → H so that
〈ϕ(xxx), ϕ(yyy)〉H = S(xxx,yyy). This leads to an implicit choice of (typically nonlinear)
dictionary Ψ (xxx), that is dependent on the kernel function, so that Ψ (xxx)Ψ (yyy)∗ =
〈ϕ(xxx), ϕ(yyy)〉H = S(xxx,yyy). Often S can be evaluated in O(d) operations, meaning that
K̃ is constructed in O(dM2) operations.

In either of these two cases, the approximation of K is equivalent to using a new
dictionary with feature map Ψ (xxx)Vr ∈ C1×r. In the case of DMD, we found it beneficial
to use the mathematically equivalent choice Ψ (xxx)VrΣ

−1
r , which is numerically better

conditioned. To see why, note that
√

WΨXVrΣ
−1
r ≈ Ur and Ur has orthonormal columns.

3.3.1. The problem of vanishing residual estimates
Suppose that

√
WΨXVr has full row rank, so that r = M, and that vvv ∈ CM is an

eigenvector of K̃ with eigenvalue λ. This means that (
√

WΨXVM)
†
√

WΨYVMvvv =
λvvv. Since

√
WΨXVM has independent rows,

√
WΨXVM(

√
WΨXVM)

† = IM and hence√
WΨYVMvvv = λ√WΨXVMvvv. The corresponding observable is g(xxx) = Ψ (xxx)VMvvv and the

numerator of res(λ, g)2 in (3.2) is equal to ‖√WΨYVMvvv − λ√WΨXVMvvv‖2. It follows that
res(λ, g) = 0. Similarly, if r is too large, res(λ, g) will be a bad approximation of the true
residual.

In other words, the regime r ∼ M prevents the large data convergence (M → ∞) of the
quadrature rule and (3.4), which holds for a fixed basis and hence a fixed basis size. In turn,
this prevents us from being able to apply the results of § 3.2. We next discuss overcoming
this issue by using two sets of snapshot data; these could arise from two independent tests
of the same system, or by partitioning the measured data into two groups.

3.3.2. Using two subsets of the snapshot data
A simple remedy to avoid the problem in § 3.3.1 is to consider two sets of snapshot data.
We consider an initial set {x̃xx(m), ỹyy(m)}M′

m=1, that we use to form our dictionary. We then apply
ResDMD to the computed dictionary with a second set of snapshot data {x̂xx(m), ŷyy(m)}M′′

m=1,
allowing us to prove convergence as M′′ → ∞.

How to acquire a second set of snapshot data depends on the problem and method
of data collection. Given snapshot data with random and independent {xxx(m)}, one can
split up the snapshot data into two parts. For initial conditions that are distributed
according to a high-order quadrature rule, if one already has access to M′ snapshots,
then one must typically go back to the original dynamical system and request M′′ further
snapshots. For ergodic sampling along a trajectory, we can let {x̃xx(m), ỹyy(m)}M′

m=1 correspond
to the initial M′ + 1 points of the trajectory (x̃xx(m) = Fm−1(xxx0) for m = 1, . . . ,M′) and let
{x̂xx(m), ŷyy(m)}M′′

m=1 correspond to the initial M′′ + 1 points of the trajectory (x̂xx(m) = Fm−1(xxx0)
for m = 1, . . . ,M′′).

In the case of DMD, algorithm 3 summarises the two-stage process. Often a suitable
choice of N can be obtained by studying the decay of the singular values of the data
matrix or the condition number of the matrix Ψ ∗

X WΨX . When M′ ≤ d, the computational
cost of steps 2 and 3 of algorithm 3 are O(dM′2) and O(NdM′′), respectively.

In the case of kEDMD, we follow Colbrook & Townsend (2021), and algorithm 4
summarises the two-stage process. The choice of kernel S determines the dictionary
and the best choice depends on the application. In the following experiments, we use
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Algorithm 3 : ResDMD with DMD selected observables.

Input: snapshot data {x̃xx(m), ỹyy(m)}M′
m=1 and {x̂xx(m), ŷyy(m)}M′′

m=1, positive integer N ≤ M′.
1: Set ΨDMD(xxx) = [

e∗
1xxx · · · e∗

dxxx
]
.

2: Compute a truncated SVD

1√
M′

(
ΨDMD(x̃xx(1))� · · · ΨDMD(x̃xx(M

′))�
)� ≈ UN�NV∗

N .

3: Apply algorithms 1 and 2 with the matrices

ΨX =

⎛⎜⎝ ΨDMD(x̂xx(1))
...

ΨDMD(x̂xx(M
′′))

⎞⎟⎠VN�
†
N, ΨY =

⎛⎜⎝ ΨDMD(ŷyy(1))
...

ΨDMD(ŷyy(M
′′))

⎞⎟⎠VN�
†
N . (1)

Output: spectral properties of Koopman operator according to algorithms 1 and 2.

Algorithm 4 : ResDMD with kEDMD selected observables.

Input: snapshot data {x̃xx(m), ỹyy(m)}M′
m=1 and {x̂xx(m), ŷyy(m)}M′′

m=1, positive–definite kernel
function S : Ω ×Ω → R, and positive integer N ≤ M′.

1: Apply kEDMD to {x̃xx(m), ỹyy(m)}M′
m=1 with kernel S to compute the matrices K̃, UM′ and

�M′ using the kernel trick.
2: Compute the dominant N eigenvalues of K̃ and stack the corresponding eigenvectors

column by column into Z ∈ CM′×N .
3: Apply a QR decomposition to orthogonalise Z to Q = [

Q1 · · · QN
] ∈ CM′×N .

4: Apply algorithms 1 and 2 with {x̂xx(m), ŷyy(m)}M′′
m=1 and the dictionary {ψj}N

j=1, where

ψj(xxx) = [S(xxx, x̃xx(1)) S(xxx, x̃xx(2)) · · · S(xxx, x̃xx(M′))
]
(UM′�†

M′)Qj, 1 ≤ j ≤ N.

Output: spectral properties of Koopman operator according to algorithms 1 and 2.

the Laplacian kernel S(xxx,yyy) = exp(−γ ‖xxx − yyy‖), where γ is the reciprocal of the average
�2-norm of the snapshot data after it is shifted to have mean zero.

We can now apply the theory of § 3.2 in the limit M′′ → ∞. It is well known that the
eigenvalues computed by DMD and kEDMD may suffer from spectral pollution. However,
crucially in our setting, we do not directly use these methods to compute spectral properties
of K. Instead, we only use them to select a good dictionary of size N, after which our
rigorous ResDMD algorithms can be used. Moreover, we use {x̂xx(m), ŷyy(m)}M′′

m=1 to check the
quality of the constructed dictionary. By studying the residuals and using the error control
in ResDMD, we can tell a posteriori whether the dictionary is satisfactory and whether N
is sufficiently large.

