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PROBLEMS AND 
SOLUTIONS 

This department welcomes problems 
believed to be new. Solutions should ac
company proposed problems. 

Send all communications concerning this 
department to 

PROBLÈMES ET 
SOLUTIONS 

Cette section a pour but de présenter 
des problèmes inédits. Les problèmes pro
posés doivent être accompagnés de leurs 
solutions. 

Veuillez adresser les communications 
concernant cette section à 

E. C. Milner, Problem Editor 
Canadian Mathematical Bulletin 

Department of Mathematics 
University of Calgary 
Calgary 44, Alberta 

PROBLEMS FOR SOLUTION 

P.203. Prove the group identity 

[x, y, yf[y, *, xf[x9 y, y]x[y, x, x]y = 1, 
where x=x~1, xy=yxy and the commutator [x, y]=xyxy and [x, y, z]= [[x, y], z]. 

J. M. GANDHI AND D. KREILING, 
WESTERN ILLINOIS UNIVERSITY 

P.204. Let R be a ring with 1. Recall that (i) e e R is idempotent if e2=e, (ii) 
u E R is a unit if there exists v e R such that uv=vu=l. Show that, if 1 + 1 is a 
unit of R, then any idempotent is the sum of two units. 

R. RAPHAEL, 
SIR GEORGE WILLIAMS UNIVERSITY 

P.205. Find the integer solutions of the diophantine equation y2=x(x+y—l). 

GUY A. R. GUILLOT, 
MONTREAL, QUEBEC 

P.206. Let (il9. . . , ir) be a partition of the integer k9 i.e. the i,. are positive 
integers and ix+* • *+ir=k. Prove that 

HT)(T)-(T) 
is divisible by 2k+l. 

JACQUES TROUÉ, 
MCGILL UNIVERSITY 
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P.207. A latin square (a^) is idempotent if au — i. Show that there are n—2 
mutually orthogonal idempotent latin squares (cf. H. J. Ryser, Combinatorial 
Mathematics) of order n if and only if there is a projective plane of order n. 

WILLIAM JONSSON, 

M C G I L L UNIVERSITY 

P.208. If r(n) and a(n) denote respectively the number of and the sum of the 
divisors of n, show that 

T"T" Jd—n!d _ ain) —^nrrin) 

din 

where 0<Cr<e-1. 

C. S. VENKATARAMAN, 

SREE KERALA VARMA COLLEGE, INDIA 

SOLUTIONS 

P.180. Prove that in a groupoid (i.e. a set with a binary operation) satisfying the 
identity 

every equation xb=a has a unique solution. 

N. S. MENDELSOHN, 

UNIVERSITY OF MANITOBA 

Solution by Stanley Wagon, McGill University. The unique solution to 
xb=a is x= ((ba)(a(ba))). To see this put y—ba and x=a in the given identity to 
get ((ba)(a(ba)))((a(ba))((ba)(a(ba))))=a or ((ba)(a(ba)))h=a. That this solution 
is unique follows from the fact that xb—a implies that x=(b(xb))((xb)(b(xb))= 
(ba)(a(ba)). 

Also solved by Paul Mimes, Univ. of Western Ontario; A. G. Heinicke, Univ. 
of Western Ontario; R. Padmanabhan, Univ. of Manitoba; Arthur S. Finbow, 
Dalhousie Univ.; Helen F. Cullen, Univ. of Massachusetts ; R. D. Giri, Aligarh 
Muslim University, India; P. Ramankutty, Univ. of Auckland, New Zealand, and 
Lia Chang-Der, Ohio State University. 

P.181. Show that there does not exist a variety of groupoids (i.e. a family 
closed under subgroupoids, cartesian products and homomorphisms) with the 
property that for any groupoid of the variety any two distinct elements generate a 
subgroupoid of order 6 (except for the vacuous case of a variety containing only 
one groupoid with exactly one element). Note that such varieties can be shown to 
exist if 6 is replaced by any of 2, 3, 4, 5, 7, 8, 9. 

N. S. MENDELSOHN, 

UNIVERSITY OF MANITOBA 
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Solution by the Proposer. If such a variety existed there would be a groupoid G 
in the variety with exactly six elements. The groupoid G x G is in the variety and 
any two of its elements generate a subgroupoid of order 6. This implies that there 
is a B.I.B. design with parameters v=36, b=42, r = 7 , k=6, A=l , a contradiction 
since an affine plane of order 6 does not exist. 

One other (incorrect) solution was received. 

P.182. Find the number of solutions of the congruence in kn variables 

n k 

2 n xa = ° (m°d p)> 
where p is a prime. 

L. J. MORDELL, ST. JOHN'S COLLEGE, CAMBRIDGE, AND 

THE UNIVERSITY OF CALGARY 

Solution by Kenneth S. Williams, Carleton University. Let p be a prime. For any 
integer a we have 

/IA ^ /n . / \ (j?> if a = 0 (mod p), 
(1) yexTp(2max p) = It.' .c . A ; .%' ~o ^ / i V \0, if a §£ 0 (mod p), 

as the left hand side of (1) is a geometric progression. Now if a^O (mod p) and 
k>2 we have using (1) 

J)—1 39—1 / 2?—1 \ 

2 exp^Tria*! • • • xjp) = 2 £ exp^'faxx • • • x^xjp)) 
xx fffc=0 Xi,...,xk^1=0\xje=0 ) 

= P I i 
* l fc-l=0 
«l...iCA;_1 = 0 

as the last sum is just the number of (k— l)-tuples (xu .. . , x^) with at least one 
zero entry. Putting this result together with (1) we have for a^éO (modp) and k> 1 

