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THE PSEUDO-ORBIT SHADOWING PROPERTY 
FOR MARKOV OPERATORS IN THE SPACE 

OF PROBABILITY DENSITY FUNCTIONS 

ABRAHAM BOYARSKY AND PAWEL GÔRA 

ABSTRACT. Let X be a space with two metrics d\ and dj. Let S : 
(X,d\) —> (X,d^) be continuous. We say S has the generalized pseudo-
orbit shadowing property with respect to the metrics d\ and d^ if for every 
e > 0 3 < 5 > 0 3 every ^-pseudo-orbit in d\ can be e-shadowed by a true 
orbit in dj, i.e., if {JCO,*I, . . .} satisfies di(S(x/),x,+1) ^ 6 for all / ^ 0, 
then 3x G X 3 d2(S

l(x)1xi) ^ 6 for all / ^ 0. The main result of this note 
shows that certain Markov operators P : O —* 0 have the generalized 
shadowing property on weakly compact subsets of the space of probability 
density functions, where d\ is the metric of norm convergence and d2 is 
the metric of weak convergence. An important class of such operators 
are the Frobenius-Perron operators induced by certain expanding and non-
expanding maps on the interval. When there is exponential convergence 
of the iterates to the density, we can express 6 in terms of e. We also show 
that, unlike the situation in the space X itself, the generalized shadowing 
property is valid for all parameters in families of maps and that there is 
stability of the shadowing property. 

1. Introduction. Let (X1 d) be a compact metric space and let S : X —* X 
be a continuous map. The orbit of x G X is the sequence {JC, S(x),S2(x),...}. 
Given a number 5 > 0, a ^-pseudo-orbit is a sequence {JCO,JCI, . . .} such that 
d(S(xi),Xi+\) ^ 8 for all / ^ 0. An important example of a <5-orbit is a computer 
orbit, where computation errors occur at each iteration. In such cases it is of 
interest to know that pseudo-orbits can be approximated by true orbits of the 
map S. 

Definition 1. We say S : X —> X has the shadowing property (or the pseudo-
orbit tracing property) if for every e > 0 3 ( 5 > 0 3 that every ^-pseudo-orbit 
can be e-shadowed by a true orbit, i.e., if {xo,xi,...} satisfies d(S(xt),Xi+\) S 6 
for all / ^ 0, then 3x G X 3 d(S\x),Xi) Û e for all / ^ 0. 

The term shadowing was first introduced by Bowen fl] for Axiom A diffeo-
morphisms. In [2] it is shown that tent maps have the shadowing property for 
almost all parameter values, although there is an uncountable set of parameter 
values which is dense and for which the tent map does not have the shadowing 
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PSEUDO-ORBIT SHADOWING PROPERTY 1001 

property. 
The map S : X —• X induces a continuous map SM : M (X) —• fW (X), defined 

by SA//X(A) = /x(5_1A), where fW(X) is the space of probability measures on 
X. The elements of fW (X) can be viewed as statistical states, reflecting the fact 
that there is imperfect knowledge of the system. In [3] it is shown that many of 
the topological properties of S carry over to SM . In [5] the pseudo-orbit tracing 
property of S is shown to imply the pseudo-orbit tracing property for S M on 
certain closed subsets of measures with finite support. 

In this note we shall find it useful to employ a generalized notion of shad­
owing. Since we shall be using only linear operators, we state this property for 
such mappings. 

Definition 2. (Generalized Shadowing Property) Let X be a subset of a linear 
space with two metrics d\ and di. Let S : (X,d\) —> (X,^) be linear. We say 
S has the (<$, e) generalized shadowing property (with respect to d\ and di), or 
simply the generalized shadowing property, if for every e > 0 3 < 5 > 0 3 every 6-
pseudo-orbit (in d\) can be e-shadowed by a true orbit (in di), i.e., if {xo,x\,...} 
satisfies di(S(x/),*/+i) ^ 6 for all / ^ 0, then 3x G X 9 ^(S'OO?*/) = e for all 

Let (X, #,/x) be a finite measure space and let L1 = L*(X, #, / i ) with the 
L^norm || | | j . Let D\ denote the space of densities on X, i.e., the set of all 
normalized nonnegative elements of l)\ 

Di={feLl :\\f\\{ = l , / ^ 0 } . 

A linear operator P : Ll —> Ll is called Markov if P(D\) CD\.lt follows that 
||P/||i ^ 11/111. If Pf = / f o r some/ G L 1 , / is called a fixed point of P. 