Finally, it is worth pointing out that the above choices of dictionaries are certainly not
the only choices. ResDMD can be applied to any suitable choice. For example, one could
use other data-driven methods such as diffusion kernels (Giannakis et al. 2018) or trained
neural networks (Li et al. 2017; Murata, Fukami & Fukagata 2020).
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Residual dynamic mode decomposition

4. Spectral measures

Many physical systems described by (1.1) are measure preserving (preserve volume).
Examples include Hamiltonian flows (Arnold 1989), geodesic flows on Riemannian
manifolds (Dubrovin, Fomenko & Novikov 1991, Chapter 5), Bernoulli schemes in
probability theory (Shields 1973) and ergodic systems (Walters 2000). The Koopman
operator K associated with a measure-preserving dynamical system is an isometry, i.e.
‖Kg‖ = ‖g‖ for all observables g ∈ D(K) = L2(Ω,ω). In this case, spectral measures
provide a way of including continuous spectra in the Koopman mode decomposition.
This inclusion is beneficial in the case of turbulent flows where a priori knowledge of
the spectra (e.g. whether it contains a continuous part) may be unknown. The methods
described in this section allow us to compute continuous spectra.

4.1. Spectral measures and Koopman mode decompositions
Given an observable g ∈ L2(Ω,ω) of interest, the spectral measure of K with respect to
g is a measure νg defined on the periodic interval [−π,π]per. If g is normalised so that
‖g‖ = 1, then νg is a probability measure, otherwise νg is a positive measure of total mass
‖g‖2. We provide a mathematical description of spectral measures in § A for completeness.
The reader should think of these measures as supplying a diagonalisation of K.

For example, the decomposition in (A3) provides important information on the evolution
of dynamical systems. Suppose that there is no singular continuous spectrum, then any
g ∈ L2(Ω,ω) can be written as

g =
∑
λ∈σp(K)

cλϕλ +
∫

[−π,π]per

φθ,g dθ, (4.1)

where σp(K) is the set of eigenvalues of K, the ϕλ are the eigenfunctions of K, cλ
are expansion coefficients and the density of the absolutely continuous part of νg is
ρg(θ) = 〈φθ,g, g〉. One should think of φθ,g as a ‘continuously parametrised’ collection
of eigenfunctions. Using (4.1), one obtains the Koopman mode decomposition (Mezić
2005)

g(xxxn) = [Kng](xxx0) =
∑
λ∈σp(K)

cλλnϕλ(xxx0)+
∫

[−π,π]per

einθφθ,g(xxx0) dθ. (4.2)

For characterisations of the dynamical system in terms of these decompositions, see
Halmos (2017), Mezić (2013) and Zaslavsky (2002). Typically, the eigenvalues correspond
to isolated oscillation frequencies in the fluid flow and the growth rates of stable
and unstable modes, whilst the continuous spectrum corresponds to chaotic motion.
Computing the measures νg provides us with a diagonalisation of the nonlinear dynamical
system in (1.1).

4.2. Spectral measures and autocorrelations
The Fourier coefficients of νg are given by

ν̂g(n) := 1
2π

∫
[−π,π]per

e−inθ dνg(θ), n ∈ Z. (4.3)
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These Fourier coefficients can be expressed in terms of correlations 〈Kng, g〉 and 〈g,Kng〉
(Colbrook & Townsend 2021). That is, for g ∈ L2(Ω,ω)

ν̂g(n) = 1
2π

〈K−ng, g〉, n < 0, ν̂g(n) = 1
2π

〈g,Kng〉, n ≥ 0. (4.4a,b)

From (4.4a,b), we see that ν̂g(−n) = ν̂g(n) for n ∈ Z. In particular, νg is completely
determined by the forward-time dynamical autocorrelations 〈g,Kng〉 with n ≥ 0.
Equivalently, the spectral measure of K with respect to g ∈ L2(Ω,ω) is a signature for the
forward-time dynamics of (1.1). This connection allows us to interpret spectral measures
as an infinite-dimensional version of power spectra in § 4.5.

4.3. Computing autocorrelations
To approximate spectral measures, we make use of the relation (4.4a,b) between the
Fourier coefficients of νg and the autocorrelations 〈g,Kng〉. There are typically three ways
to compute the autocorrelations, corresponding to the three scenarios discussed in § 2.3:

1. Random sampling: the autocorrelations can be approximated as

〈g,Kng〉 ≈ 1
M

M∑
m=1

g(xxx(m))[Kng](xxx(m)). (4.5)

2. High-order quadrature: the autocorrelations can be approximated as

〈g,Kng〉 =
∫
Ω

g(xxx)[Kng](xxx) dω(xxx) ≈
M∑

m=1

wmg(xxx(m))[Kng](xxx(m)). (4.6)

3. Ergodic sampling: the autocorrelations can be approximated as

〈g,Kng〉 ≈ 1
M − n

M−n−1∑
m=0

g(xxxm)[Kng](xxxm) = 1
M − n

M−n−1∑
m=0

g(xxxm)g(xxxm+n). (4.7)

The first two methods require multiple snapshots of the form {xxx(m)0 , . . . ,xxx(m)n }, with
[Kng](xxx(m)0 ) = g(xxx(m)n ). Ergodic sampling only requires a single trajectory, and the ergodic
averages in (4.7) can be rewritten as discrete (non-periodic) convolutions. Thus, by zero
padding, the fast Fourier transform computes all averages simultaneously and rapidly.

4.4. Computing spectral measures
We suppose now that one has already computed the autocorrelations 〈g,Kng〉 for 0 ≤
n ≤ Nac. In practice, given a fixed data set of M snapshots, we choose a suitable Nac by
checking for convergence of the autocorrelations by comparing with smaller values of M.
Following Colbrook & Townsend (2021), we define an approximation to νg as

νg,Nac(θ) =
Nac∑

n=−Nac

ϕ

(
n

Nac

)
ν̂g(n) einθ . (4.8)

The function ϕ : [−1, 1] → R is often called a filter function (Tadmor 2007; Hesthaven
2017) and ϕ(x) is close to 1 when x is close to 0, but tapers to 0 near x = ±1. Algorithm 5
summarises the approach, and the choice of ϕ affects the convergence.
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Residual dynamic mode decomposition

Algorithm 5 : Approximating spectral measures from autocorrelations.
Input: trajectory data, a filter ϕ, and an observable g ∈ L2(Ω,ω).

1: Approximate the autocorrelations ν̂g(n) = 1
2π

〈g,Kng〉 for 0 ≤ n ≤ Nac. (The precise
value of Nac and the approach depends on the trajectory data.)

