A MEASURE OF NON-IMMERSABILITY OF THE GRASSMANN MANIFOLDS IN SOME EUCLIDEAN SPACES

by CORNEL PINTEA

(Received 19th April 1996)

Let $G_{k, n}$ be the Grassmann manifold consisting in all non-oriented k-dimensional vector subspaces of the space \mathbf{R}^{k+n}. In this paper we will show that any differentiable mapping $f: G_{k, n} \rightarrow \mathbf{R}^{m}$, has infinitely many critical points for suitable choices of the numbers m, n, k.

1994 Mathematics subject classification: 57R70.

1. Introduction

Recall that $G_{k, n}$ is a compact manifold of dimension $k n$ and that the manifold $G_{1, n}$ is just the real projective space $P_{n}(\mathbf{R})$.

In the paper [4] it is proved that the Grassmann manifolds $G_{2, n}$ and $G_{2, s-1}$, where $s=2^{r}$ is such that $2^{r-1} \leq n<2^{r}$, cannot be immersed in the euclidean spaces $R^{2 s-3}$ and $\mathbf{R}^{3 s-3}$ respectively. This means that any differentiable mapping $f: G_{2, n} \rightarrow \mathbf{R}^{2-3}$ or $g: G_{2, s-1} \rightarrow \mathbf{R}^{3 s-3}$, has one critical point at least. This observation justifies the investigations on the cardinal number

$$
\varphi(M, N)=\min \left\{|C(f)|: f \in C^{\infty}(M, N)\right\},
$$

called the φ-category of the pair (M, N) of the differentiable manifolds M and N. The φ-category of the pair (M, N) represents a measure of non-immersability of the manifold M into the manifold N if $\operatorname{dim} M<\operatorname{dim} N$, and it is a measure of the distance of the pair (M, N) from a fibration of the manifold M over N, if $\operatorname{dim} M \geq \operatorname{dim} N$ and M, N are compact manifolds. If $|C(f)|$ is infinite for all $f \in C^{\infty}(M, N)$, we shall use the notation $\varphi(M, N)=\infty$. In the present paper the φ-category of the pairs ($G_{2, n}, \mathbf{R}^{m}$), $\left(G_{3, n}, \mathbf{R}^{m}\right)$ and $\left(P_{n}(\mathbf{R}), \mathbf{R}^{m}\right)$ will be studied.

2. Preliminary results

The following theorem is the principal result of the paper.
Theorem 2.1. Let M^{m}, N^{n} be smooth manifolds such that $m<n$ and $f: M \rightarrow N$ be
an immersion. If $y \in \operatorname{Im} f$ is such that $f^{-1}(y)$ is finite, then there exists an immersion $g: M \rightarrow N \backslash\{y\}$.

Proof. Supposing that $f^{-1}(y)=\left\{x_{1}, \ldots, x_{p}\right\}$, there exists the local charts $\left(U_{i}, \varphi_{i}\right)$, $\left(V_{i}, \psi_{i}\right), i \in\{1,2, \ldots, p\}$ and the real positive number r, such that
(i) $\vec{U}_{i} \cap \bar{U}_{j}=\emptyset$ for $i \neq j$;
(ii) $y \in \bigcap_{i=1}^{p} V_{i}, x_{i} \in U_{i}, \varphi\left(x_{i}\right)=0, \psi_{i}(y)=0(\forall) i \in\{1,2, \ldots, p\}$;
(iii) If D_{φ}^{s} denotes the pre-image of the open disk $D=\left\{x \in \mathbf{R}^{k} \mid\|x\|<s\right\}(k \in\{m, n\})$ by a coordinate mapping $\varphi: U \rightarrow \mathbf{R}^{k}$ with $\varphi(0)=0$ and $D \subseteq \varphi(U)$, then $\bar{D}_{\varphi_{i}}^{25} \subseteq U_{i}$ and $\bar{D}_{\varphi_{i}}^{2 r} \subseteq \bigcap_{i=1}^{p} V_{i},(\forall) i \in\{1,2, \ldots, p\}$;
(iv) $\left(\psi_{i} \circ f \circ \varphi_{i}^{-1}\right)\left(x_{1}, \ldots, x_{m}\right)=(x_{1}, \ldots, x_{m}, \underbrace{0, \ldots, 0}_{n-m \text { times }})(\forall) i \in\{1,2, \ldots, p\}$.

