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In this paper, we study the asymptotic profiles of positive solutions for diffusive
logistic equations. The aim is to study the sharp effect of linear growth and nonlinear
function. Both the classical reaction-diffusion equation and nonlocal dispersal
equation are investigated. Our main results reveal that the linear and nonlinear
parts of reaction term play quite different roles in the study of positive solutions.
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1. Introduction and main results

In this paper, we consider the diffusive logistic equation{
Δu+ λu− a(x)up = 0 in Ω,
Bu = 0 on ∂Ω,

(1.1)

where Ω is a C2+μ bounded domain in R
N (N � 2), λ > 0 is a real parameter,

p > 1 is constant, the boundary operator B is given by

Bu = αuν + βu,

here ν is the unit outward normal to ∂Ω and either α = 0, β = 1 (the Dirichlet
boundary condition) or α = 1, β � 0 (the Neumann or Robin boundary conditions).
The function a ∈ Cμ(Ω̄) and a(x) > 0 for x ∈ Ω̄. Problem (1.1) is a basic reaction-
diffusion model used in the study of diversity phenomena in the applied sciences
(see, e.g. [1, 3, 4, 15]). It is also the paradigmatic model in population dynamics, the
diffusive logistic model [7, 8, 13, 16, 17]. The function a(x) measures the capacity
of Ω to support the species u(x). Under the above assumptions, the semilinear
problem (1.1) was well studied, see [15, 18] and references therein.

In the case of a(x) ≡ 0, then (1.1) reduces to the following linear eigenvalue
equation {

Δu+ λu = 0 in Ω,
Bu = 0 on ∂Ω.

(1.2)
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We know that (1.2) admits a unique positive principal eigenvalue λB
1 (Ω) associated

with a positive solution φ(x). Further, (1.1) admits a unique positive solution u(x)
if and only if λ > λB

1 (Ω). However, we can see that (1.2) admits positive solutions
if and only if λ = λB

1 (Ω).
In the previous work [20], the sharp profiles of positive solutions to (1.1) for

λ > λB
1 (Ω) have been well investigated. In this paper, we shall consider the sharp

changes of positive solutions between (1.1) and (1.2). To do this, we consider the
following diffusive logistic problem{

Δu+ (λB
1 (Ω) + εα)u− aε(x)up = 0 in Ω,

Bu = 0 on ∂Ω,
(1.3)

where ε > 0 is a parameter, α > 0 is a given constant, aε ∈ Cμ(Ω) is positive in Ω̄
and there exist β > 0 and a ∈ Cμ(Ω) such that a(x) > 0 for x ∈ Ω̄ and

lim
ε→0+

aε(x)
εβ

= a(x) uniformly in Ω̄. (1.4)

In (1.4), the constant β is the quenching rate of nonlinear function. It follows from
the classical results of reaction-diffusion equation that (1.3) admits a unique positive
solution θε ∈ C2+μ(Ω) for every ε > 0, see e.g. [9, 15, 16]. According to (1.3), one
may think that θε(x) tends to the trivial solution or the positive eigenfunction of
(1.2). However, our investigations reveal that θε(x) admits quite different profiles,
determined by various choices of α and β. In the present paper, we shall investigate
the sharp profiles by the classical regularity estimates and uniform estimates of
solutions [13, 16]. More precisely, we prove the following result.

Theorem 1.1. Let θε ∈ C2+μ(Ω) be the unique positive solution of (1.4) for ε > 0
and Ω∗ be a compact subset of Ω.

(i) If α < β, then

lim
ε→0+

θε(x) = ∞ uniformly in Ω∗. (1.5)

Further, for any x ∈ Ω∗, there exist positive constants c, C such that

c � lim inf
ε→0+

ε
β−α
p−1 θε(x) � lim sup

ε→0+
ε

β−α
p−1 θε(x) � C. (1.6)

(ii) If α > β, then

lim
ε→0+

θε(x) = 0 uniformly in Ω∗. (1.7)

Further, for any x ∈ Ω∗, there exist positive constants c1, C1 such that

c1 � lim inf
ε→0+

ε
β−α
p−1 θε(x) � lim sup

ε→0+
ε

β−α
p−1 θε(x) � C1. (1.8)

(iii) If α = β, subject to a subsequence, we have

lim
ε→0+

θε(x) = c0φ(x) uniformly in Ω̄

for some positive constant c0.
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Remark 1.2. It follows from theorem 1.1 that the linear term and nonlinear reac-
tion function play quite different roles in the limiting behaviour of positive solutions
of (1.1). We know from (1.5) and (1.6) that the blow-up phenomenon only occurs
if the nonlinear function admits a quicker quenching speed, i.e. α < β. It is inter-
esting to point out that the blow-up phenomenon appears in the diffusive logistic
equation with spatial degeneracy, see [8, 15]. However, if the linear term has a
quicker quenching speed to the critical value λB

1 (Ω), we get from (1.7) and (1.8)
that the solution will tend to the trivial solution.