2: Set ν̂g(−n) = ν̂g(n) for 1 ≤ n ≤ Nac.

Output: the function νg,Nac(θ) = ∑Nac
n=−Nac

ϕ
(

n
Nac

)
ν̂g(n) einθ .

For m ∈ N, suppose that ϕ is even, continuous and compactly supported on [−1, 1]
with

(a) ϕ ∈ Cm−1([−1, 1]);
(b) ϕ(0) = 1 and ϕ(n)(0) = 0 for any integer 1 ≤ n ≤ m − 1;
(c) ϕ(n)(1) = 0 for any integer 0 ≤ n ≤ m − 1,
(d) ϕ|[0,1] ∈ Cm+1([0, 1]).

Then, we have the following forms of convergence (Colbrook & Townsend 2021, § 3):

(i) Under suitable (local) smoothness assumptions, |νg,Nac(θ)− ρg(θ)| = O(N−m
ac

log(Nac)),
(ii) A suitable rescaling of νg,Nac (θ0) approximates the point spectrum at θ0,

(iii) For any φ ∈ Cn,α([−π,π]per),∣∣∣∣∣
∫

[−π,π]per

φ(θ)νg,Nac(θ) dθ −
∫

[−π,π]per

φ(θ) dνg(θ)

∣∣∣∣∣ � ‖φ‖Cn,α (N−(n+α)
ac + N−m

ac log(Nac)).

(4.9)

This last property is known as weak convergence. One should think of νg,Nac as a smooth
function that approximates the spectral measure νg to order O(N−m

ac log(Nac)), with a
frequency smoothing scale of O(N−m

ac ).
One can also compute spectral measures without autocorrelations. Colbrook &

Townsend (2021) also develop high-order methods based on rational kernels that
approximate spectral measures using the ResDMD matrices. Computing suitable residuals
allows an adaptive and rigorous selection of the smoothing parameter used in the
convolution. In particular, this set-up allows us to deal with general snapshot data
{xxx(m),yyy(m) = F(xxx(m))}M

m=1 without the need for long trajectories. For brevity, we omit the
details.

4.5. Interpretation of Koopman spectral measures as power spectra
We can interpret algorithm 5 as an approximation of the power spectrum of the signal
g(xxx(t)), given by Glegg & Devenport (2017, chapter 8)

Sgg( f ) =
∫ T

−T
Rgg(t) e2πift dt, (4.10)

over a time window [−T, T] and for frequency f (measured in Hertz). Here, Rgg(t) is the
delay autocorrelation function, defined for t ≥ 0 as

Rgg(t) = 〈g, g ◦ Ft〉, (4.11)
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where Ft is the forward-time propagator for a time step t. In particular, we have

Rgg(nΔt) =
{〈g,Kng〉 if n ≥ 0
〈g,K−ng〉 = 〈K−ng, g〉 otherwise

. (4.12)

We apply windowing and multiply the integrand in (4.10) by the filter function ϕ(t/T). We
then discretise the resulting integral using the trapezoidal rule (noting that the endpoint
contributions vanish) with step size Δt = T/Nac to obtain the approximation

Sgg( f )
2πΔt

≈
Nac∑

n=−Nac

ϕ

(
n

Nac

)
Rgg(nΔt)

2π
ein(2πf Δt) =

Nac∑
n=−Nac

ϕ

(
n

Nac

)
ν̂g(n) ein(2πf Δt).

(4.13)

It follows that νg,Nac(2πf Δt) can be understood as a discretised version of Sgg( f )/(2πΔt)
over the time window [−T, T]. Taking the limit Nac → ∞ with (2πΔt)f = θ , we see
that νg is an appropriate limit of the power spectrum with time resolution Δt. There are
two key benefits of using νg. First, we do not explicitly periodically extend the signal to
compute autocorrelations and thus avoid the problem of broadening. Instead, we window
in the frequency domain. Second, we have rigorous convergence theory as Nac → ∞. We
compare spectral measures with power spectra in § 6.

5. Example I: flow past a cylinder wake

We first verify our method by considering the classic example of low Reynolds number
flow past a circular cylinder, as focused on by Bagheri (2013). Due to its simplicity and
its relevance in engineering, this is one of the most studied examples in modal-analysis
techniques (Rowley & Dawson 2017, table 3), (Chen et al. 2012; Taira et al. 2020). We
consider the post-transient regime with Re = 100, corresponding to periodic oscillations
on a stable limit cycle. The Koopman operator of the flow has a pure point spectrum with
a lattice structure on the unit circle (Bagheri 2013) (this is not to be confused with the
two-dimensional lattice for the regime on and near the limit cycle that includes transient
modes inside the unit disc).

5.1. Computational set-up
The flow around a circular cylinder of diameter D is obtained using an incompressible,
two-dimensional lattice-Boltzmann computational fluid dynamics (CFD) flow solver. The
solver uses the two-dimensional 9-velocity lattice model (commonly referred to as D2Q9)
lattice and BGKW (Bhatnagar, Gross & Krook 1954) collision models to calculate the
velocity field. The temporal resolution (time step) of the flow simulations is such that
the Courant–Friedrichs–Lewy number is unity on the uniform numerical grid. However,
this results in a very finely resolved flow field and hence a large volume of data. An
initial down-sampling study revealed that storing 12 snapshots of flow field data within
a period of vortex shedding still enables us to use our analysis tools without affecting the
results. We also verified our results against higher grid resolution for the CFD solver. The
computational domain size is 18D in length and 5D in height. The cylinder is positioned
2D downstream of the inlet at the mid-height of the domain. The cylinder walls and
the side walls are defined as bounce-back no-slip walls, and a parabolic velocity inlet
profile is defined at the inlet of the domain such that Re = 100. The outlet is defined as a
non-reflecting outflow. For a detailed description of the solver, we refer the reader to Józsa
et al. (2016) and Szőke et al. (2017).

955 A21-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
52

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1052


Residual dynamic mode decomposition

–1.5

–1.0

–0.5

0

Im
(λ

)

Re(λ)

0.5

1.0

1.5

–1.0 –0.5 0
10–2

10–1

100
Spectral

pollution

0.5 1.0 1.5 –1.5

–1.0

–0.5

0

Re(λ)

0.5

1.0

1.5

–1.0 –0.5 0
10–2

10–1

100

0.5 1.0 1.5

(a) (b)

Figure 3. Pseudospectral contours computed using algorithm 2 for the cylinder wake example, using a linear
dictionary (a) and a nonlinear dictionary (b). The eigenvalues of the finite Galerkin matrices K are shown as
red dots in both cases. The computed residuals allow ResDMD to detect spectral pollution (spurious modes);
(a) τ200(λ), linear dictionary and (b) τ200(λ), nonlinear dictionary.