Consider the smooth positive functions $\theta_{i}: N \rightarrow \mathbf{R}$ which has the properties $\theta_{i}^{-1}(0)=N \backslash D_{\varphi_{1}}^{r}$ and the smooth vector fields $X_{1}, X_{2}, \ldots, X_{p}$ which are defined on N by

$$
X_{i}(z)= \begin{cases}\left.\theta_{i}(z) \frac{z_{1} \psi_{1}}{\partial x_{n}}\right|_{z} & \text { if } z \in D_{\psi_{i}}^{2 r} \\ 0 & \text { if } N \backslash D_{\psi_{i}}^{r}\end{cases}
$$

Obviously the norms $\left\|X_{1}\right\|, \ldots,\left\|X_{p}\right\|$ of the fields $X_{1}, X_{2}, \ldots, X_{p}$ are bounded with respect to any Riemannian metric on N, namely they are completely integrable (see [5 , pp. 183]). Denote by α_{t}^{i} the global flow induced by X_{i} and consider the projection $\beta: \mathbf{R}^{n} \rightarrow \mathbf{R}, \beta\left(x_{1}, \ldots, x_{n}\right)=x_{n}$. Observe that

$$
\left(\beta \circ \psi_{i} \circ f \circ \varphi_{i}^{-1}\right)\left(x_{1}, \ldots, x_{m}\right)=0(\forall) x=\left(x_{1}, \ldots, x_{m}\right) \in \varphi_{i}\left(U_{i}\right) .
$$

One can therefore say that

$$
\left(\beta \circ \psi_{i} \circ f\right)(x)=0(\forall) x \in D_{\varphi_{i}}^{2 r} .
$$

Define the mapping g in the following way:

$$
g(x)= \begin{cases}\alpha_{1}^{1}(f(x)) & \text { if } x \in D_{\varphi_{1}}^{2 r} \\ \vdots & \vdots \\ \alpha_{1}^{p}(f(x)) & \text { if } x \in D_{\varphi_{p}}^{2 r} \\ f(x) & \text { if } x \in M \backslash \bigcup_{i=1}^{p} D_{\varphi_{i}}^{r}\end{cases}
$$

Because $\alpha_{2}^{1}, \ldots, \alpha_{p}^{1}$ are diffeomorphisms and f is an immersion, it follows that g is also an immersion. It remains only to show that $y \notin \operatorname{Im} g$, that is, $\beta\left(\psi_{i}(g(x))\right)>0(\forall) x \in D_{\varphi_{1}}^{2 r}$ and $(\forall) i \in\{1,2, \ldots, p\}$. Further on, we have successively

$$
\begin{aligned}
\frac{d}{d t}\left[\psi_{i}\left(\alpha_{i}^{i}(y)\right)\right] & =\left(d \psi_{i}\right)_{\alpha_{i}^{\prime}(y)}\left(\frac{d}{d t} \alpha_{l}^{i}(y)\right)=\left(d \psi_{i}\right)_{\alpha_{i}(y)}\left(X_{i}\left(\alpha_{l}^{i}(y)\right)\right)=\left(d \psi_{i}\right)_{\alpha_{i}^{\prime}(y)}\left(\left.\theta_{i}\left(\alpha_{l}^{i}(y)\right) \frac{\partial^{\psi_{i}}}{\partial x_{n}}\right|_{\alpha_{i}^{\prime}(y)}\right) \\
& =\theta_{i}\left(\alpha_{i}^{i}(y)\right)\left(d \psi_{i}\right)_{\alpha_{i}^{i}(x)}\left(\left.\frac{\partial^{\psi_{i}}}{\partial x_{n}}\right|_{\alpha_{i}^{i}(y)}\right)=\theta_{i}\left(\alpha_{t}^{i}(y)\right) e_{n}=\left(0, \ldots, 0, \theta_{i}\left(\alpha_{l}^{i}(y)\right)\right) .
\end{aligned}
$$

