PROBLEMS AND SOLUTIONS

This department welcomes problems believed to be new. Solutions should accompany proposed problems.

Send all communications concerning this department to

PROBLÈMES ET SOLUTIONS

Cette section a pour but de présenter des problèmes inédits. Les problèmes proposés doivent être accompagnés de leurs solutions.

Veuillez adresser les communications concernant cette section à
E. C. Milner, Problem Editor

Canadian Mathematical Bulletin
Department of Mathematics
University of Calgary
Calgary 44, Alberta

PROBLEMS FOR SOLUTION

P.203. Prove the group identity

$$
[x, y, \bar{y}]^{\bar{x}}[y, \bar{x}, x]^{\bar{y}}[\bar{x}, \bar{y}, y]^{x}[\bar{y}, x, \bar{x}]^{y}=1
$$

where $\bar{x}=x^{-1}, x^{y}=\bar{y} x y$ and the commutator $[x, y]=\overline{x y} x y$ and $[x, y, z]=[[x, y], z]$.

J. M. Gandhi and D. Kreiling, Western Illinois University

P.204. Let R be a ring with 1 . Recall that (i) $e \in R$ is idempotent if $e^{2}=e$, (ii) $u \in R$ is a unit if there exists $v \in R$ such that $u v=v u=1$. Show that, if $1+1$ is a unit of R, then any idempotent is the sum of two units.

```
R. Raphael,
Sir George Williams University
```

P.205. Find the integer solutions of the diophantine equation $y^{2}=x(x+y-1)$.

Guy A. R. Guillot,
Montreal, Quebec

P.206. Let $\left(i_{1}, \ldots, i_{r}\right)$ be a partition of the integer k, i.e. the i_{j} are positive integers and $i_{1}+\cdots+i_{r}=k$. Prove that

$$
N=\binom{2 k+1}{i_{1}}\binom{2 k+1}{i_{2}} \cdots\binom{2 k+1}{i_{\mathrm{r}}}
$$

is divisible by $2 k+1$.
Jacques Troué, McGill University
P.207. A latin square $\left(a_{i j}\right)$ is idempotent if $a_{i i}=i$. Show that there are $n-2$ mutually orthogonal idempotent latin squares (cf. H. J. Ryser, Combinatorial Mathematics) of order n if and only if there is a projective plane of order n.

William Jonsson,
McGill University
P.208. If $\tau(n)$ and $\sigma(n)$ denote respectively the number of and the sum of the divisors of n, show that

$$
\prod_{d / n} d^{d-n / d}=n^{\sigma(n)} e^{-2 n r \tau(n)}
$$

where $0 \leq r \leq e^{-1}$.
C. S. Venkataraman,

Sree Kerala Varma College, India

SOLUTIONS

P.180. Prove that in a groupoid (i.e. a set with a binary operation) satisfying the identity

$$
(y(x y))((x y)(y(x y)))=x
$$

every equation $x b=a$ has a unique solution.
N. S. Mendelsohn, University of Manitoba

Solution by Stanley Wagon, McGill University. The unique solution to $x b=a$ is $x=((b a)(a(b a)))$. To see this put $y=b a$ and $x=a$ in the given identity to get $((b a)(a(b a)))((a(b a))((b a)(a(b a))))=a$ or $((b a)(a(b a))) b=a$. That this solution is unique follows from the fact that $x b=a$ implies that $x=(b(x b))((x b)(b(x b))=$ (ba) $(a(b a))$.
Also solved by Paul Milnes, Univ. of Western Ontario; A. G. Heinicke, Univ. of Western Ontario; R. Padmanabhan, Univ. of Manitoba; Arthur S. Finbow, Dalhousie Univ.; Helen F. Cullen, Univ. of Massachusetts; R. D. Giri, Aligarh Muslim University, India; P. Ramankutty, Univ. of Auckland, New Zealand, and Lia Chang-Der, Ohio State University.
P.181. Show that there does not exist a variety of groupoids (i.e. a family closed under subgroupoids, cartesian products and homomorphisms) with the property that for any groupoid of the variety any two distinct elements generate a subgroupoid of order 6 (except for the vacuous case of a variety containing only one groupoid with exactly one element). Note that such varieties can be shown to exist if 6 is replaced by any of $2,3,4,5,7,8,9$.
N. S. Mendelsohn, University of Manitoba