Definition 3. We say P : L1 —» L1 is strongly (weakly) constrictive if there 
exists a strongly (weakly) compact set A C L1 such that 

lim inf HPY-s l l , = 0 
n—KX) gG4 

for/ G Dj. We shall refer to A as an attractor. 
In [8] it is shown that if P is weakly constrictive, then P is strongly con­

strictive. This is useful since it is easier to check for weak compactness than 
for strong compactness. From now on, we will delete the adjectives strong and 
weak. Examples of constrictive Markov operators can be found in [3]. 

Since D\ is a subset of L1, (D\,a) is a metric space, where a is the metric 
induced by the L1 norm || ||i. We shall also consider D\ with the topology of 
weak convergence, i.e., fn —•/ if and only if for every h G L°° — L°°(X, # , //), 

/ h(x)fn(x)n(dx) —• / h(x)f(x)fi(dx) 
Jx Jx 
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1002 ABRAHAM BOYARSKY AND PAWEL GORA 

as n —• oo. If h G C(X), the space of real-valued continuous functions on X, we 
shall refer to this as vague convergence. 

Let {cf)n} be a countable dense subset of C(X) in the sup norm topology. Let 

(3n = SUp \<l>n(x)\ > 0 

xex 

and let {an} be a sequence of positive real numbers such that 
oo 

^2 anPn = OC Û 1 . 
n=\ 

Define the semi-norm || || on L1 by: 

n(x)f{x)p,(dx)\ T]an\ / <t>n( 

Clearly | | / | | ^ « | | / | | i , and || || defines the topology of vague convergence on 
D\. Let p be the metric induced by || ||. 

LEMMA 1. Let D C D\ be a weakly compact set. Then the weak topology of 
L\, restricted to D, is defined by \\ ||. 

Proof. Since D is weakly compact, it is vaguely compact. Hence, given any 
sequence {/„} C D , there exists a subsequence, also labelled by n, such that for 
each </> e C(X), 

/ 4>(x)fn(x)v(dx) —> / 
Jx Jx 

4>(x)fn{x)iL(dx) —> / <j>(x)f(x)fi(dx) 
Jx 

for some/ G D, i.e., \\fn — f\\ —•» 0 as n —> oo. We claim that/„ —•/ weakly. 
Suppose that this is not the case. Then there exists a subsequence {fnk} such 
that for some e > 0, 

[ h(x)fnk(x)fi(dx) - [ h(x)f(x)ii(dx) 
Jx Jx 

>e 

But {fnk} is weakly compact. Thus there exists a further subsequence {fnk,} 
such that fnk, —>f weakly, which implies that for any </> G C(X), 

But 

[<Kx)fnk,(x)ii(dx)-+ f <t>(x)f'{x)ii(dx) 
Jx Jx 

l (l)(x)fnkXx)^(dx)-^ / (f)(x)f(x)p,(dx) 
Jx Jx 
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Hence, 

/ <j>{x)f'{x)p{dx) = [ <}>{x)f(x)p(dx) 
Jx Jx 

for all / G C(X). Hence f — f a.e., and we have a contradiction. Thus vague 
convergence in || || implies weak convergence. Since weak convergence obvi­
ously implies vague convergence, we have the desired result. • 

The main result of this note is that under certain conditions, the operator P, 
when viewed as a map from the metric space (D,tr) into the compact metric 
space (Z), p) has the generalized shadowing property. An important example of 
such operators are the Frobenius-Perron operators induced by expanding and 
certain non-expanding maps of the interval. 

Notice that although the map for S : X —• X may not have the shadowing 
property, the Frobenius-Perron operator corresponding to S, Ps : Ll —* L1, may 
have the generalized shadowing property. For example, consider the tent map 
S : [0,2] —>[0,2], defined by: 

S(x) = f V2x, 0 Û x Û 1 

1 V5(2 - JC), 1 ^ x Û 2 

It is shown in [2] that S does not have the shadowing property. However, we will 
see that Ps has the generalized shadowing property with respect to the metrics 
a and p. 

2. The shadowing property in the space of densities. Let (X, p) be a 
compact metric space. For A C X, closed, let 

Ae = {x eX : inf p(x,y) < e} 
yeA 

be an e-neighbourhood of A. In the sequel we shall require the following ele­
mentary stability result. 

LEMMA 2. Let P : (X, p) —• (X, p) be continuous. Assume there exists a closed 
set A C X such that PA — A and that 

(1) (tP'x, A) = inf p(P'x, y) -» 0 
yeA 

as i —> CO uniformly for all x £ X. Then for any e > 0 and any 6 > 0 3 a 
positive integer N 3 PnAe+$ C At for n ^ N. 