Hence for $x \in D_{\varphi_{1}}^{\gamma}$ we have

$$
\beta\left(\psi_{i}(g(x))\right)=\beta\left(\psi_{i}\left(\alpha_{1}^{i}(f(x))\right)\right)=\int_{0}^{1} \theta_{i}\left(\alpha_{s}^{i}(f(x))\right) d s>0 .
$$

Remark The mapping g constructed above is homotopic to f relative to the set $M \backslash \bigcup_{i=1}^{k} D_{\varphi_{i}}^{r}$. More precisely we have the relation

$$
f \simeq_{H} g\left(\operatorname{rel} M \backslash \bigcup_{i=1}^{k} D_{\varphi_{i}}^{r}\right)
$$

where $H:[0,1] \times M \rightarrow N$ is given by

$$
H(t, x)= \begin{cases}\alpha_{t}^{1}(f(x)) & \text { if } x \in D_{\varphi_{1}}^{2 r} \\ \vdots & \vdots \\ \alpha_{l}^{p}(f(x)) & \text { if } x \in D_{\varphi_{k}}^{2 r} \\ f(x) & \text { if } x \in M \backslash \bigcup_{i=1}^{p} D_{\varphi_{k}}^{r}\end{cases}
$$

Corollary 2.2. Let M^{m}, N^{n} be smooth manifolds such that M is compact and $m<n$. If $f: M \rightarrow N$ is an immersion and $y_{1}, \ldots, y_{1} \in N$ are values of f, then there exists an immersion $g: M \rightarrow N \backslash\left\{y_{1}, \ldots, y_{i}\right\}$ such that $f \simeq g$.

We close this section recalling a useful result proved in [1].

Theorem 2.3. Let M^{m} be a compact differentiable manifold and let k be an integer with $m \geq k \geq 2$. Then the relation $\varphi\left(M, \mathbf{R}^{k}\right)=\kappa_{1}$ is satisfied.

3. On the φ-category of the pairs ($G_{2, n}, \mathbf{R}^{m}$) and ($G_{3, n}, \mathbf{R}^{m}$)

Theorem 3.1. (i) If the natural number n is not a power of 2 , then we have

$$
\varphi\left(G_{2, n}, \mathbf{R}^{m}\right)= \begin{cases}\geq 2^{p+1}-1 & \text { if } m=1 \text { and } n=2^{p}-1 \\ \aleph_{1} & \text { if } 2 \leq m \leq 2 n \\ \infty & \text { if } 2 n<m \leq 2 s-3 \\ ? & \text { if } 2 s-3<m<4 n-1 \\ 0 & \text { if } m \geq 4 n-1\end{cases}
$$

where $s=2^{\prime}$ is such that $2^{r-1} \leq n<2^{r}$.
(ii) If n is a power of 2 , then we have

$$
\varphi\left(G_{2, n}, \mathbf{R}^{m}\right)= \begin{cases}\kappa_{1} & \text { if } 2 \leq m \leq 2 n \\ \infty & \text { if } 2 n<m \leq 3 n-3 \\ ? & \text { if } 3 n-3<m<4 n-1 \\ 0 & \text { if } m \geq 4 n-1\end{cases}
$$

Proof. (i) The inequality $\varphi\left(G_{2,2 p-1}, \mathbf{R}\right) \geq 2^{p+1}-1$ follows from the inequality $\varphi(M, \mathbf{R}) \geq \operatorname{cat} M$ and from [2, Theorem 1.2]. The fact that $\varphi\left(G_{2, n}, \mathbf{R}^{m}\right)=\kappa_{1}$ for $2 \leq m \leq 2 n=\operatorname{dim} G_{2, n}$ follows from Theorem 2.3. For the proof of the fact that $\varphi\left(G_{2, n}, \mathbf{R}^{m}\right)=\infty$ under the conditions $2 n<m<2 s-3$, suppose that there exists a smooth mapping $f: G_{2, n} \rightarrow R^{2 s-3}$ with a finite number of critical points $x_{1}, x_{2}, \ldots, x_{1}$. Consider the usual embedding $i: G_{2, n-1} \hookrightarrow G_{2, n}$ and, according to Corollary 2.2, an immersion $g: G_{2, n-1} \rightarrow G_{2, n} \backslash\left\{x_{1}, \ldots, x_{t}\right\}$ homotopic to i. Then the application $f \circ g: G_{2, n-1} \rightarrow \mathbf{R}^{2 s-3}$ is an immersion, that is a contradiction with the fact that there is not any immersion from $G_{2, n-1}$ to $\mathbf{R}^{2 s-3}$ proved in [4, Theorem 1. (i)]. The fact that $\varphi\left(G_{2, n}, \mathbf{R}^{m}\right)=0$ for $m \geq 4 n-1$, follows from Whitney's embedding theorem.