5.2. Results
We collect snapshot data of the velocity field along a single trajectory in the post-transient
regime of the flow and split the data into two data sets according to § 3.3.2. The first set
{x̃xx(m), ỹyy(m)}M′

m=1 corresponds to M′ = 500 snapshots. We then collect M′′ = 1000 further
snapshots {x̂xx(m), ŷyy(m)}M′′

m=1, where x̂xx(1) corresponds to approximately 40 time periods of
vortex shedding later than x̃xx(M

′). We use algorithms 3 and 4, which we refer to as
a linear dictionary (obtained using DMD) and a nonlinear dictionary (obtained using
kEDMD), respectively. For both dictionaries, we use N = 200 functions. Similar results
and conclusions are obtained when varying N,M′ and M′′.

Figure 3 shows values of τN (pseudospectral contours) computed using algorithm 2,
where τN is the minimal residual in (3.8). The circular contours show excellent agreement
with the distance to the spectrum, which is the unit circle in this example. The spectrum
corresponds to the closure of the set of eigenvalues which wrap around the circle. The
eigenvalues of the finite N × N Galerkin matrix K in each case are shown as red dots. The
linear dictionary demonstrates spectral pollution, i.e. ‘spurious modes’, all of which are
easily detected by ResDMD (e.g. algorithm 1). Generically, spectral pollution can occur
anywhere inside the essential numerical range of K (Pokrzywa 1979), which in this case
is the complex unit disc. Whether spectral pollution occurs is a subtle issue that is highly
dependent on the dictionary. In our case, we observed a reduction in spectral pollution
for smaller N, with pollution occurring once the linear dictionary cannot approximate
the higher-order modes. Detecting when this occurs is a considerable challenge; hence,
methods such as algorithm 2 are needed, particularly when we do not know the spectrum
a priori.

Figure 4 shows the convergence of τN(−0.5) (see (3.8)) as we vary N and M′′. As
expected, we see convergence as M′′ → ∞. Moreover, τN(−0.5) decreases and converges
monotonically down to ‖(K + 0.5)−1‖−1 = 0.5 as N increases. Although both choices of
dictionary behave similarly in figure 4, this is not the case for other choices of λ, as is
evident near λ = −1 in figure 3.

Figure 5 shows the eigenvalues of the finite N × N Galerkin K as a phase-residual plot.
Some eigenvalues computed using the linear dictionary have minimal relative residuals
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Figure 4. Convergence of τN(−0.5) as M′′ (the number of snapshots used to build the ResDMD matrices)
increases. The plots show the clear monotonicity of τN(−0.5), which decreases to ‖(K + 0.5)−1‖−1 = 0.5 as
N increases. (a) linear dictionary; (b) nonlinear dictionary.
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Figure 5. Phase-residual plot of the eigenvalues of K. The linear dictionary has very small residuals for the
lower modes, yet also suffers from severe spectral pollution. The nonlinear dictionary demonstrates the lattice
structure of the Koopman eigenvalues. Branches of the phase as the eigenvalues wrap around the unit circle are
labelled. (a) res(λj, g(j)), linear dictionary and (b) res(λj, g(j)), nonlinear dictionary.

of approximately 10−8. Since we compute the squared relative residual in (3.2) and
then take a square root, and due to the floating point arithmetic used in the software,
these small residuals are effectively the level of

√
εmach. The linear dictionary also

has severe spectral pollution. In contrast, the nonlinear dictionary captures the lattice
structure of the eigenvalues much better. We have labelled the different branches of the
phase as the eigenvalues (powers of the fundamental eigenvalues) wrap around the unit
circle.

To investigate these points further, figure 6 plots the errors of the eigenvalues, the
relative residuals, and the errors of the associated eigenspaces. For each case of dictionary,
we first compute a reference eigenvalue λ1 ≈ 0.9676 + 0.2525i corresponding to the first
mode, and the corresponding eigenfunction g(1). For each j, we compare the computed
eigenvalue λj with λ j

1. The computed residual satisfies res(λj, g(j)) ≥ τ200(λj) ≥ |λj − λ j
1|,
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Figure 6. Errors of the computed spectral information of each mode. (a) linear dictionary; (b) nonlinear
dictionary; (c) union of dictionaries.

confirming that algorithm 1 provides error bounds on the computed spectra. We evaluate
g j
(1) and g(j) at the points {x̂xx(m)}M′′

m=1, and the ‘eigenspace error’ corresponds to the
subspace angle between the linear spans of the resulting vectors (Colbrook & Hansen
2019, (1.4)). The linear dictionary does an excellent job at capturing the lower spectral
content, up to about j = 35, but is unable to capture the high-order eigenfunctions
that are strongly nonlinear (as functions on the state space). In contrast, the nonlinear
dictionary does a much better job capturing the higher-order spectral information. For
this problem, only a few Koopman modes are needed to reconstruct the flow. However,
for some problems, having nonlinear functions in the dictionary is essential to capture
the dynamics (e.g. see Brunton et al. (2016), and our examples in §§ 7 and 8). One is
completely free to choose the dictionary used in ResDMD. For example, one could also
use a mixture of the DMD and kEDMD computed dictionaries, or other methods. For
example, figure 6(c) shows that taking a union of the two dictionaries can capture the low
order modes with high accuracy and also cope with the nonlinearities of the high order
modes.

Figures 7 and 8 show examples of Koopman modes (see (2.15)) for the x component
of the velocity, computed using the linear and nonlinear dictionaries, respectively. Each
Koopman eigenfunction is normalised so that the vector

√
WΨXV(:, j) has norm 1. Modes

1 and 2 show excellent agreement between the two dictionary choices and can also be
compared with Taira et al. (2020, figure 3). However, for the higher mode (mode 20),
the two results bear little similarity. Mode 20 may be seen as a turbulence–turbulence
interaction mode that potentially stems from the nonlinear convection term of the
Navier–Stokes equation. From a mathematical aspect, the difference in the 20th Koopman
mode is because one cannot accurately capture highly nonlinear behaviour with a
linear approximation; eventually, there must be a breakdown in the approximation.
Whilst the low-order linear approximation does capture the (weakly) nonlinear low-order
behaviour, at higher order, the nonlinearity is strengthened. Thus the attempt to capture
it linearly is poor. Recall that the Koopman modes correspond to the vector-valued
expansion coefficients of the state in the approximate eigenfunctions, as opposed to
the eigenfunctions themselves. Thus, the difference indicates that for high-order modes,
nonlinearity becomes important in this expansion. We can be assured by the residual
measure in the ResDMD algorithm that the modes arising from using the nonlinear
dictionary are physical features of the flow and not spurious. ResDMD, therefore, brings
certainty to the high-order modal analysis of this classic example, which can be lacking in
prior DMD or EDMD approaches.
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Figure 7. Koopman modes for the cylinder wake, computed using the linear dictionary.
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Figure 8. Koopman modes for the cylinder wake, computed using the nonlinear dictionary (see graphical
abstract).