Proof We know from [6] that there exists a neighbourhood U of A such that 
P(U) C U. We can assume U C Ae. Now it is enough to prove that for some 
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1004 ABRAHAM BOYARSKY AND PAWEL GORA 

positive integer N we have PN(Ae+t) C U. Let d — inf {pO, v) : x G A, y £ U}. 

From (1), we obtain that there exists an N such that for any n ^ N and any 

x e X we have p(Pnx, A) < d/2. Hence PN(Ae+è) C Ad/2 C U, and the proof is 

complete. • 

We assume that P : X —> X is continuous in both metrics p and a. We 

denote the modulii of continuity with respect to p and a we denote by UJ and 77, 

respectively: 

o;(0 = sup {p(Px, Py) : *, y G X, p(jc, j ) ^ f}; 

ry(r) = sup {a{Px, Py) : x j G X , <r(*,)0 ^ t}. 

For a modulus of continuity 7 and s, t > 0, we define: 

*i — s; 

tk+\ =l(tk) + t fork= 1, 2 , . . . 

We put Q(7 ,£ ,* ,# ) = max {fi,f2? •••^w-i}» where Af is a positive integer. 

Note, that if 7 (0 ^ f, then Q(7, s, t, N) ^ 5 + (N - l)t. 

LEMMA 3. Let P : X —y X be continuous in both metrics p and a. If PN has 

the (<5,e) generalized shadowing property, then P has the (<5j,ei) generalized 

shadowing property, where 6\ is chosen to satisfy Q(r/,5i,^i,^V) < 8 and e\ = 

£2(a;, e,£i ,N). Note, that if r)(f) ^ t and uj(t) è t, then we can take 6\ = 6/N 

and e\ — e+6. If P has the (<5, e) generalized shadowing property, then PN also 

has the (£, e) generalized shadowing property. 

Proof We remark that 6\ > 0 satisfying Q(r],6\,6\,N) < 6 can always be 

found because 77(f) —-» 0 as t —> 0. Now let {JCO,JCI, . . . } be a 6\-pseudo-orbit for 

P. We will prove first that the sequence {XQ,XN,X2N, • •.} forms a ^-pseudo-orbit 

for PN. Let us fix a nonnegative k and let M = kN. We have a(jPxAf ?*M+I) < ô\ 

so <7(P2XAf ,PxAf+i) < 77(61). Since cr(PxM + bxM + 2) < 61, we get 

a(P2xM, xM+2) < r)(6\) + 6]. 

Repeating this reasoning N — 1 times, we obtain 

a(PNxkNx{k+l)N) < Q(ri,6\,ë\,N). 

Therefore {XO1X^1X2N1 • • •} is a ^-pseudo-orbit for PN. 

Since PN has the (<5, e) generalized shadowing property, there exists a point 

y E X such that for any positive integer k we have p(PNky,xkN) < e. We shall 

prove the existence of an e 1 such that for any k and any 1 f^j^N—l, 

(2) ^ ^ ^ - X e i . 
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Now, we have p(PNky1x/iN) < £• By the definition of w, we obtain p(PNk+ly, 

PxkN) < UJ(E). Since {jto,*i, . . .} is a 8\-pseudo-orbit for P , we obtain: p(PNk+ly, 

*kN+\) < w(e) +ô\. We have therefore proved (2) for y = 1. Continuing in this 

way, we obtain (2) for all j; è N — 1. 

To prove the second part of the lemma, we proceed as follows: If {JCO, JCI, 

;t2, • • .} is a ^-pseudo-orbit for PN, then 

(3) {x0l Px0l P2x0,...,P
N~lx0, x\, Px\,...,PN~lx\, x 2 , . . . } 

is the 6-pseudo-orbit for P. There exists y G X such that the orbit {y, Py, 

P2y,...} approximates the pseudo-orbit (3) within e. It is obvious that the orbit 

{y, PNy, P2N,...} approximates the orbit {JCO,JCI,JC2, . . . } within e. • 

LEMMA 4. Let a be the norm metric in L1 and p the metric of weak conver­

gence in D, defined above. Then, for all f\g G D, we have p(f,g) = 0"(/,g). 

Proof The proof follows from the definition of the semi-norm || || and the 

fact that a ^ 1. • 

Let D be a compact set of (Di, p). An example of such a set is Dg = {/ G 

D\ : / ( JC) ^ g(x)}, where g is an L1 function, or any bounded set in LP, p > 1. 

THEOREM 1. Let P : L1 —> Ll be a constrictive Markov operator with the 

attractor A consisting of a single element f* of a p-compact set D C D\. 