The proof of the second statement can be made in an analogous manner, using the Corollary 2.2 and [4, Theorem 1. (ii)].

Theorem 3.2. Let $s=2^{r}$ be the natural number satisfying the condition $2^{r+1}<3 n<2^{r+2}$, with $n \geq 3$.
(i) If $\frac{2}{3}<n \leq s-3$, then we have

$$
\varphi\left(G_{3, n+1}, \mathbf{R}^{m}\right)= \begin{cases}\aleph_{1} & \text { if } 2 \leq m \leq 3 n+3 \\ \infty & \text { if } 3 n+3<m \leq 3 s-4 \\ ? & \text { if } 3 s-4<m<6 n+4 \\ 0 & \text { if } m \geq 6 n+5\end{cases}
$$

(ii) If $s \geq 8$, then we have

$$
\varphi\left(G_{3, s-1}, \mathbf{R}^{m}\right)= \begin{cases}\aleph_{1} & \text { if } 2 \leq m \leq 3 s-3 \\ \infty & \text { if } 3 s-3<m \leq 4 s-4 \\ ? & \text { if } 4 s-4<m<6 s-7 \\ 0 & \text { if } m \geq 6 s-7\end{cases}
$$

and

$$
\varphi\left(G_{3, s}, \mathbf{R}^{m}\right)= \begin{cases}\aleph_{1} & \text { if } 2 \leq m \leq 3 s \\ \infty & \text { if } 3 s<m \leq 5 s-4 \\ ? & \text { if } 5 s-4<m<6 s-1 \\ 0 & \text { if } m \geq 6 s-1\end{cases}
$$

(iii) If $s<n<\frac{4}{3} s$, then we have

$$
\varphi\left(G_{3, n}, \mathbf{R}^{m}\right)= \begin{cases}\aleph_{1} & \text { if } 2 \leq m \leq 3 n \\ \infty & \text { if } 3 n<m \leq 6 s-4 \\ ? & \text { if } 6 s-4<m<6 n-1 \\ 0 & \text { if } m \geq 6 n-1\end{cases}
$$

Proof. (i) Theorem 2.3 ensures us that $\varphi\left(G_{3, n+1}, \mathbf{R}^{m}\right)=N_{1}$ if $2 \leq m \leq 3 n+3=$ $\operatorname{dim} G_{3, n+1}$, while $\varphi\left(G_{3, n+1}, \mathbf{R}^{m}\right)=0$ for $m \geq 6 n+5$, follows from Whitney's embedding theorem. It remains only to show that $\varphi\left(G_{3, n+1}, \mathbf{R}^{m}\right)=\infty$ for $3 n+3<m \leq 3 s-4$, that is, any differentiable mapping from $G_{3, n+1}$ to \mathbf{R}^{35-4}, has a finite number of critical points. Assume that there exists a mapping $f: G_{3, n+1} \rightarrow \mathbf{R}^{3 s-4}$ having a finite number of critical points $\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}$ and consider the standard inclusion $j: G_{3, n} \hookrightarrow G_{3, n+1}$. Let $h: G_{3, n} \hookrightarrow G_{3, n+1} \backslash\left\{x_{1}, x_{2}, \ldots, x_{i}\right\}$ be the immersion (which is homotopic with j) ensured by the Corollary 2.2. Obviously $f \circ h: G_{3, n} \rightarrow \mathbf{R}^{3 s-4}$ is an immersion and we can consider the associated 3(s-n)-4-normal fibre bundle v. Taking into account the fact that $w_{3(s-n)-3}(v)=\bar{w}_{3(s-n)-3}\left(G_{3, n}\right)$, the relation $\bar{w}_{3(s-n)-3}\left(G_{3, n}\right) \neq 0$ proved in [4, Theorem 2 (i)] finishes the proof of the statement (i). The statements (ii) and (iii) can be proved analogously using the relations $\bar{w}_{s+3}\left(G_{3, s-2}\right) \neq 0, \bar{w}_{2 s}\left(G_{3, s-1}\right) \neq 0$ and $\bar{w}_{3(2,-n+1)-3} \neq 0$ respectively, which are also proved in [4, Theorem 2 (ii)] and [4, Theorem 2 (iii)] respectively.