6. Example II: embedded shear layer in a turbulent boundary layer flow

We now use our method to analyse a high Reynolds number turbulent flow with a fine
temporal resolution. We consider the turbulence structure within a turbulent boundary
layer over a flat plate both with and without an embedded shear profile. A shear profile is
achieved by permitting a steady flow to be injected through a section of the plate. Turbulent
boundary layer flow can be considered a challenging test case for DMD algorithms,
particularly when assessing potential nonlinear flow behaviours, and the wide range of
length scales present in a high Reynolds number flow problem. On the other hand, the
embedded shear layer is anticipated to have a set of characteristic length scales with a
broadband energy distribution.

6.1. Experimental set-up
We consider two cases of turbulent boundary layer flow, a canonical (baseline) and one
with an embedded shear layer. Both cases are generated experimentally and detailed in
Szőke, Fiscaletti & Azarpeyvand (2020). For clarity, we briefly recall the key features and
illustrate the experimental set-up in figure 9. The baseline case consists of a canonical,
zero-pressure-gradient turbulent boundary layer (TBL) passing over a flat plate (no flow
control turned on). The friction Reynolds number is Reτ = 1400. In the experiments, the
development of a shear layer is triggered using perpendicular flow injection (active flow
control) through a finely perforated sheet, denoted by uAFC. The velocity field is sensed at
several positions downstream of the flow control area by traversing a hot-wire probe across
the entire boundary layer. The data gathered using the hot-wire sensor provides a fine
temporal description of the flow. For a more detailed description of the experimental set-up
and the flow field, see Szőke et al. (2020). A wide range of downstream positions and
flow control severity values were considered in the original study to assess flow control’s
effects on trailing edge noise. Here, the same data are used, but we focus our attention on
one streamwise position (labelled as BL3 in figure 9) and consider a flow injection case
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Figure 9. Schematic of the experimental set-up for a boundary layer with embedded shear profile, and side
view of the boundary layer near the flow control region.

where a shear layer develops as a result of perpendicular flow injection. Similar qualitative
comparisons (against power spectral densities) were found for different sensor locations
and different injection angles.

6.2. Results
The fine temporal resolution of the flow field enables us to assess the spectral properties
of the flow. We use algorithm 5 to calculate the spectral measures of the flow and compare
our results with the power spectral density (PSD) obtained using Welch’s PSD estimate
as described in Szőke et al. (2020). For this example, DMD-type methods cannot robustly
approximate the Koopman operator of the underlying dynamical system since data are
only collected along a single line. However, algorithm 5 can still be used to compute the
spectral measures of the Koopman operator.

As a first numerical test, we compute spectral measures of the data collected
at 10 % of the undisturbed boundary layer height (y/δ0 = 0.1). We then integrate
this spectral measure against the test function φ(θ) = exp(sin(θ)). Rather than
being a physical example, this is chosen to demonstrate the convergence of our
method. We consider the integral computed using the PSD (4.10) with a window
size of Nac for direct comparison, and algorithm 5 for choices of filter ϕhat(x) =
1 − |x|, ϕcos(x) = 1

2 (1 − cos(πx)), ϕfour(x) = 1 − x4(−20|x|3 + 70x2 − 84|x| + 35) and
ϕbump(x) = exp(−(2/(1 − |x|)) exp(−c/x4)) (c ≈ 0.109550455106347). These filters are
first, second, fourth and infinite order, respectively. Figure 10 shows the results, where we

955 A21-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
52

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1052


M.J. Colbrook, L.J. Ayton and M. Szőke
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Figure 10. Relative error in integration against the test function φ(θ) = exp(sin(θ)) for data collected at
y/δ0 = 0.1. Algorithm 5 converges at the expected rates for various filter functions. In contrast, the PSD
approximation appears to converge at a second-order rate initially but then stagnates. (a) relative error
(injection); (b) relative error (baseline).

see the expected rates of convergence of algorithm 5. In contrast, the PSD approximation
initially appears to converge at a second-order rate and then stagnates.

Figure 11 compares the spectral measure, as found using algorithm 5, with the PSD
(4.10) obtained from direct processing of the experimental data, where we have used
a window size of Nac for direct comparison. To directly compare with PSD, we use
algorithm 5 with the second-order filter ϕcos. A range of different vertical locations
y/δ0 are considered, where δ0 is the boundary layer thickness of the baseline case
(i.e. uAFC = 0 m s−1). Whilst the high-frequency behaviour is almost identical between
the two methods, at low frequencies (<10 Hz) the spectral measure returns values
approximately ∼1 dB greater than the PSD processing because the conventional PSD
calculation results observe broadening at low frequencies. Figure 12 confirms this and
shows the low-frequency values for Nac = 4000 and various choices of filter function. In
general, higher-order filters lead to a sharper peak at low frequencies. This comparison
also holds for different sensor locations (in figure 9) and different injection angles. As we
are assured that the spectral measure rigorously converges, this new method provides the
more accurate measure of the power at low frequencies as Nac → ∞.

7. Example III: wall-jet boundary layer flow

As a further example of TBL flow, we now consider a wall-jet boundary layer (George
et al. 2000; Gersten 2015; Kleinfelter et al. 2019). Whilst hot-wire probes enable a very
fine temporal resolution of the flow field, they are usually restricted to a single point
or line in space, and thus preclude the use of many DMD-type methods. On the other
hand, time-resolved (TR) PIV offers both spatial and temporal descriptions of the flow.
For this example, we assess the performance of the ResDMD algorithm on a set of
TR-PIV data. We consider the boundary layer generated by a thin jet (hjet = 12.7 mm)
injecting air onto a smooth flat wall. As in example II, this case is challenging for regular
DMD approaches due to multiple turbulent scales expected within the boundary layer.
This section demonstrates the use of ResDMD for a high Reynolds number, turbulent,
complicated flow field.
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Figure 11. Comparison of the traditional PSD definition (4.10) with spectral measure (4.13) (referenced to
1 m2 s−2), for baseline and injection flows, at a range of vertical heights within the boundary layer. (a) PSD
(injection); (b) spectral measure (injection); (c) PSD (baseline); (d) spectral measure (baseline).
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Figure 12. Zoomed in values for low frequencies computed using Nac = 4000 and various choices of filter
function. In general, higher order filters lead to a sharper peak at low frequencies. (a) injection; (b) baseline.