Since the diffusion may take place between nonadjoint places, the research in
nonlocal dispersal equation has attracted much attention in recent years. Let J :
R

N → R be a nonnegative and symmetric function. It is known that the nonlocal
dispersal equation

ut(x, t) =
∫

RN

J(x− y)[u(y, t) − u(x, t)] dy in R
N × (0,∞), (1.9)

and variations of it, arise in the study of different dispersal process in material
science, ecology, neurology and genetics (see, for instance, [2, 5, 12]). As stated in
[10], if u(y, t) is thought of as the density at location y at time t, and J(x− y) is
thought of as the probability distribution of jumping from y to x, then

∫
RN J(x−

y)u(y, t) dy denotes the rate at which individuals are arriving to location x from all
other places and

∫
RN J(y − x)u(x, t) dy is the rate at which they are leaving location

x to all other places. Thus the right-hand side of (1.9) is the change of density
u(x, t). There has been attracted considerable interest in the study of nonlocal
dispersal equations recently, for example, the papers [6, 11, 14, 19, 21–23] and
references therein.

Let us consider the nonlocal dispersal logistic equation∫
Ω

J(x− y)u(y) dy − u(x) + (λp(Ω) + εα)u− aε(x)up(x) = 0 in Ω̄, (1.10)

where ε > 0 is a parameter, α > 0 and aε ∈ C(Ω̄) satisfies (1.4). In (1.10), the
dispersal kernel function J ∈ C(RN ) is nonnegative, symmetric such that∫

RN

J(y) dy = 1 and J(0) > 0,

and λp(Ω) stands for the unique principal eigenvalue of∫
Ω

J(x− y)u(y) dy − u(x) = −λu(x) in Ω̄.

In the rest of paper, we denoted by ψ(x) the positive eigenfunction of λp(Ω).
Then for any ε > 0, we know that (1.10) admits a unique positive solution ωε(x),
see [11, 22].

Since the nonlocal dispersal equation shares many properties with the reaction-
diffusion equation, it is interesting to investigate the sharp behaviour of positive
solutions of (1.10) as ε→ 0. However, there is a deficiency of regularity theory and
compact property for nonlocal dispersal operators, the study of sharp behaviour
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of (1.10) is quite different to (1.3), [1, 6, 13]. We shall obtain the asymptotic
behaviour for nonlocal dispersal problem (1.10) by the means of nonlocal estimates
and comparison arguments.

In the case of nonlocal dispersal logistic equation, we have the following result.

Theorem 1.3. Let ωε ∈ C(Ω̄) be the unique positive solution of (1.10) for ε > 0.

(i) If α < β, then

lim
ε→0+

ωε(x) = ∞ uniformly in Ω̄. (1.11)

Further, there exist positive constants c, C such that

c � lim inf
ε→0+

ε
β−α
p−1 ωε(x) � lim sup

ε→0+
ε

β−α
p−1 ωε(x) � C

for any x ∈ Ω̄.

(ii) If α > β, then

lim
ε→0+

ωε(x) = 0 uniformly in Ω̄. (1.12)

Further, there exist positive constants c1, C1 such that

c1 � lim inf
ε→0+

ε
β−α
p−1 ωε(x) � lim sup

ε→0+
ε

β−α
p−1 ωε(x) � C1

for any x ∈ Ω̄.

(iii) If α = β, then, subject to a subsequence, we have

lim
ε→0+

ωε(x) = c0ψ(x) uniformly in Ω̄

for some positive constant c0.

The conclusions in theorem 1.3 provide us how the sharp profiles of positive
solutions to (1.10) is determined by α and β. We also know that the profile for
nonlocal problem is different to the classical reaction-diffusion equation. By (1.11),
we obtain that the positive solution for nonlocal problem (1.10) will blow-up in the
whole domain Ω when α < β. Similarly, by (1.12), we know that quenching occurs
for all x ∈ Ω̄.

The rest of this paper is organized as follows. In § 2, we investigate the profiles
of reaction-diffusion equation (1.3). Section 3 is devoted to the sharp profiles of
nonlocal dispersal logistic equations.