4. On the φ-category of the pair $\left(P_{n}(\mathbf{R}), \mathbf{R}^{m}\right)$

In this section the case of the pair $\left(P_{n}(\mathbf{R}), \mathbf{R}^{m}\right)$ will be treated. For this purpose we need some helpful results.

Lemma 4.1. If $A \subseteq S^{n},(n \geq 2)$ is a finite set, then there exists $x \in S^{n}$ such that $(x)^{\perp} \cap A=\emptyset$ where $\langle x\rangle^{\perp}$ denotes the orthogonal complement of x with respect to the usual scalar product from \mathbf{R}^{n+1}.

Proof. The proof will be made by induction with respect to $k=|A|$. If $k=1$, then $A=\{a\}$ and we can choose $x=a$. Suppose that $|A|=k+1$ and choose $a \in A$. From the induction hypothesis it follows that there exists $x^{\prime} \in S^{n}$ such that $\left\langle x^{\prime}\right\rangle^{\perp} \cap(A \backslash\{a\})=\emptyset$. If $a \notin\left(x^{\prime}\right)^{\perp}$ choose $x=x^{\prime}$, else we choose $\theta \in(0, m)$ where

$$
m=\min \left\{\left|\operatorname{arctg} \frac{\left\langle a, x^{\prime}\right\rangle}{\left\langle a, a^{\prime}\right\rangle}\right|: a^{\prime} \in A \backslash\{a\}\right\}
$$

with $m=\frac{\pi}{2}$ if $\left\langle a, a^{\prime}\right)=0(\forall) a^{\prime} \in A \backslash\{a\}$, and $x=\cos \theta x^{\prime}+\sin \theta a \in S^{n}$. Obviously $\langle a, x\rangle=\sin \theta>0$, that is $a \notin\langle x\rangle^{\perp}$ and since $\left\langle a^{\prime}, x\right\rangle=\cos \theta\left\langle a^{\prime}, x^{\prime}\right\rangle+\sin \theta\left\langle a, a^{\prime}\right\rangle \neq$ $0(\forall) a^{\prime} \in A \backslash\{a\}$, it implies that $(A \backslash\{a\}) \cap\langle x)^{\perp}=\emptyset$ which together with $a \notin\langle x\rangle^{\perp}$ leads to the conclusion that $\langle x)^{\perp} \cap A=\emptyset$.

Proposition 4.2. If $A \subseteq S^{n}, n \geq 2$ is a finite set \mathbf{Z}_{2}-invariant (symmetric), then there exists a \mathbf{Z}_{2}-equivariant (odd) embedding $f: S^{n-1} \rightarrow S^{n} \backslash A$.

Proof. Let us consider $x \in S^{n}$ such that $\langle x\rangle^{\perp} \cap A=\emptyset$. Because the orthogonal group $O(n)$ acts transitively on S^{n}, it follows that there exists $T \in O(n)$ such that $T\left(e_{n+1}\right)=x$ where $e_{n+1}=(0, \ldots, 0,1) \in \mathbf{R}^{n+1}$. But since $\left\langle e_{n+1}\right\rangle^{\perp}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \in \mathbf{R}^{n+1} \mid x_{n+1}=\right.$ $0\} \simeq \mathbf{R}^{n}$ and T is an orthogonal diffeomorphism which leaves invariant the sphere S^{n}, it implies that $T\left(\mathbf{R}^{n}\right)=\langle x\rangle^{\perp}$. Choose $f=\left.T\right|_{s^{n-1}}$.