Assume PD C D. If 

lim l i p " / - A l l i = 0 

uniformly for allf G D, then P : (D, a) —• (D, p) /zas f/i£ generalized shadowing 

property (with respect to the metrics a and p). 

Proof Fix e > 0. By Lemma 2 there exists an integer Afo > 0 such that 

PN°(D) C Ae. Let 6 = e/Afo. Let N be the smallest positive integer such that 

PN(A2e) C A£. Let P = P N and A; = [(Afo - l)/N] + 1, where [t] is the greatest 

integer Û t. We have it ^ N0, iW ^ N0 and P*/0 € Ae for any / 0 G D. 

Let us consider any ^-pseudo-orbit, {/o,/i,/2, • • •} for P starting from a point 

/o G D, (j(Pfi,fi+\) < 5, for all /. Lemma 4 implies that we also have: 

(4) p(Pfnfl+l)<6, i = 0, 1, 2 , . . . 

By induction it can be proved that 

piPf^fjXjè, for any I S . / S * , 

since we have 

a(PJ+% J5+1) S ff(P(Py0), Pfj) + a(Pfh fj+]) èjS + 6. 
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1006 ABRAHAM BOYARSKY AND PAWEL GORA 

By Lemma 4, we get, for j = 0 , 1 , . . . , k, 

(5) p(PjfoJj) ^kb^e. 

So far we have shown that the ^-pseudo-orbit (in a) {/o7/b/2, • • •} and the 
true orbit {Pjfo} stay close to each other for the first k iterates. It remains to 
show that this is the case for all other iterates. 

By the definition of N, PA2t C A€, and by the definition of k, Pkfo G Ae. Now 
(5) implies fa G A2t- Thus the definition of TV once again implies that Pfa G Ae, 
and by (4), we have 

fa+\ £Ae+è CA2e-

Therefore, since Pk+lfo G Ae,fa+\ G Ae+s, and since A consists of a singleton, 

p(Pk+lfo,fa+0<2e+6<3e. 

We can repeat the reasoning inductively and combining this with (5), we get: 
°(Pfj,fj+\) < <5 for all j è O implies that p(PJfoJj) < 3e for all j' ^ 1. Thus we 
have established the generalized shadowing property for P. By Lemma 3, we 
have it for P. • 

Although it appears that the assumption P(D) C D is restrictive, we shall 
show that there exists a natural family of weakly compact sets D with this 
property. 

Let (X, <B, /i) be a measure space with <B a countably generated a-algebra of 
measurable sets. If P is a Markov operator on L1 = L1 (X, <B, /i) then there exists 
a transition function [16, section V.4], P( , ), which is a measurable function 
in the first variable and a measure in the second variable, such that P is the 
unique operator satisfying: 

j{Pf)g dp = Jf{x) \jp(x, dy)g(y)\ p(dx) 

for a l l / G L1 and g G L°°, i.e., P is the operator adjoint to the operator 

Tg(x)= [P(X, dy)g(y). 

Now we assume that p is a P( , ) invariant measure, i.e., 

/i(£) = / P(x,B)p(dx), B e<B, 
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GL* 

^ M} and 

or, equivalently, 

Jg(x)fi(dx) = J fp(x, dy)g{y)ii{dx), 

We shall prove that P(DM) C £>M, where DM = {f <E LP 
p > 1. D^ is, of course, a weakly compact set in L1. 

For g such that \/p + Xjq = 1, we have: 

||/y||„ = suP { | |(/y)gj/i |: |U||^ij 

= sup J Jf(x) (JP(X, dy)g(y)\ fi(dx)\ 

so it is enough to prove that the operator T is a contraction in Lq. By Jensen's 
Inequality and the P( , ) invariance of //, we have: 

^ 1 

/ / p ( -
4y)#(y) H(dx) ^ J jP(x, dy)\g(y)\y(dx) 

= J \g(x)\y(dx). 

This ends the proof. 

Using the above representation of the operator P, we can associate a special 
metric with P. Let {</>„} be a countable dense subset of C(X). We define the 
metric p as follows: 

P(/, ^) = X ) « n X ) < : 1 iTkct>n)(f-g)d^V 
n=\ k=0 ' ^ ' 

where 0 < c < 1 and 
OO 

J ^ an/3„ ^ 1 - c, 

where /3n = sup |</>„|. 
The metric p gives the weak L\ topology on any weakly compact set in L\. We 

shall now show that P is Lipschitz continuous with the constant \/c. Consider 

dfi P(/y, pg) = JT a« Ë c I t^tnW - ps) 
n=\ k=0 ' ^ 

oo oo i r 

= X > " Z C 1 (Tk+^n)(f-g)dfi 
n=\ k=0 ' ^ 

OO OO I n. 