Solution by the Proposer. If such a variety existed there would be a groupoid G in the variety with exactly six elements. The groupoid $G \times G$ is in the variety and any two of its elements generate a subgroupoid of order 6 . This implies that there is a B.I.B. design with parameters $v=36, b=42, r=7, k=6, \lambda=1$, a contradiction since an affine plane of order 6 does not exist.

One other (incorrect) solution was received.
P.182. Find the number of solutions of the congruence in $k n$ variables

$$
\sum_{i=1}^{n} \prod_{j=1}^{k} x_{i j} \equiv 0(\bmod p),
$$

where p is a prime.
L. J. Mordell, St. John's College, Cambridge, and

The University of Calgary

Solution by Kenneth S. Williams, Carleton University. Let p be a prime. For any integer a we have

$$
\sum_{x=0}^{p-1} \exp (2 \pi i a x / p)= \begin{cases}p, & \text { if } a \equiv 0(\bmod p), \tag{1}\\ 0, & \text { if } a \neq 0(\bmod p),\end{cases}
$$

as the left hand side of (1) is a geometric progression. Now if $a \not \equiv 0(\bmod p)$ and $k \geq 2$ we have using (1)

$$
\begin{aligned}
\sum_{x_{1}, \ldots, x_{k}=0}^{p-1} \exp \left(2 \pi i a x_{1} \cdots x_{k} / p\right) & =\sum_{x_{1}, \ldots, x_{k-1}=0}^{p-1}\left\{\sum_{x_{k}=0}^{p-1} \exp \left(2 \pi i\left(a x_{1} \cdots x_{k-1}\right) x_{k} / p\right)\right\} \\
& =p \sum_{\substack{x_{1}, \ldots, x_{k-1}=0 \\
x_{1} \ldots x_{k-1}=0}}^{p-1} 1 \\
& =p\left\{p^{k-1}-(p-1)^{k-1}\right\},
\end{aligned}
$$

as the last sum is just the number of ($k-1$)-tuples $\left(x_{1}, \ldots, x_{k-1}\right)$ with at least one zero entry. Putting this result together with (1) we have for $a \neq 0(\bmod p)$ and $k \geq 1$

$$
\begin{equation*}
\sum_{x_{1}, \ldots, x_{k}=0}^{p-1} \exp \left(2 \pi i a x_{1} \cdots x_{k} / p\right)=p\left\{p^{k-1}-(p-1)^{k-1}\right\} \tag{2}
\end{equation*}
$$

Now let a_{1}, \ldots, a_{n} be n integers not divisible by p, a_{0} any integer, and k_{1}, \ldots, k_{n} integers ≥ 1. We determine the number $N_{p}\left(n, \mathbf{k}, \mathbf{a}, a_{0}\right)$ of solutions of the congruence

$$
\sum_{j=1}^{n} a_{j} x_{j 1} \cdots x_{j k_{j}}+a_{0} \equiv 0(\bmod p)
$$

where we have written \mathbf{k} for $\left(k_{1}, \ldots, k_{n}\right)$ and a for $\left(a_{1}, \ldots, a_{n}\right)$.