Corollary 4.3. If $A \subseteq P_{n}\left(\mathbf{R}^{n}\right),(n \geq 2)$ is a finite subset, then there exists an immersion $g: P_{n-1}(\mathbf{R}) \rightarrow P_{n}(\mathbf{R}) \backslash A$.

Proof. Let $f: S^{n-1} \rightarrow S^{n} \backslash p_{n}^{-1}(A)$, where $p_{n}: S^{n} \rightarrow P_{n}(\mathbf{R})$ is the canonical projection, be the embedding ensured by Proposition 4.2. g will be chosen as being the mapping which makes commutative the following diagram:

$$
\begin{array}{ccc}
S^{n-1} & \xrightarrow{f} & S^{n} \backslash p_{n}^{-1}(A) \\
p_{n-1} \downarrow & & \left.\downarrow p_{n}\right|_{S^{n} \mid P_{n}^{-1}(A)} \\
P_{n-1}(\mathbf{R}) & \xrightarrow{g} & P_{n}(\mathbf{R}) \backslash A .
\end{array}
$$

Let A be a finite subset of $P_{n}(\mathbf{R})$ and $E\left(\gamma_{n}^{1}(A)\right)$ be the subset of $\left(P_{n}(\mathbf{R}) \backslash A\right) \times \mathbf{R}^{n+1}$ consisting in all pairs $(\{ \pm x\}, v)$ such that v is a multiple of x. Define $\pi_{A}: E\left(\gamma_{n}^{1}(A)\right) \rightarrow$ $P_{n}(\mathbf{R}) \backslash A$ by $\pi_{A}(\{ \pm x\}, v)=\{ \pm x\}$. Hence every fibre $\pi_{A}^{-1}(\{ \pm x\})$ can be identified with the straight line through x and $-x$ from \mathbf{R}^{n+1}. The resultant fibre bundle $\gamma_{n}^{\prime}(A)$ will be
called the canonical line bundle over $P_{n}(\mathbf{R}) \backslash$. Note that $\gamma_{n}^{1}(\varnothing)$ is even the canonical line bundle $\gamma_{n}^{1}\left(\right.$ over $P_{n}(\mathbf{R})$) defined in [3, pp. 16].

Proposition 4.4. The total Stiefel-Whitney class of the canonical line fibre bundle $\gamma_{n}^{1}(A)$ over $P_{n}(\mathbf{R}) \backslash A$ is given by

$$
\omega\left(\gamma_{n}^{1}(A)\right)=1+a_{A}
$$

where $a_{A} \in H^{\prime}\left(P_{n}(\mathbf{R}) \backslash A ; \mathbf{Z}_{2}\right)$ is not zero.

Proof. Let $j^{\prime}: S^{1} \rightarrow S^{n} \backslash p_{n}^{-1}(A)$ be a \mathbf{Z}_{2}-equivariant embedding. Obviously j^{\prime} induces an immersion $j: P_{1}(\mathbf{R}) \rightarrow P_{n}(\mathbf{R}) \backslash A$ covered by an application of fibrations from γ_{1}^{1} to $\gamma_{n}^{1}(A)$. Therefore denoting by a_{A} the Stiefel-Whitney class $\omega_{1}\left(\gamma_{1}(A)\right)$, one can say that $j^{*}\left(a_{A}\right)=\omega_{1}\left(\gamma_{1}^{1}\right) \neq 0$ which shows that $a_{A} \neq 0$.