(2) 2 exp(277iax1 • • • xjp) = p {pW_(p_l )*" 1 } . 
xlt....Xtf=0 

Now let a 1 ? . . . , an be n integers not divisible by/?, a0 any integer, and kl9. . . , kn 

integers > 1. We determine the number Np(n, k, a, a0) of solutions of the congruence 

n 

Jfajxn • • • *,fc + a 0 = 0 (mod p), 

where we have written k for (kl9... , £n) and a for ( a l 5 . . . , an). 
9A—(4 pp.) 
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From (1) we have 

Np(n, k, a, a0) 

2 ~ 2exp(27rfM î,a>xn ' ' ' xm+ao) P) 
fcr*2l xnkn=0\p t=--0 \ \j=l I I I) 

= p*i+-+*«-1+ - 5 oxp(27rita0lp) n ( 2 exp(277f^,x,1 • • • xjkJp)) 
P t=l 3=1 \Xjl,...,Xjkj=0 J 

= p^"-^-i+pn-i J J ( p *i - i_(p_ 1)*^)21exp(27rito0/p) (using (2)) 

r f c l + . . . + ,„_ 1 + p n _ 1 ( i ? _ 1} ^ ( i ^ - i „ ( p _ _ i)*i-i), if a0 = 0 (mod p), 

L*i+-+*»-i_p«-i J J Q , * * - ! » ^ » ! ) * * - ^ if a0 =É 0 (mod p). 

The number asked for by Mordell is therefore 

N9(n, fcl, 1, 0) = p » * - i + ^ ( p _ l ) ( p * - i - ( p - l ) ^ ) « . 

Also solved by E. M. Charles, Calgary, and L. Carlitz, Duke Univ. Professor 
Carlitz obtained a similar generalization (with a = l ) and gave the following two 
references for more general results of this kind: (1) The number of solutions of 
certain equations in a finite field, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 515-519; 
(2) The number of solutions of some special equations in a finite field, Pacific J. 
Math. 4 (1954), 207-217. 

P.183. For which cardinals m, n is the following statement true: If F is a set of 
sets, \F\ =m, then there is a set X such that \X\=n and Fn X^F' n X iî F, Ff 

are distinct members of F. 

J. P. JONES, E. C. MILNER AND N . SAUER, 

UNIVERSITY OF CALGARY 

Solution by E. C. Milner, University of Calgary. We remark first that if X dis
tinguishes the members oîF (i.e. Fl9 F2eF, F19^F2=>F1 n X^F2C\X), then so 
also does X U Y for an arbitrary set Y. It follows that all one is really interested 
in is the least cardinal n=f(m) such that: if F is any set of sets with \F\~m, 
then there is an «-element set X which distinguishes the members of F. 

If F is a family of m mutually disjoint sets and \X\<m— 1, then there are two 
members of F which have the same (empty) intersection with X. Hence, f{m)> 
m—\. We will prove that equality holds. 
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First a simple lemma. 

LEMMA. Let A be a finite, nonempty set and let IF be a set of subsets of A such 
that whenever x eA there are Fl9 F2e^ such that 

(1) x$Fl9 F2={x}uF±. 

Then\&\>\A\. 

Proof. We use induction on \A\. For \A\ = l the result is obvious. Assume 
\A\>1 and fix some aeA. If Fe&9 put F'=F\{a} and let ^^{F'IFE^}. 

For x G ̂ 4\{<z} there are Fl9 F2 which satisfy (1) and which therefore also satisfy 
x$Fl, F'2={x} u F[. Then, by the induction hypothesis, \&'\>\A\{a}\. Since 
& contains two sets U, Vwith a$U9 V={a} U U9 it follows that| &rfe\&r'\ + l> 
\A\. This proves the lemma. 

Now let m be a positive integer and let !F be a set of m sets. We want to show 
that there is a distinguishing set Zwith |Z |<m—1. 

Case 1. U^" is finite. In this case we use induction on | U ^ ] . If |KJ&\<m 9 put 
Z = U ^ \ Now suppose that \u^\>m. For each XGU^9 let ^x={F\{x}: 
F e IF}. If \1FX\ = \!F\, then the result is immediate, for !FX has a distinguishing set 
Zwith \X\<m by the induction hypothesis, and Zalso distinguishes between the 
sets in !F. Therefore, we can assume that for each x e \JïF there are Fl9 F2e*F 
such that (1) holds. By the lemma it follows that m= |^ ' |> |U«^ r | >m, a contra
diction. 

Case 2. \J3F is arbitrary. Let lF=z{Fl9 . . . , Fm} and, for each set of indices 
N c {1, . . . , m } , let 

AN = PI Ft\U F€. 
ieN i$N 

If AN=cf> let XN=<f>9 and if AN^(f) let Z ^ be a one-element subset of ^4^. Put 

B< = (J * * (1 < * < w). 
*eiVcz{l,...,w} 

The sets Bl9 . . . , Bm are finite and distinct and so, by Case 1, there is a set X with 
fewer than m elements which distinguishes between these sets. Suppose 
X n Bt\X n Bsj£<f>. Then there is N <= {1 , . . . , m) such that i e N9 j $ N and 
XNj£<j>. Then XN ^ X r\ Ft\X n F^cf), i.e. Z also distinguishes the members 
of «F. 

Finally we consider the case when m is infinite. Suppose lF={Fv:v G / } , where 
/ is an index set of cardinal power m. Let A^ly=Ff^\Fy (//, v e I). If 4̂MV=</> put 
ZMV=</>, and i{ A^^cf) let Z ^ be a one-element subset of A^v. Put 

The set Z has power at most m (=m—l) and distinguishes the members of 3*. 
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