= XlcYja"YJ
ck\ j(Tk4>n)(f-g)d^ 

i ; i J = 1 k=\ 

< l/cp(f,g). 
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If we use the metric p associated with P, the number e\ obtained in Lemma 

3 can be expressed more explicitly. 

Remark 1. If p is the special metric associated with the operator P, then in 

Lemma 3 we can take 

CI = ebN~l + (6/N)(l + b + • • • + * " - 1 ) = ebN~x + g ( 1 ~ ^ \ w A ' /V(l - / ? ) ' 

where fr = 1/c. 

In many practically important situations we have exponential convergence 

of the iterates to the invariant density. In such cases, we can express 6 in terms 

of e. 

PROPOSITION 1. Let us assume that there exist H > 0 and 0 < q < 1 such 

that for any f G D 

\\Pnf-r\\x<Hqn. 

If p is the metric associated with P, then P has the (S, e) generalized shad­

owing property with 

(6) b~ const (/7)e(1+r/) 

as e —• 0, for any r\ > 0. 

Proof First, we obtain a bound on No from the proof of Theorem 1. We want 

||pM,y _ / * | | , < e so it is enough to take iV0 = [(\ogq(e/H)] + 1. By Theorem 1, 

Lemma 3, and Remark 1, we know that P has the (8,e) generalized shadowing 

property with 6 = 3e/NNo and 

- = 3 ^ - , + 3^-l) 

NN0(b- 1) 

Since TV < No, and b can be chosen as near to 1 as we like, we have 

I ~ const e(\ogq(eIH))~2 ~ const e{l+71]) 

and 

I ~ const e(e/H)]o^b(\ogq(e/H)r2 ~ const e
(l~m\ 

where r/i, r/2 are positive and arbitraly small real numbers. Thus, for r\ 

(ill + Î 7 2 ) / 0 ~ 772) w e obtain <5 ^ const e(1+r/). 
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Remark 2. Since 6 is the precision of the pseudo-orbit, it is of practical 
significance to know how it is related to e. If we desire a true orbit to be within 
ê of a ^-pseudo-orbit, (6) tells us what I must be. 

3. Frobenius-Perron operator. Let (X, J5, //) be a measure space, S : X —• X 
a nonsingular transformation, i.e., p(S~]E) — 0 for all E G B 3 p(E) — 0. The 
unique operator Ps : Lx —• L1, defined by 

[ Psf(x)p(dx) = [ fWrtdx) 
JE JS~1E 

for E G B, is called the Frobenius-Perron operator corresponding to S. It is easy 
to show that Ps is a linear operator; Psf ^ 0 if / ^ 0; /V = ^5» where />$« is 
the Frobenius-Perron operator corresponding to Sn; and 

[ Psf(x)p(dx) = ffOcMdx) 
Jx Jx 

Clearly Ps is a Markov operator. The adjoint to the Frobenius-Perron operator 
is the Koopman operator: 

U(g) = goS, 

where g G L°°. In other words, we have 

J(Pf)(x)g(x)p(dx) = Jf(x)g(Sx)p(dx) 

for any/ G Lx and any g G L°°. 
For the Frobenius-Perron operator of S, the metric p associated with Ps is 

given by 

00 00 I r 1 

P ( / , S ) = I > n X y U4n°Sk)(x)<J-g)(x)»(x)\. 
n=\ k=0 ' ^ I 

Definition 4. Let (X, 5, /z) be a probability space and ^ : X - > X a nonsingu­
lar, measure preserving transformation, i.e., p(S~lE) = /i(£) for every E £ B. 
Assume S(E) G 5 for every E G #. If 

lim /i(S"£) = 1 

for every E G #, /z(£) > 0, 5 is called //-exact. 
The connection between exactness of S and Ps is expressed in the following 

result [3, Theorem 4.4.1]: 
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PROPOSITION 2. Let (X,Z?,/z) be a probability space and S : X —• X a non-
singular transformation. Assume there exists a unique f* G D 3 P$f* = /*, 
where Ps is the Frobenius-Perron operator corresponding to S. Then S is in­
exact, where \i is the measure whose density is /*, if and only if for every 
f€D, 

l i m | | P B / - r | | , = 0 . 
n—->oo 

Since Ps is Markov, Proposition 1 states that Ps is a constrictive Markov 
operator if S is /i-exact. We can now apply the results of section 2, to obtain: 

PROPOSITION 3. Let (X,#,/x) be a probability space, and let S : X —> X be 
p-exact, where \i is an absolutely continuous invariant measure with density f*. 
Let D be a weakly compact subset of D\, and assume that PsD C D. Assume 
that \\Ps\f ~~/*||i —> 0 as n —> oo uniformly with respect to f G D. Then 
Ps : (D,cr) —y (D, p) has the generalized shadowing property. 