2. Profiles for reaction-diffusion equations

In this section, we investigate the limiting behaviour of positive solutions for the
diffusive logistic equation (1.3). It follows from the classical results [4, 13] that there
exists a unique positive solution θε ∈ C2+μ(Ω) to (1.3) for every ε > 0. Moreover,
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the positive solution θε is continuous with respect to ε. In what follows, we always
assume that aε, a ∈ Cμ(Ω) are positive in Ω̄ and

lim
ε→0+

aε(x)
εα

= a(x) uniformly in Ω̄.

We first study the following diffusive logistic equation{
Δu+ λu− a(x)up = 0 in Ω,
Bu = 0 on ∂Ω.

(2.1)

We can see that (2.1) admits a unique positive solution θλ(x) if and only if λ >
λB

1 (Ω). Moreover, θλ(x) is continuous with respect to λ and

lim
λ→λB

1 (Ω)+
θλ(x) = 0 locally uniformly in Ω.

We shall give the decay estimates of θλ(x) near λB
1 (Ω) as follows.

Lemma 2.1. Suppose that Ω∗ is a subdomain of Ω such that Ω̄∗ ⊂ Ω. Let θλ(x) be
the unique positive solution of (2.1) for λ ∈ (λB

1 (Ω), λB
1 (Ω) + 1], then there exist

positive constants c and C, independent of λ such that

c

[
λ− λB

1 (Ω)
maxΩ̄ a(x)

] 1
p−1

� θλ(x) � C

[
λ− λB

1 (Ω)
minΩ̄ a(x)

] 1
p−1

(2.2)

for x ∈ Ω̄∗.

Proof. By the uniqueness of positive solution to (2.1), we can find positive constant
M , independent of λ such that

0 < max
Ω̄

θλ(x) � M − 1. (2.3)

Let φ(x) be a positive eigenfunction of λB
1 (Ω) such that ‖φ‖L∞(Ω) = 1. Denote

Ω∗ =
{
x ∈ Ω̄ : dist(x,Ω∗) > inf

x∈∂Ω,y∈∂Ω∗

|x− y|
2

}
,

and take C1 > 0 such that

C1φ(x) >
[
λ− λB

1 (Ω)
minΩ̄ a(x)

] 1
p−1

(2.4)

for x ∈ Ω∗. Using (2.3) and (2.4), we know that there exists smooth function u(x)
such that

u(x) =

{
C1φ(x) if x ∈ Ω̄∗,
M if x ∈ Ω̄∗,

and u(x) is an upper-solution to (2.1). Since φ(x) is independent to λ, we know
from the comparison principle that the right-hand side of (2.2) holds.
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On the other hand, we define v(x) = c1φ(x), where

c1 =
[
λ− λB

1 (Ω)
maxΩ̄ a(x)

] 1
p−1

.

It is easy to see that v(x) is a lower-solution to (2.1) and we obtain the left-hand side
of (2.2) by the uniqueness of positive solutions to (2.1). The proof is completed. �

Lemma 2.2. Let uε ∈ C2+μ(Ω) be the unique positive solution of{
Δu+ (λB

1 (Ω) + εα)u− εβa(x)up = 0 in Ω,
Bu = 0 on ∂Ω

(2.5)

for ε > 0.

(i) If α < β, then

lim
ε→0+

uε(x) = ∞ locally uniformly in Ω.

Further, there exist positive constants c, C such that

c � lim inf
ε→0+

ε
β−α
p−1 uε(x) � lim sup

ε→0+
ε

β−α
p−1 uε(x) � C.

(ii) If α > β, then

lim
ε→0+

uε(x) = 0 locally uniformly in Ω.

Further, there exist positive constants c1, C1 such that

c1 � lim inf
ε→0+

ε
β−α
p−1 uε(x) � lim sup

ε→0+
ε

β−α
p−1 uε(x) � C1.

(iii) If α = β, then, subject to a subsequence, we have

lim
ε→0+

uε(x) = c0φ(x) uniformly in Ω̄

for some positive constant c0.

Proof. Set vε(x) = ε
β

p−1uε(x), it becomes apparent that vε(x) is the unique positive
solution of {

Δu+ (λB
1 (Ω) + εα)u− a(x)up = 0 in Ω,

Bu = 0 on ∂Ω.

Let Ω∗ be a compact subset of Ω, thanks to lemma 2.1, we know that there exist
c0, C0 such that

c0ε
α

p−1 � vε(x) � C0ε
α

p−1

for x ∈ Ω̄∗. Hence we obtain

c0ε
α−β
p−1 � uε(x) � C0ε

α−β
p−1 (2.6)

for x ∈ Ω̄∗. According to (2.6), we obtain the conclusions (i) and (ii).
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By standard interior estimates and (2.6), there exists a positive constant C̃ =
C̃(Ω∗) such that

‖uε‖C2+μ(Ω̄∗) � C̃.