[^0]From (1) we have

$$
\begin{aligned}
& N_{p}\left(n, \mathbf{k}, \mathbf{a}, a_{0}\right) \\
&=\sum_{x_{11}, \ldots, x_{1 k_{1}, w_{2}} \cdots, \ldots, x_{n k n}=0}^{p-1}\left\{\frac{1}{p} \sum_{t=0}^{p-1} \exp \left(2 \pi i t\left(\sum_{j=1}^{n} a_{j} x_{j 1} \cdots x_{j k_{j}}+a_{0}\right) / p\right)\right\} \\
&=p^{k_{1}+\cdots+k_{n}-1}+\frac{1}{p} \sum_{t=1}^{p-1} \exp \left(2 \pi i t a_{0} / p\right) \prod_{j=1}^{n}\left(\sum _ { x _ { j 1 } , \ldots , x _ { j k _ { j } } = 0 } ^ { p - 1 } \operatorname { e x p } \left(2 \pi i t a_{j} x_{j 1} \cdots x_{\left.j k_{j} / p\right)} / p\right.\right. \\
&=p^{k_{1}+\cdots+k_{n}-1}+p^{n-1} \prod_{j=1}^{n}\left(p^{k_{j}-1}-(p-1)^{k_{j}-1}\right) \sum_{t=1}^{p-1} \exp \left(2 \pi i t a_{0} / p\right) \quad(\text { using }(2)) \\
&= \begin{cases}p^{k_{1}+\cdots+k_{n}-1}+p^{n-1}(p-1) \prod_{j=1}^{n}\left(p^{k_{j}-1}-(p-1)^{k_{j}-1}\right), & \text { if } a_{0} \equiv 0(\bmod p), \\
p^{k_{1}+\cdots+k_{n}-1}-p^{n-1} \prod_{j=1}^{n}\left(p^{k_{j}-1}-(p-1)^{k_{j}-1}\right), & \text { if } a_{0} \not \equiv 0(\bmod p) .\end{cases}
\end{aligned}
$$

The number asked for by Mordell is therefore

$$
N_{p}(n, k \mathbf{1}, \mathbf{1}, 0)=p^{n k-1}+p^{n-1}(p-1)\left(p^{k-1}-(p-1)^{k-1}\right)^{n} .
$$

Also solved by E. M. Charles, Calgary, and L. Carlitz, Duke Univ. Professor Carlitz obtained a similar generalization (with $\mathbf{a}=\mathbf{1}$) and gave the following two references for more general results of this kind: (1) The number of solutions of certain equations in a finite field, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 515-519; (2) The number of solutions of some special equations in a finite field, Pacific J. Math. 4 (1954), 207-217.
P.183. For which cardinals m, n is the following statement true: If \mathscr{F} is a set of sets, $|\mathscr{F}|=m$, then there is a set X such that $|X|=n$ and $F \cap X \neq F^{\prime} \cap X$ if F, F^{\prime} are distinct members of \mathscr{F}.
J. P. Jones, E. C. Milner and N. Sauer,
University of Calgary

Solution by E. C. Milner, University of Calgary. We remark first that if X distinguishes the members of \mathscr{F} (i.e. $F_{1}, F_{2} \in \mathscr{F}, F_{1} \neq F_{2} \Rightarrow F_{1} \cap X \neq F_{2} \cap X$), then so also does $X \cup Y$ for an arbitrary set Y. It follows that all one is really interested in is the least cardinal $n=f(m)$ such that: if \mathscr{F} is any set of sets with $|\mathscr{F}|=m$, then there is an n-element set X which distinguishes the members of \mathscr{F}.

If \mathscr{F} is a family of m mutually disjoint sets and $|X|<m-1$, then there are two members of \mathscr{F} which have the same (empty) intersection with X. Hence, $f(m) \geq$ $m-1$. We will prove that equality holds.

First a simple lemma.
Lemma. Let A be a finite, nonempty set and let \mathscr{F} be a set of subsets of A such that whenever $x \in A$ there are $F_{1}, F_{2} \in \mathscr{F}$ such that

$$
\begin{equation*}
x \notin F_{1}, \quad F_{2}=\{x\} \cup F_{1} . \tag{1}
\end{equation*}
$$