7.1. Experimental set-up
Experiments using TR-PIV are performed at the Wall Jet Wind Tunnel of Virginia Tech
as schematically shown in figure 13. For a detailed description of the facility, we refer
to Kleinfelter et al. (2019). A two-dimensional two-component TR-PIV system is used
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Figure 13. The schematic of the TR-PIV experiments conducted in the Wall Jet Wind Tunnel of Virginia
Tech.

to capture the wall-jet flow, and the streamwise origin of the field-of-view (FOV) is
x̂ = 1282.7 mm downstream of the wall-jet nozzle. We use a jet velocity of Uj = 50 m s−1,
corresponding to a jet Reynolds number of Rejet = hjetUj/ν = 63.5 × 103. The length and
height of the FOV are approximately 75mm × 40 mm, and the spatial resolution of the
velocity vector field is 0.24 mm. This resolution corresponds to dimension d = 102, 300
in (1.1). The high-speed cameras are operated in a double frame mode, with a rate of
12 000 frame pairs per second, resulting in a fine temporal resolution of 0.083 ms. For a
more detailed description of the experimental set-up and flow field, see Kleinfelter et al.
(2019) and Szőke et al. (2021).

The associated flow has some special properties. It is self-similar, and its main
characteristics (boundary layer thickness, edge velocity, skin friction coefficient, etc.) can
be accurately calculated a priori through power-law curve fits (Kleinfelter et al. 2019).
The flow consists of two main regions. Within the region bounded by the wall and the
peak in the velocity profile, the flow exhibits the properties of a zero-pressure-gradient
TBL. Above this fluid portion, the flow is dominated by a two-dimensional shear layer
consisting of rather large, energetic flow structures. While the peak in the velocity profile
is ym ≈ 18 mm from the wall in our case, the overall thickness of the wall-jet flow is
of the order of 200 mm. The PIV experiments must compromise between a good spatial
resolution and capturing the entire flow field. In our case, the FOV was not tall enough
to capture the entire wall-jet flow field. For this reason, the standard DMD algorithm
under-predicts the energies corresponding to the shear-layer portion of the wall-jet flow as
the corresponding length scales fall outside of the limits of the FOV. We also verified our
results, in particular the presence of the modes in figure 16, by comparing with different
spatial and temporal resolutions.

7.2. Results
We collect snapshot data of the velocity field from two separate realisations of the
experiment. We use the first experiment to generate data {x̃xx(m), ỹyy(m)}M′

m=1 with M′ =
2000, corresponding to 121 boundary layer turnover times. This data is used to select
our dictionary of functions. We then use the second experiment to generate data
{x̂xx(m), ŷyy(m)}M′′

m=1 with M′′ = 12 000 (a single trajectory of one second of physical flow time
and 728 boundary layer turnover times), which we use to generate the ResDMD matrices,
as outlined in § 3.3.2.
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Figure 14. Forecast of total kinetic energy (normalised by the time average of the kinetic energy), averaged
over the 12 000 initial conditions. Values closer to 1 correspond to better predictions.

To demonstrate the need for nonlinear functions in our dictionary, we compute the
Koopman mode decomposition of the total kinetic energy of the domain using (2.14).
Using this decomposition, we compute forecasts of the total energy from a given initial
condition of the system. Figure 14 shows the results, where we average over the 12 000
initial conditions in the data set and normalise by the true time-averaged kinetic energy.
We use algorithm 3 and 4 with N = 2000, which we refer to as a linear dictionary and
nonlinear dictionary, respectively. The importance of including nonlinear functions in
the dictionary is clear, and corresponds to a much better approximation of the spectral
content of K near 0. This is confirmed in figure 15, where we show the eigenpairs and
residuals for each choice of dictionary. The eigenvalues of non-normal matrices can be
severely unstable to perturbations, particularly for large N, so we checked the computation
of the eigenvalues of K by comparing with extended precision and predict a bound of
approximately 10−10 on the numerical error in figure 15. The nonlinear dictionary has
smaller residuals and a more resolved spectrum near 1 with less spectral pollution. Unlike
the example in § 5, the boundary of the spectra are not circular. Instead, they appear to
be centred around a curve of the form r = exp(−c|θ |) (shown as a black curve in the
plot), corresponding to successive powers of transient modes. Therefore, we only use the
nonlinear dictionary for the rest of this section.

To investigate the Koopman modes, we compute the ResDMD Koopman mode
decomposition corresponding to (3.6) with an error tolerance of ε = 0.5 to get rid of
the most severe spectral pollution. The total number of modes used is 656. Figure 16
illustrates a range of Koopman modes that are long-lasting (left-hand column) and
transient (right-hand column). Within each figure, the arrows dictate the unsteady fluid
structure (computed from the Koopman modes of the velocity fields), with the magnitude
of the arrow indicating the local flow speed, and the colour bar denotes the Koopman mode
of the velocity magnitude. The corresponding approximate eigenvalues, λ, and residual
bound, τN , are provided for each mode. Due to residuals, we can accurately select physical
transient modes. We also remark that many of these modes were not detected when using
a linear dictionary.

The modes in the left column of figure 16 illustrate the range of rolling eddies
within the boundary layer, with the smaller structures containing less energy than the
largest structures. Interestingly, the third mode in the left column resembles the shape
of ejection-like motions within the boundary layer flow (y/ym < 1). At the same time,
larger-scale structures above the boundary layer (y/ym > 1) are also visible. This may be
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Figure 15. The eigenvalues of finite Galerkin matrix K for the wall-jet example. For each
eigenvalue–eigenvector pair (λj, g(j)), the residual res(λj, g(j)) is shown on a colour scale. When truncating the
Koopman mode decomposition for figure 16, we kept those modes with residual at most 0.5. The black curve
corresponds to a fit r = exp(−c|θ |) of the boundary of the eigenvalues and represents successive powers of
modes. (a) res(λj, g(j)), linear dictionary and (b) res(λj, g(j)), nonlinear dictionary.

interpreted as a nonlinear interaction in the turbulent flow field that is efficiently captured
using the ResDMD algorithm. The transient modes in the right column of figure 16 show
a richer structure. We interpret these modes as transient, short-lived turbulence behaviour
based on our analysis. Again, the use of the conventional (linear) DMD method does
not enable the capture of these modes. The uppermost panel may be seen as the shear
layer travelling over the boundary layer (y/ym > 1), with the following panel potentially
seen as the breakdown of this transient structure into smaller structures. The third panel
may be seen as an interaction between an ejection-type vortex and the shear layer; note
the ejection-like shape of negative contours below y/ym = 1.5 with a height-invariant
positive island of contour at y/ym ≈ 1.75. Finally, the bottom-most panel could be seen as
a flow uplift out of the boundary layer and further turbulent streaks with counter-rotating
properties.