Remark. If $n \geq 2$, then $a_{A}^{k} \neq 0,(\forall) k \in\{1,2, \ldots, n-1\}$. Indeed if $k: P_{1}(\mathbf{R}) \rightarrow P_{n-1}(\mathbf{R})$ denotes the usual inclusion, which can be obviously covered by an application of fibrations from γ_{1}^{1} to γ_{n-1}^{1} and $j: P_{n-1}(\mathbf{R}) \rightarrow P_{n}(\mathbf{R}) \backslash A$ the immersion ensured by Corollary 4.3, which can be also covered by an application of fibrations from γ_{n-1}^{1} to $\gamma_{n}^{1}(A)$, then from the second axiom of the Stiefel-Whitney classes, it follows that $k^{*}\left(j^{*}\left(a_{A}\right)\right)=\omega_{1}\left(\gamma_{1}^{1}\right) \neq 0$, and therefore $j^{*}\left(a_{A}\right)=a \in H^{1}\left(P_{n-1}(\mathbf{R}) ; \mathbf{Z}_{2}\right)$ is the generator (obviously non zero) of $H^{1}\left(P_{n-1}(\mathbf{R}) ; \mathbf{Z}_{2}\right)$. But since $a^{k}=j^{*}\left(a_{A}^{k}\right)$ is the generator (obviously non zero) of $H^{k}\left(P_{n-1}(\mathbf{R}) ; \mathbf{Z}_{2}\right)$ for any $k \in\{1,2, \ldots, n-1\}$, it implies that $a_{A}^{k} \neq 0$, for each $k \in\{1,2, \ldots, n-1\}$.

Using a similar judgement with that from [3, Theorem 4.5, p. 45] one can show that the manifold $P_{n}(\mathbf{R}) \backslash A$ has the total Stiefel-Whitney class

$$
\omega\left(P_{n}(\mathbf{R}) \backslash A\right)=\left(1+a_{A}\right)^{n+1}=1+\left({ }_{1}^{n+1}\right) a_{A}+\left(\begin{array}{c}
n+1
\end{array}\right) a_{A}^{2}+\cdots+\left(\begin{array}{c}
n+1
\end{array}\right) a_{A}^{n} .
$$

For $n=2^{r}$ we get

$$
\omega\left(P_{2^{\prime}}(\mathbf{R}) \backslash A\right)=\left(1+a_{A}\right)^{2^{\prime}+1}=1+a_{A}+a_{A}^{2}
$$

and also

$$
\bar{\omega}\left(P_{2^{\prime}}(\mathbf{R}) \backslash A\right)=1+a_{A}+a_{A}^{2}+\cdots+a_{A}^{2^{\prime}-1} .
$$

Theorem 4.5. If n is a natural number such that $n+1$ and $n+2$ are not powers of 2 , then the φ-category of the pair $\left(P_{n}(\mathbf{R}), \mathbf{R}^{m}\right)$ is given by:

$$
\varphi\left(P_{n}(\mathbf{R}), \mathbf{R}^{m}\right)= \begin{cases}n+1 & \text { if } m=1 \\ \aleph_{1} & \text { if } 2 \leq m \leq n \\ \infty & \text { if } n<m \leq 2^{\left[\log _{2} n\right]+1}-2 \\ ? & \text { if } 2^{\left[\log _{2}\right]+1}-1 \leq m \leq 2 n-2 \\ 0 & \text { if } m \geq 2 n-1 .\end{cases}
$$

Proof. The case $m=1$ is justified in [6]. The fact that $\varphi\left(P_{n}(\mathbf{R}), \mathbf{R}^{m}\right)=\kappa_{1}$ for $2 \leq m \leq n$ follows from Theorem 2.3. Conșider firstly the case when n is a power of 2 , that is, $n=2^{\left[\log _{2} n\right]}$. Assume that $n<m \leq 2^{\left[\log _{2} n\right]+1}-2$ and that there exists $f: P_{2 \log n \mid}(\mathbf{R}) \rightarrow \mathbf{R}^{m}$ such that $C(f)$ is finite. If v is the associated normal fibre bundle (over $P_{2^{[\log 2] \mid}(\mathbf{R})} \backslash C(f)$) to the immersion $\left.f\right|_{P_{2}[\log n \mid(\mathbb{R})(f)}$ then

$$
\omega(v)=\bar{\omega}\left(P_{2\left[l_{0} \sigma_{2 n} \mid\right.}(\mathbf{R}) \backslash C(f)\right)=1+a_{C(\Omega)}+a_{C(\Omega}^{2}+\cdots+a_{C(\Omega)}^{2\left[0_{0} n\right]-1}
$$