Therefore, by passing to a subsequence and the diagonal argument, there exists
u ∈ L2(Ω) such that

lim
ε→0+

uε(x) = u(x) weakly in W 1,2(Ω) and strongly in L2(Ω).

Thanks to (2.5), we know that u(x) is a positive weak solution of{
Δu+ λB

1 (Ω)u = 0 in Ω,
Bu = 0 on ∂Ω.

(2.7)

By elliptic regularity, it must be a strong solution. By the uniqueness of the positive
solution of (2.7), u(x) = c0φ(x) for some positive constant c0. As this argument is
independent of the sequence ε, it is apparent from Sobolev imbedding theorem that

lim
ε→0+

uε(x) = c0φ(x) uniformly in Ω̄.

Thus the proof is completed. �

At the end of this section, we prove the main result theorem 1.1.

Proof of theorem 1.1. We first take δ > 0 such that

a(x) > δ > 0

for x ∈ Ω̄. Then we choose ε > 0 small, denoted by ε < ε0 such that

a(x) + 1 � aε(x)
εα

� a(x) − δ > 0

for x ∈ Ω̄.
Now let û(x) be the unique positive solution of{

Δu+ (λB
1 (Ω) + εα)u− εβ [a(x) − δ]up = 0 in Ω,

Bu = 0 on ∂Ω,

and ū(x) be the unique positive solution of{
Δu+ (λB

1 (Ω) + εα)u− εβ [a(x) + 1]up = 0 in Ω,
Bu = 0 on ∂Ω

for ε > 0, respectively. A simple argument from upper–lower solutions gives

0 < ū(x) � θε(x) � û(x) (2.8)

for x ∈ Ω.
Thus we know from (2.8) and lemma 2.2 that the conclusions (i)–(iii) of

theorem 1.1 are true. �
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3. Profiles for nonlocal dispersal logistic equation

In this section, we investigate the limiting behaviour of positive solutions of (1.10)
as ε→ 0+. It follows from [11, 21] that there exists a unique positive solution
ωε ∈ C(Ω̄) to (1.10) for every ε > 0 and θε is continuous with respect to ε. In the
rest of this section, for simplicity, we always assume that aε, a ∈ C(Ω̄) are positive
in Ω̄ and

lim
ε→0+

aε(x)
εα

= a(x) uniformly in Ω̄.

We first give some estimates for the positive solution of∫
Ω

J(x− y)u(y) dy − u(x) + λu− a(x)up(x) = 0 in Ω̄. (3.1)

The positive solution problem (3.1) has been well investigated, see e.g. [11, 20–22].

Lemma 3.1. Let ωλ(x) be the unique positive solution of (1.10) for λ ∈
(λp(Ω), λp(Ω) + 1], then there exist positive constants c and C, independent of λ
such that

c

[
λ− λp(Ω)
maxΩ̄ a(x)

] 1
p−1

� ωλ(x) � C

[
λ− λp(Ω)
minΩ̄ a(x)

] 1
p−1

for x ∈ Ω̄.

Proof. By the uniqueness of positive solution to (3.1), we can find positive
constant M , independent of λ such that

0 < max
Ω̄

θλ(x) � M.

Let ψ(x) be a positive eigenfunction of λp(Ω) such that ‖ψ‖L∞(Ω) = 1. Since
ψ(x) > 0 for x ∈ Ω̄, we can take C1 > 0 such that

C1φ(x) �
[
λ− λp(Ω)
minΩ̄ a(x)

] 1
p−1

for x ∈ Ω̄. Then a direct computation gives that C1φ(x) is an upper-solution to
(3.1) and we know from the uniqueness of positive solution that

ωλ(x) � C1φ(x)

for x ∈ Ω̄. Hence we obtain

ωλ(x) � C1φ(x) � C

[
λ− λp(Ω)
minΩ̄ a(x)

] 1
p−1

,

by taking C = [minΩ̄ φ(x)]−1 and

C1 = [min
Ω̄
φ(x)]

[
λ− λp(Ω)
minΩ̄ a(x)

] 1
p−1

.
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On the other hand, we define

v(x) =
[
λ− λp(Ω)
maxΩ̄ a(x)

] 1
p−1

ψ(x).

It is easy to see that v(x) is a lower-solution to (3.1). But ψ(x) is independent
to λ, it follows from the comparison principle that there exists c > 0 such that

ωλ(x) � c

[
λ− λp(Ω)
maxΩ̄ a(x)

] 1
p−1

for x ∈ Ω̄. �

Lemma 3.2. Let uε ∈ C(Ω̄) be the unique positive solution of∫
Ω

J(x− y)u(y) dy − u(x) + (λp(Ω) + εα)u− εβa(x)up(x) = 0 in Ω̄ (3.2)

for ε > 0.