Using the autocorrelation functions of both streamwise (u) and wall-normal (v) velocity
components and algorithm 5, we obtain the streamwise wavenumber spectra of the velocity
fluctuations, shown in the top row of figure 17. The streamwise-averaged spectral measure
of the ergodic component of the flow for both streamwise and vertical unsteady velocities
are shown in the bottom row of figure 17. When observing either the wavenumber spectra
or the spectral measures of the streamwise velocity component, we see consistent spectra
across the different boundary layer heights due to the dominance of the strong shear layer
in the wall-jet flow. For the vertical velocity spectra, as one might expect, more energy is
observed for both wavenumber spectra and spectral measures with increasing y/ym.

8. Example IV: acoustic signature of laser-induced plasma

So far, our examples of ResDMD have focused on fluid flows. However, the capability
of ResDMD to capture nonlinear mechanics can be applied more broadly. Moreover,
the computation of residuals allows an efficient compression of the Koopman mode
decomposition through (3.6). As our final example, we demonstrate the use of ResDMD
on an acoustic example where the sound source of interest exhibits highly nonlinear
properties.
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Figure 16. (a,c,e,g) A range of long-lasting modes from the ResDMD Koopman mode decomposition.
(b,d, f,h) A range of transient modes from the ResDMD Koopman mode decomposition. The arrows
dictate the unsteady fluid structure (computed from the Koopman modes of the velocity fields), with the
magnitude of the arrow indicating the local flow speed, and the colour bar denotes the Koopman mode of
the velocity magnitude; (a) λ = 1.0000 + 0.0000i, τ2000(λ) = 0.0024, (b) λ = 0.9837 + 0.0057i, τ2000(λ) =
0.0175, (c) λ = 0.9760 + 0.1132i, τ2000(λ) = 0.0539, (d) λ = 0.9528 + 0.0000i, τ2000(λ) = 0.0472, (e)
λ = 0.9700 + 0.1432i, τ2000(λ) = 0.0602, ( f ) λ = 0.8948 + 0.1065i, τ2000(λ) = 0.1105, (g) λ = 0.9439 +
0.2458i, τ2000(λ) = 0.0765 and (h) λ = 0.9888 + 0.0091i, τ2000(λ) = 0.0146.

8.1. Experimental set-up
We investigate a near-ideal acoustic monopole source that is generated using the
laser-optical set-up illustrated in figure 18. When a high-energy laser beam is focused on
a point, the air ionises and plasma is generated due to the extremely high electromagnetic
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Figure 17. Pre-multiplied streamwise wavenumber spectra (a,b) and spectral measures (c,d) for streamwise
(u) and wall-normal (v) velocity components; (a) kx|φuu|, (b) kx|φvv|, (c) spectral measure (u field) and
(d) spectral measure (v field).
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LIPf1 = −50 mm f2 = f3 = 1200 mm

Figure 18. Schematic diagram of the laser beam set-up used to generate the laser-induced plasma.

energy density (of the order of 1012 W m−2). As a result of the sudden deposit of
energy, the air volume undergoes a sudden expansion that generates a shockwave. The
initial propagation characteristics can be modelled using von Neumann’s point strong
explosion theory (Von Neumann 1963), which was originally developed for nuclear
explosion modelling. For our ResDMD analysis, we use laser-induced plasma (LIP) sound
signature data measured using a 1/8 inch, Bruel & Kjaer (B&K) type 4138 microphone
operated using a B&K Nexus module Szőke et al. (2022). The data from the microphone
are acquired using an NI-6358 module at a sampling rate of fs = 1.25 MS s−1 (million
samples per second). With this apparatus, we can resolve the high-frequency nature of
the LIP up to 100 kHz. For a detailed description of the laser-optical set-up, experimental
apparatus, and data processing procedures, see Szőke et al. (2022) and Szőke & Devenport
(2021).
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Figure 19. Schlieren images of the initial LIP illustrating the shock wave formation and propagation;
(a) t = 5 μs, (b) t = 10 μs, (c) t = 15 μs and (d) t = 20 μs.

The important acoustic characteristic of the LIP is a short time period of initial
supersonic propagation speed, shown as Schlieren images taken over a 15 μs window
in figure 19. When observed from the far field, this initial supersonic propagation is
observed as a nonlinear characteristic even though the wave speed is supersonic only
until approximately 3–4 mm from the optical focal point. During the experiments, 65
realisations of LIP are captured using microphones. Each realisation of LIP is then gated
in time such that only the direct propagation path of the LIP remains in the signal (Szőke
& Devenport 2021). We use this gated data for our ResDMD analysis.

8.2. Results
For a positive integer d, we take the state at time step n to be

xxxn = ( p(n) p(n − 1) · · · p(n − d + 1))� ∈ R
d, (8.1)

where p is the acoustic pressure. This choice of state corresponds to time-delay embedding,
a popular method for DMD-type algorithms (Arbabi & Mezic 2017a; Kamb et al. 2020;
Pan & Duraisamy 2020). When we make future state predictions using the Koopman mode
decomposition, there is an additional interpretation of d. The value of d corresponds to the
initial time interval we use to make future state predictions. This interval is shown as
vertical dashed lines in the plots below.

We split the data into three parts. The first 10 realisations of LIP correspond to
{x̃xx(m), ỹyy(m)}M′

m=1 and are used to train the dictionary. The next 50 realisations correspond to
{x̂xx(m), ŷyy(m)}M′′

m=1, and are used to construct the ResDMD matrices. The final five realisations
are used to test the resulting Koopman mode decomposition. We verified our results
by comparing different splittings of the data into sets for dictionary learning, matrix
construction and testing. We consider two choices of the dictionary. The first is a linear
dictionary computed using algorithm 3. The second is the union of the linear dictionary
and the dictionary computed using algorithm 4 with N = 200. We refer to this combined
dictionary as the nonlinear dictionary.

Figure 20(a) shows the results of the Koopman mode decomposition (2.15), applied to
the first realisation of the experiment in the test set, with d = 10. Namely, we approximate
the state as

xxxn ≈ Ψ (xxx0)K
nV[V−1(

√
WΨX)

†
√

W[x̂xx(1) · · · x̂xx(M
′′)]�]

= Ψ (xxx0)VΛn[V−1(
√

WΨX)
†
√

W[x̂xx(1) · · · x̂xx(M
′′)]�]. (8.2)

In particular, we test the Koopman mode decomposition on unseen data corresponding
to the test set. The values of p to the left of the vertical dashed line correspond
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Figure 20. (a) Prediction using (8.2) on the first experiment in the test set. The values of p to the left of the
vertical dashed line correspond to xxx0. (b) The RMSE averaged over the test set for different values of d.

to xxx0. The nonlinear dictionary does a much better job of representing the system’s
nonlinear behaviour. While the linear dictionary can predict the positive pressure peak,
it fails to capture the smaller, high-frequency oscillations following the first two large
oscillations. These discrepancies between the linear and nonlinear dictionary-based results
also pinpoint where nonlinearity in the signal resides. In other words, the nonlinear
signature of the pressure wave resides in the negative portion of the wave. Figure 20(b)
plots the relative mean squared error (RMSE) averaged over the test set for different values
of d. The nonlinear dictionary allows an average relative L2 error of around 6 % for d = 15.