But since v is a $m-2^{\left[l g_{2} n\right]}$-vector fibre bundle and $a_{C(1)}^{2^{[l o g n]-1}} \neq 0$ it follows that $m-2^{\left[\log _{2} n\right]} \geq 2^{\left[\log _{2} n\right]}-1$ which means that $m \geq 2^{\left.\left[\log _{2}\right]\right]+1}-1>2^{\left[\log _{2} n\right]+1}-2$ that is a contradiction. If n is not a power of 2 , then the hypothesis of the theorem ensures that $2^{\left[\log _{2} n\right]}+1 \leq n \leq 2^{\left[\log _{2} n\right]+1}-3$. Assume that $n<m \leq 2^{\left[\log _{2} n\right]+1}-2$ and that there exists a differentiable application $g: P_{n}(\mathbf{R}) \rightarrow \mathbf{R}^{m}$ such that $C(g)$ is finite. If $h: P_{\left.2^{[l o g} 2 n\right]}(\mathbf{R}) \rightarrow P_{n}(\mathbf{R}) \backslash C(g)$ is the immersion ensured by Corollary 4.3, then obviously $g \circ h: P_{2^{\text {log }} \text { m }}(\mathbf{R}) \rightarrow \mathbf{R}^{m}$ is an immersion. If v^{\prime} is the associated normal fibre bundle (over $\left.P_{2^{\left[\log _{2} n\right]}}(\mathbf{R})\right)$ of the immersion $g o h$, then $w\left(v^{\prime}\right)=\bar{w}\left(P_{2^{\left[l o 0_{2} n\right)}}(\mathbf{R})\right)=1+a+a^{2}+\cdots+a^{a^{[\log 2 n]}-1}$. But since v^{\prime} is a $m-2^{\left[{ }^{\left[l g_{2} n\right]}\right.}$-vector fibre bundle and $a^{\left.2^{\left[l \log _{2}\right]}\right]} \neq 0$ it follows that $m-2^{\left[\log _{2} n\right]} \geq 2^{\left[\log _{2} n\right]}-1$ which means that $m \geq 2^{\left[\log _{2} n\right]+1}-1>2^{\left[\log _{2} n\right]+1}-2$ that is a contradiction. The fact that $\varphi\left(P_{n}(\mathbf{R}), \mathbf{R}^{m}\right)=0$ for $m \geq 2 n-1$ follows from Whitney's embedding theorem.

Corollary 4.6. If m and n are natural numbers such that $n+1$ and $n+2$ are not powers of 2 and $2 \leq m \leq 2^{2^{2(102 n)+1}}-2$, then any smooth \mathbf{Z}_{2}-invariant (even) mapping $f: S^{n} \rightarrow \mathbf{R}^{m}$ has an infinite number of critical orbits, that is, there exists infinitely many points $x \in S^{n}$ such that x and $-x$ are critical points of f.

REFERENCES

1. D. Andrica and C. Pintea, Critical points of vector-valued functions (Proceedings of the 24th National Conference of Geometry and Topology, July 5-9, 1994, Romania, University of Timişoara, 1996).
2. I. Berstein, On the Lusternik-Schnirelmann category of Grassmannians, Math. Proc. Cambridge Philos. Soc. 79 (1976), 129-134.
3. J. W. Milnor and J. D. Stasheff, Characteristic classes (Princeton, New Jersey, 1974).
4. V. Oproiv, Some non-embedding theorems for the Grassmann manifolds, Proc. Edinburgh Math. Soc. 20 (1976-77), 177-185.
5. R. S. Palais and C. L. Terng, Critical Point Theory and Submanifold Geometry (SpringerVerlag, Lecture Notes in Mathematics, 1988).
6. F. Takens, The minimal number of critical points of a function on a compact manifold and the Lusternik-Schnirelmann Category, Invent. Math. 6 (1968), 197-244.
"Babes-Bolyai" University
Department of Mathematics
Str. Kogãlniceanu 1
3400 Cluj-Napoca
Romania
E-mail: cpintea@math.ubbcluj.ro