4. Examples 

Example 1. (Expanding Maps of the Unit Interval) 
Let / = [0,1]. For a function/ : / —• R, set 

n 

var( / )= sup ^2\f(ai)-f(ai-i)l 
ciQ<a]<---<an£l . _ . 

and for an equivalence class/ G L1, define 

V(f) = M{var(f):fef} 

Let BV = {/ G L1 : V(f) < oo}, and for/ G BV, define 

ll/llv = V(/) + ||/||1 

11/11 v is a norm on Z?V, which makes (BV, \\ \\y) into a Banach space. Z?V is a 
dense linear subspace of (L1, || ||i) and {/ G BV: \\f\\v ^ 1} is a || ||i compact 
subset of L1. In the sequel we shall not distinguish between a function and its 
equivalence class. 

Following [9], we denote by S the class of Markov operators P : Ll —> L1 

which satisfy the following condition: P(BV) C BV and there exist constants 
A > 1, c > 0, and a positive integer /: such that \\P\\v < oo and 

l lPVllv^H/llv + Cll/lh 
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for/ G BV. The subclass of S satisfying the foregoing condition for a specific 
À and C is called S (A, C). 

Let T, denote the class of expanding, piecewise C1 maps S : / —> / which 

satisfy the condition that — is of bounded variation, where // is any interval of 
5|// 

the defining partition. In [11] it is shown that Ps belongs to S. From the ergodic 
theorem of Ionescu Tulcea and Marinescu [12], it follows that the operators in S 
are quasi-compact as operators on (BV, \\ \\v). Thus, Ps has only finitely many 
eigenvalues Ai, A2,..., Xp of modulus 1; the corresponding eigenspaces Et are 
finite dimensional subspaces of BV and Ps has the following representation: 

p 

i=\ 

where the O, are projections onto the £7, ||0/||i ^ 1, Of- o $,• = 0 (/ ^ j), and 
where Q : L1 —» L1 is a linear subspace with sup„ ||!2n||i ^ p+ 1, ô ( ^ ^ ) C #V, 

(7) ne^iiv^//^ 

for some 0 < q < 1 and H > 0, and Q o O, = O, o Q = 0 for all 1. If 
dim(£'i) = I, Ps is ergodic. P$ is mixing if Ps is ergodic and 1 is the only 
eigenvalue of Ps of modulos 1. 

Let S G £ . Then from the main result of [7], there exists a constant ^ , 
independent of/, such that 

limsup VPn
sf ^K 

n—>oo 

for every/ e D of bounded variation. Let D = {/ e £>i : Vf S K'}, where K' 
is any number greater than or equal to K. Then D is weakly compact. Let us 
assume that S admits a unique absolutely continuous invariant measure [i with 
respect to which it is exact (or even only mixing). Let/* be the density of this 
measure. Then from (7) it follows that convergence to/* is uniform with respect 
to a l l / G D: 

\\p»sf-r\\v£Htf 

where H > 0 and 0 < q < 1 are independent of/ e D. Hence 

iipsz-ni,^^ 

and we have uniform convergence in the a metric to/*. 
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In view of Proposition 2, we have the generalized shadowing property for 
Ps : (D,a) —-> (£>,p). In fact in this setting, it is easy to show that Ps : 
(D, || ||i) —> (Z), || ||i) has the shadowing property [10]. 

A trivial example of a map Ps G S is the case where S is any triangle map 
with slope > 1 in absolute value. 

Example 2. (Random Maps of the Interval) 
Let Si, 52, • •., Sm be maps of / and define a "random map" S by S(x) — S,-(JC) 

with probability pt. A measure /i is called S-invariant if 

m 

p(A) = J2 Pi^(SrlA) 

for each measurable set A. Assume each S/ G £ . If for all x G 7, 
m 

then it is shown in [141 that the Markov operator Ps defined by 

m 

i=0 

satisfies, for a l l / S BV, 

(8) VPs/^crV/ + *r||/||, 

for some 0 < a < 1 and K > 0, both independent of/. Hence 

\\Psf\\v = VPsf + \\Psf\\, 

^aVf + ^H/ll,+II/H, 

Sa||/ | |v+*'| |/ll.-

Hence />$ satisfies (6) and is in 5 (a, AT7). 
If Pc is ergodic and mixing (see Cor. 7 of [14] and [15]), then we have the 

existence of a unique /* such that 

\\Pnsf-f%^Hq" 

for all / G D = {/ G D, : Vf ^ # , } , where // > 0 and 0 < 4 < 1 
are independent of/, and K\ is any sufficiently large positive number. Hence 
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Theorem 1 applies and the Markov operator Ps has the generalized shadowing 
property. 