Figure 21(a) shows the corresponding pseudospectral contours, computed using
algorithm 2 with d = 10. We can use ResDMD to compress the representation of the
dynamics, by ordering the Koopman eigenvalues λj, eigenfunctions g(j) and modes
according to their (relative) residuals res(λj, g(j)) (defined in (3.2)), which provide a
measure of error in the approximate eigenfunctions. For a prescribed value of N′, we can
alter ε in (3.6) to produce a Koopman mode decomposition of the N′ eigenfunctions with
the smallest residual. In figure 21(b), we compare this with a compression based on the
modulus of the eigenvalues using 40 modes in each expansion. Ordering the eigenvalues
by their residuals gives a much better compression of the dynamics. To investigate this
further, figure 22 shows the error curves of the two different compressions for various
dictionary sizes and choices of d. This figure suggests that ResDMD may be effective in
the construction of reduced-order models.

9. Discussion and conclusions

This paper has implemented a new form of DMD, ResDMD, that permits accurate
calculation of residuals during the modal decomposition of general Koopman operators.
ResDMD computes spectra and pseudospectra of general Koopman operators with
error control, and computes smoothed approximations of spectral measures (including
continuous spectra) with explicit high-order convergence theorems. We have illustrated the
strengths of this new method through four examples of turbulent flow. For the canonical
example of flow past a circular cylinder, the residual allows accurate identification of
spurious modes and verification of nonlinear modes. For TBL flow, the residual ensures
we can accurately identify physical transient modes (and filter out spurious modes), which
leads to a greater understanding of the turbulent structures within the boundary layer.
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Further, by relating the Koopman spectral measure to the PSD, we show that processing
experimental data via the new ResDMD algorithm reduces low-frequency broadening that
is commonplace in conventional PSD calculations. ResDMD also provides convergence
guarantees. Finally, by analysing a LIP’s acoustic signature, we show that ordering
modes by their residual enables greater data compression than ordering modes by their
modulus. There are many potential extensions of these ideas. For example, ResDMD
may open the door to computing more exotic features of spectra of Koopman operators
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(Colbrook; Colbrook & Hansen), and physical questions such as studying and controlling
the transition to turbulence (Herrmann et al. 2021) or obtaining closure for turbulent
transport (Souza, Lutz & Flierl 2022). Other generalisations could include continuous-time
dynamical systems, control and stochastic systems. Since calculating the residual is as easy
and computationally efficient as traditional DMD, these new methods provide a valuable
toolbox for robust and verified Koopmanism.
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Appendix A. Spectral measures of Koopman operators

Any normal matrix A ∈ Cn×n, i.e. such that A∗A = AA∗, has an orthonormal basis of
eigenvectors v1, . . . , vn for Cn such that

v =
( n∑

k=1

vkv
∗
k

)
v, v ∈ C

n and Av =
( n∑

k=1

λkvkv
∗
k

)
v, v ∈ C

n, (A1a,b)

where λ1, . . . , λn are eigenvalues of A, i.e. Avk = λkvk for 1 ≤ k ≤ n. The projections vkv
∗
k

simultaneously decompose the space Cn and diagonalise the operator A. This idea carries
over to our infinite-dimensional setting with two changes.

First, a Koopman operator that is an isometry does not necessarily commute with
its adjoint (Colbrook & Townsend 2021) and hence is not normal. Therefore, we must
consider a unitary extension of K. Namely, a unitary operator K′ defined on an extended
Hilbert space H′ with L2(Ω,ω) ⊂ H′ Nagy et al. (2010, proposition I.2.3). Even though
such an extension is not unique, it allows us to understand the spectral information of K.
The spectral measures discussed in this paper are canonical and do not depend on the
choice of extension Colbrook (2022, proposition 2.1).

Second, if K′ has non-empty continuous spectrum, then the eigenvectors of K′ do not
form a basis for H′ or diagonalise K′. Instead, the projections vkv

∗
k in (A1a,b) can be

replaced by a projection-valued measure E supported on the spectrum of K′ (Reed &
Simon 1980, theorem VIII.6). K′ is unitary and hence σ(K′) lies inside the unit circle T.
The measure E assigns an orthogonal projector to each Borel measurable subset of T such
that

f =
(∫

T

dE( y)
)

f and K′f =
(∫

T

y dE( y)
)

f , f ∈ H′. (A2a,b)

Analogous to (A1a,b), E decomposes H′ and diagonalises the operator K′. For example,
if U ⊂ T contains only eigenvalues of K′ and no other types of spectra, then E(U) is
simply the spectral projector onto the invariant subspace spanned by the corresponding
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eigenfunctions. More generally, E decomposes elements of H′ along the discrete and
continuous spectrum of K′ (see (A3)).

Given an observable g ∈ L2(Ω,ω) ⊂ H′ of interest, the spectral measure of K′ with
respect to g is a scalar measure defined as μg(U) := 〈E(U)g, g〉, where U ⊂ T is a Borel
measurable set. It is convenient to equivalently consider the corresponding measures
νg defined on the periodic interval [−π,π]per after a change of variables λ = exp(i θ).
Lebesgue’s decomposition (Stein & Shakarchi 2009) splits νg into discrete and continuous
parts

dνg( y) =
∑

λ=exp(i θ)∈σp(K)
〈Pλg, g〉δ(y − θ)dy

︸ ︷︷ ︸
discrete part

+ ρg( y) dy + dν(sc)
g ( y)︸ ︷︷ ︸

continuous part

. (A3)

Throughout this paper, we use the term ‘discrete spectra’ to mean the eigenvalues of
K, also known as the point spectrum. This set also includes eigenvalues embedded in
the essential or continuous spectrum, in contrast to the usual definition of the discrete
spectrum. The discrete (or atomic) part of νg is a sum of Dirac delta distributions,
supported on σp(K), the set of eigenvalues of K. The coefficient of each δ in the sum
is 〈Pλg, g〉 = ‖Pλg‖2, where Pλ is the orthogonal spectral projection associated with the
eigenvalue λ. The continuous part of νg consists of a part that is absolutely continuous
with density ρg ∈ L1([−π,π]per), and a singular continuous component ν(sc)

g .
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