(i) If α < β, then

lim
ε→0+

uε(x) = ∞ uniformly in Ω̄.

Further, there exist positive constants c, C such that

c � lim inf
ε→0+

ε
β−α
p−1 uε(x) � lim sup

ε→0+
ε

β−α
p−1 uε(x) � C.

(ii) If α > β, then

lim
ε→0+

uε(x) = 0 uniformly in Ω̄.

Further, there exist positive constants c1, C1 such that

c1 � lim inf
ε→0+

ε
β−α
p−1 uε(x) � lim sup

ε→0+
ε

β−α
p−1 uε(x) � C1.

(iii) If α = β, then, subject to a subsequence, we have

lim
ε→0+

uε(x) = c0ψ(x) uniformly in Ω̄ (3.3)

for some positive constant c0.

Proof. Set vε(x) = ε
β

p−1uε(x), then we can see that vε(x) is the unique positive
solution of∫

Ω

J(x− y)u(y) dy − u(x) + (λp(Ω) + εα)u− a(x)up(x) = 0 in Ω̄.
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Then we know from lemma 3.1 that there exist c0, C0 such that

c0ε
α

p−1 � vε(x) � C0ε
α

p−1

for x ∈ Ω̄. Hence we obtain

c0ε
α−β
p−1 � uε(x) � C0ε

α−β
p−1

for x ∈ Ω̄ and the conclusions (i) and (ii) are followed.
At last, we prove (3.3). In this case, we still have

c0 � uε(x) � C0

for x ∈ Ω̄. Since λp(Ω) ∈ (0, 1) and

[
1 − λp(Ω) − εα + εβa(x)(uε(x))p−1

]
uε(x) =

∫
Ω

J(x− y)uε(y) dy in Ω̄,

we know that there exists ρ > 0 which is independent to ε such that

1 − λp(Ω) − εα + εβa(x)(uε(x))p−1 � ρ (3.4)

for x ∈ Ω̄, provided ε ∈ (0, 1) is small. Then for any x1, x2 ∈ Ω̄, without loss of gen-
erality, we may assume that uε(x1) > uε(x2). A direct computation from (3.2)–(3.4)
shows that

(1 − λp(Ω) − εα + pεβa(x2)θp−1
ε )[uε(x1) − uε(x2)]

=
∫

Ω

(J(x1, y) − J(x2, y))uε(y) dy + εβ(a(x2) − a(x1))up
ε(x1)

� C0

∫
Ω

|J(x1, y) − J(x2, y)|dy + Cp
0 |(a(x2) − a(x1))|,

here θε is between uε(x2) and uε(x1). Thus we obtain that

|uε(x1) − uε(x2)| �
C0

∫
Ω
|J(x1, y) − J(x2, y)|dy + Cp

0 |(a(x2) − a(x1))|
ρ

(3.5)

for x1, x2 ∈ Ω̄. It follows from (3.5) and a compact argument that we can extract
a subsequence still denoted by ε and there exists positive function V ∈ C(Ω̄) such
that

lim
ε→0+

uε(x) = V (x) uniformly in Ω̄,

and ∫
Ω

J(x− y)V (y) dy − V (x) + λp(Ω)V (x) = 0 in Ω̄. (3.6)

Note that λp(Ω) is the unique principal eigenvalue of (3.6), we know that (3.3)
holds. �

We are ready to prove the main result theorem 1.3.
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Proof of theorem 1.3. We first take δ > 0 such that

a(x) > δ > 0

for x ∈ Ω̄. Then we can choose ε > 0 small, denoted by ε < ε0 such that

a(x) + 1 � aε(x)
εα

� a(x) − δ > 0

for x ∈ Ω̄. Let û(x) be the unique positive solution of∫
Ω

J(x− y)u(y) dy − u(x) + (λp(Ω) + εα)u− εβ [a(x) − δ]up = 0 in Ω̄,

and ū(x) be the unique positive solution of∫
Ω

J(x− y)u(y) dy − u(x) + (λp(Ω) + εα)u− εβ [a(x) + 1]up = 0 in Ω̄

for ε > 0, respectively. Thus we get from the comparison principle that

0 < ū(x) � ωε(x) � û(x)

for x ∈ Ω̄.
The conclusions (i)–(iii) of theorem 1.3 are followed by lemma 3.2. �
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16 J. López-Gómez. Metasolutions of Parabolic Equations in Population Dynamics (Boca
Raton: CRC Press, 2016).
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