Example 3. (Markov Operators Defined by Kernels) 
Consider the integral operator P : L1 —> L1, defined by 

Pu(x) = / b(x, y)u(y) dy, 
Jo 

where b : (0, l)x(0, 1) —> [0, oo) is measurable and stochastic, that is 

/ /?(x, y) dx — \ 
Jo 

for y G (0,1). Assume that for some B > 0, /?(JC,^) ^ 5 for all JC and y G (0,1). 
Then the operator P is constrictive [11]. Let D = {/ G D :f(x,y) ^ 5} . Then 
PD C D. Assume P has a unique fixed point/* G D. Then the convergence to 
/* is uniform with respect to a l l / G D [13]. Hence Theorem 1 implies that P 
has the generalized shadowing property. 

Let us moreover assume that there exist a positive integer Af and r > 0 such 
that 

r^bN(x,y) 

for all x G X and y from some set of positive /i-measure, where 

bN(x, y)= / . . . / fc(*, zi^feb zi)...^feyv-i, y)n(dz\)... ii(dzN-i)-

Then the convergence to the invariant density/* is exponential and all the results 
of section 2 apply. 

5. Frobenius-Perron operators with respect to a non-invariant measure. 
In this section we treat a more general situation than in the previous sections. 
We will consider the Frobenius-Perron operators with respect to a non-invariant 
measure. 

Let (X, *B, m) be a measure space and S : X - > I a nonsingular transformation 
with respect to m, i.e., m(B) = 0 => m(S~l(B)) = 0, for any P G # . Let P5 be 
the Frobenius-Perron operator with respect to the measure m induced by S. 

In this case the assumption that Ps(D) C D can be too restrictive, but we 
shall show that if D is a ball in some LP space (p > 1), then we can find a 
smaller ball D such that P^(D) C D for all n ^ 0, and thus all our reasoning 
can be repeated. 
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5.1. Expanding maps of an interval. For Lasota-Yorke maps, piecewise 
convex maps [3, Theorem 6.3.1], and maps with l/\Sf\ of bounded/^-variation 
[18], the set {PJ(1) : n ^ 1} is bounded in L°°. For any / G DM = {/ G LP : 
\\f\\p Û M} and any g eLq (l/p + l/q = 1), we have 

J(Pnsf)gdm = Jf(goSn)dm 

On the other hand, 

J'\g o Sn\q dm = j ' \g\q(Pn
s(D) dm S sup \\Pn

s(l)\\oo f \g\q dm. 

Thus there exists a constant K such that ||JPg/'||/7 ^ KM, for any positive integer 
n and any/ G DM. This implies that P^DM/IK) C D M , for any w. 

Hence all the results of sections 2 and 3 hold for the transformations consid­
ered here. 

5.2. Non-expanding maps of Misiurewicz type. In this section we use the 
results of Szewc [17]. Let S be a Misiurewicz-type transformation of an interval 
/. Let C be the set of all "bad" points of S: singular points and endpoints of /. 
Let 

B = \JS\C) 

and Bo = cl(B). By J we denote the partition of I \ BQ into its connected 
components. 

We define C£°6
)+1 as a space of functions which are defined on / \ BQ and are 

Lipschitz continuous on any compact subset of any J G J. The norm in C °̂e
)+1 

is defined as follows: 

| | / | | (0Hi=max{| | / | | £ , | / | ( 0 ) + i } , 

where 

\\fl = sup sup J£! 

| / ' | 
|/|(0)+i = sup essup — 

Jey J <t>\ 

and <j)e, (j>\ are appropriate weight functions. 
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C^e
)+1 is a Banach space, it is Ps invariant, and any ball in it is compact in 

L\. By Theorem 6.3 of [17], there exist constants T > 0 and 0 < 7 < 1 such 
that for any/ G Cf^x\ 

1 1 0 ^ ) 1 1 ^ r7l / | | (o ) + i f o r / i = l , 2 , . . . , 

where On(/) = P£f — P%(Ilf) and n is the projection on the space of invariant 
densities. This space is spanned by the finite number of ergodic densities. Thus 
P$ is a constrictive operator. In case there exists only one absolutely continuous 
invariant measure (5 is exact) all the results of sections 2 and 3 apply. 