Then $|\mathscr{F}|>|A|$.
Proof. We use induction on $|A|$. For $|A|=1$ the result is obvious. Assume $|A|>1$ and fix some $a \in A$. If $F \in \mathscr{F}$, put $F^{\prime}=F \backslash\{a\}$ and let $\mathscr{F}^{\prime}=\left\{F^{\prime}: F \in \mathscr{F}\right\}$. For $x \in A \backslash\{a\}$ there are F_{1}, F_{2} which satisfy (1) and which therefore also satisfy $x \notin F_{1}^{\prime}, F_{2}^{\prime}=\{x\} \cup F_{1}^{\prime}$. Then, by the induction hypothesis, $\left|\mathscr{F}^{\prime}\right|>|A \backslash\{a\}|$. Since \mathscr{F} contains two sets U, V with $a \notin U, V=\{a\} \cup U$, it follows that $|\mathscr{F}| \geq\left|\mathscr{F}^{\prime}\right|+1>$ $|A|$. This proves the lemma.

Now let m be a positive integer and let \mathscr{F} be a set of m sets. We want to show that there is a distinguishing set X with $|X| \leq m-1$.

Case 1. $\cup \mathscr{F}$ is finite. In this case we use induction on $|\cup \mathscr{F}|$. If $|\cup \mathscr{F}|<m$, put $X=\cup \mathscr{F}$. Now suppose that $|\cup \mathscr{F}| \geq m$. For each $x \in \cup \mathscr{F}$, let $\mathscr{F}_{x}=\{F \backslash\{x\}$: $F \in \mathscr{F}\}$. If $\left|\mathscr{F}_{x}\right|=|\mathscr{F}|$, then the result is immediate, for \mathscr{F}_{x} has a distinguishing set X with $|X|<m$ by the induction hypothesis, and X also distinguishes between the sets in \mathscr{F}. Therefore, we can assume that for each $x \in \cup \mathscr{F}$ there are $F_{1}, F_{2} \in \mathscr{F}$ such that (1) holds. By the lemma it follows that $m=|\mathscr{F}|>|\cup \mathscr{F}| \geq m$, a contradiction.

Case 2. $\cup \mathscr{F}$ is arbitrary. Let $\mathscr{F}=\left\{F_{1}, \ldots, F_{m}\right\}$ and, for each set of indices $N \subset\{1, \ldots, m\}$, let

$$
A_{N}=\bigcap_{i \in N} F_{i} \bigcup_{i \notin N} F_{i} .
$$

If $A_{N}=\phi$ let $X_{N}=\phi$, and if $A_{N} \neq \phi$ let X_{N} be a one-element subset of A_{N}. Put

$$
B_{i}=\underset{i \in N \subset\{1, \ldots, m\}}{\bigcup} X_{N} \quad(1 \leq i \leq m)
$$

The sets B_{1}, \ldots, B_{m} are finite and distinct and so, by Case 1 , there is a set X with fewer than m elements which distinguishes between these sets. Suppose $X \cap B_{i} \backslash X \cap B_{j} \neq \phi$. Then there is $N \subset\{1, \ldots, m\}$ such that $i \in N, j \notin N$ and $X_{N} \neq \phi$. Then $X_{N} \subset X \cap F_{i} \backslash X \cap F_{j} \neq \phi$, i.e. X also distinguishes the members of \mathscr{F}.

Finally we consider the case when m is infinite. Suppose $\mathscr{F}=\left\{F_{v}: v \in I\right\}$, where I is an index set of cardinal power m. Let $A_{\mu \nu}=F_{\mu} \backslash F_{v}(\mu, v \in I)$. If $A_{\mu \nu}=\phi$ put $X_{\mu \nu}=\phi$, and if $A_{\mu \nu} \neq \phi$ let $X_{\mu \nu}$ be a one-element subset of $A_{\mu \nu}$. Put

$$
B_{\mu}=\bigcup_{v \neq \mu} X_{\mu \nu} \quad(\mu \in I), \quad X=\bigcup_{\mu \in I} B_{\mu}
$$

The set X has power at most $m(=m-1)$ and distinguishes the members of \mathscr{F}.

[^0]: 9A-(4 pp.)