6. Stability of the shadowing property in families of maps. In [2] it is 
shown that the family of tent maps have the shadowing property for almost 
all parameter values, although they fail to have the shadowing property for an 
uncountable dense set of parameters. This implies that there is no continuity 
in the shadowing property; a small change in S may result in the loss of the 
shadowing property. Clearly this renders such a result unpractical for the analysis 
of experimental or computational systems. In the space of probability density 
functions, the situation is dramatically different. In this section, we shall prove 
that for many families of maps the shadowing property is preserved as the 
parameter varies over its range. 

As in [9], we employ the following Skorokhod-like metric on *£: 

r(Su 52) = inf|e > 0 : 3ECl3r) : / -+ / 3 m(E) > 1 - c, 77 is 

a diffeomorphism, S\\E — S2 ° f]\Ei and for all 

x eX, \r](x)-x\ <e, —— - 1 <e 
| # ) I J 

The following result is contained in Corollary 14 of [9]. 

LEMMA 5. Let {Sn} C *£ and let S C *£. Let Pn be the F rob enius-Perron 

operator corresponding to Sn. Assume {Pn} C 5(A,C) for some À > 1 and 
C > 0. If r(Sn,S) —> 0 as n —> 00 and S is ergodic, then Sn is ergodic for n 
sufficiently large and the unique invariant densities of Sn converge in L[ to that 
ofS. 

Let {Sa}aeA C £ be a family of maps {A is the parameter space) satisfying 
the following conditions: 

(i) Let 7 be a fixed partition of I such that all Sa are piecewise C2 with 
respect to this partition, 

(ii) \S'a(x)\ ^ A > 1 for all a G A 
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(iii) There exists a real constant c such that 

1 ^ 
V — ^ c < o o . 

for all a G A. 
(iv) Let each Sa admit a unique absolutely continuous invariant measure \ia 

on /. 
We can now state the main result of this section. 

THEOREM 2. (Stability of Shadowing Property). Let {Sa}aeA C £ satisfy 
conditions (i)-(iv). Assume that the map a —> Sa from (Ĵ L, | |) —• ( £ , r ) /s 
continuous. Then for each ao G A 3 <2 neighbourhood C\£ of ao 3 /or ^ac/j 
e > 03<5 > 0 and every b-pseudo- orbit {in a) can be e-shadowed by a true 
orbit (in p) uniformly for all a G fA£ i.e., if{fo,f\, • • •} satisfies &(Pafiifi+\) < S 
for any a G !A£, fftew piP^foffi) < e / o r all a £ 9\C- (We refer to this property 
as the stability of shadowing property.) 

Proof Condition (iv) implies that each Sa is /za-exact. Hence Pa is a con­
strictive Markov operator. The results of Example 1 show that the convergence 
is uniform for/ in the weakly compact set D = {/ G D\ : Vf ^ K], for K a 
large positive number. 

From the proof of Theorem 1 of [7], it is easy to see that conditions (i) and 
(ii) imply the existence of A > 1 and C > 0, both independent of a 3 

\\Pk
af\\v^^\\f\\v+C\\f\\t 

Hence {Pa}aeA C 5(A,C). Let fa denote the density of pa. Then Lemma 
5 implies that the map a —> fa from (A,\ |) —> (D,cr) is continuous, where 
| | denote the absolute value norm. Fix ao G A. Then given G > 0 3 a v-
neighbourhood fA£ v C .# of ao such that a G fA£ ̂  implies ||/a —/«||i < 5. 
Now, repeating the arguments of the proof of Theorem 1, we get the desired 
shadowing property of Pa uniformly for a G !A£ */. • 

Example 4. Consider the family of tent maps Sp : I —> I, defined by 

P ] iS(l-Jc), 1 / 2 ^ ^ 1 

where /3 G J3 = [1 + u,2], LU > 0. Clearly |^(JC)| ^ 1 + a; > 1, and all the 
Sp have the same two intervals in their partition. Since each Sp has only one 
turning point in its partition, there is a unique absolutely continuous invariant 
measure. Furthermore, since Sp is piecewise linear, condition (iii) is satisfied for 
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c = 0. Therefore, conditions (i)-(iv) are fulfilled for this family. The continuity 
of (3 —» Sp from (J2, | |) —> CE, r) is easy to prove. Thus, all the conditions 
of Theorem 2 are satisfied for the family of tent maps. Hence the generalized 
shadowing property is stable for this family. 
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