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Abstract
We study a fully funded, collective defined contribution (DC) pension system with multiple overlapping genera-
tions. We investigate whether the welfare of participants can be improved by intergenerational risk sharing (IRS)
implemented with a realistic investment strategy (e.g., no borrowing) and without an outside entity (e.g., share-
holders) that helps finance the pension fund. To implement IRS, the pension system uses an automatic adjustment
rule for the indexation of individual accounts, which adapts to the notional funding ratio of the pension system. The
pension system has two parameters that determine the investment strategy and the strength of the adjustment rule,
which are optimized by expected utility maximization using Bayesian optimization. The volatility of the retirement
benefits and that of the funding ratio are analyzed, and it is shown that the trade-off between them can be controlled
by the optimal adjustment parameter to attain IRS. Compared with the optimal individual DC benchmark using the
life cycle strategy, the studied pension system with IRS is shown to improve the welfare of risk-averse participants,
when the financial market is volatile.

1. Introduction
Defined contribution (DC) pension plans constitute key part of pension systems in many countries, such
as the “401k plan” in the United States and the “personal pensions” in the United Kingdom. In a DC
plan, each participant owns her account and pays fixed contributions to the account regularly, and the
accumulated contributions are invested in a financial market. The amount of retirement benefits is deter-
mined by the market value of the individual account at the retirement date. By design, DC plans have
advantages over traditional pension schemes such as pay-as-you-go (PAYG) and defined benefit (DB)
pension plans in terms of the transparency, fairness, portability, and sustainability, which encourage the
prevalence of DC plans.

However, DC plans have major issues arising from that each participant bears the investment risk by
herself. One issue is that the participant may not choose a good investment strategy due to the lack of
financial expertise. Indeed, a typical DC plan participant in reality tends to perform the naive “1/n diver-
sification,” equally dividing her contributions into the default options provided by the plan (Benartzi and
Thaler 2001). Optimal investment strategies studied in the literature (e.g., Merton 1971; Cairns 1996;
Cairns et al. 2006; Boulier et al. 2001; Vigna and Haberman 2001; Chen and Delong 2015; Menoncin
and Vigna 2017) can thus not be easily employed by such participants.

Another major issue of DC plans is the incapability of intergenerational risk sharing (IRS), which
is to diversify non-diversifiable risks within one generation (e.g., those caused by economic shocks)
across different generations. For example, a DC plan participant whose accumulation period overlaps an
economic depression faces a financial risk that cannot be diversified by herself; even if she can choose an
optimal utility-maximizing investment strategy, she may not accumulate enough wealth for retirement.
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IRS enables diversifying such non-diversifiable risks by sharing the risks among different generations.
By definition, however, IRS requires the pension scheme to be collective, and thus individual DC plans
cannot implement IRS.

It is well known that carefully designed collective schemes can implement IRS to improve the welfare
of participants (e.g., Gordon and Varian 1988; Allen and Gale 1997; Shiller 1999). Gollier (2008) shows
that a collective DC pension plan can improve the welfare of participants compared with an individual
benchmark using the optimal life cycle investment strategy. Similarly, Cui et al. (2011) study a collective
DB-based hybrid pension scheme where both contributions and pension benefits may be adjusted and
show that it is welfare-improving compared with an optimal individual benchmark. Chen et al. (2016)
consider a three-pillar pension system in which the second pillar is a collective hybrid plan and show
that there is welfare improvement compared with a corresponding individual DC benchmark. See Barr
and Diamond (2008, Chapter 7) and Beetsma and Romp (2016) for an overview of IRS and further
references.

While the seminal work of Gollier (2008) shows that IRS in a collective DC pension system is welfare-
improving, both his first-best and second-best strategies depend on rather strong assumptions. The first-
best strategy attains IRS by enhancing the risk-taking ability of the pension fund, by treating the net
present value of the contributions from all the future generations as part of the fund’s total wealth.
Consequently, the fund can invest more than the fund’s actual wealth, that is, the fund can perform
borrowing for investment, similar to the life cycle investment strategy for an individual investor (Merton
1971). However, borrowing is not realistic for pension funds in reality. On the other hand, his second-
best strategy does not allow borrowing but assumes the existence of an outside entity (shareholders) that
helps finance the fund. Therefore, it is not clear whether the welfare improvement by the second-best
strategy can be attained without the shareholders.

Given these limitations of Gollier’s analyses, one may ask: Can the welfare improvement by IRS be
attained by a fully funded, collective DC pension system with a realistic investment strategy (e.g., no
borrowing) and without an outside entity that helps finance the pension fund? Previous related works do
not exactly answer this question, as discussed later in detail. For example, while Chen et al. (2016) show
that their collective scheme with IRS is welfare-improving compared with the corresponding individual
DC scheme, it is assumed that both the collective and individual schemes use the same investment
strategy; therefore, it is not clear whether their IRS is welfare-improving as compared with the optimal
individual investment strategy.

Our main aim is to investigate the above question. To this end, we consider a stylized model for a fully
funded, collective DC pension fund with multiple overlapping generations, which we call the IRS-DC
model. As Gollier (2008), each participant pays a fixed annual contribution to the pension fund, and
the fund makes investment on behalf of the participants. Different from the first-best strategy of Gollier
(2008), however, the fund is not allowed to perform borrowing. Each participant has her own account in
the fund, which accumulates her contributions and is indexed to the fund’s investment performance; the
account value at the retirement date determines her pension benefit. The indexation rate of individual
accounts is automatically adjusted to the (notional) funding ratio of the pension fund by the adjustment
rule of Goecke (2013). This automatic adjustment rule is the device for implementing IRS in our model.
In contrast to the second-best strategy of Gollier (2008), the fund is fully funded and does not rely on
any external entity to implement IRS.

We analyze how the automatic adjustment rule stabilizes the funding ratio and the benefits of partic-
ipants to attain IRS. Analytic expressions are derived for the funding ratio and benefits. It is shown that
there is a trade-off between the stability of the funding ratio and that of benefits, and that this trade-off
is controlled by the strength of the automatic adjustment rule. That is, benefits can be made more stable
by increasing the volatility of the funding ratio, and vice versa. IRS can be attained by balancing this
trade-off.

Automatic adjustment rules in pension systems have been not only studied in the literature (e.g.,
Cui et al. 2011; Chen et al. 2016; Bams et al. 2016; Donnelly 2017) but also applied to real pension
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systems in such countries as Sweden and the Netherlands [OECD, 2021, Chapter 2]. They are used for
improving the sustainability of a pension fund and for providing stable benefits to participants (e.g.,
Settergren 2001; Barr and Diamond 2011). However, a formal analysis is missing for justifying such use
of automatic adjustment rules in collective pension systems. Our analysis thus provides a first step in
this regard.

The IRS-DC model has two parameters, one for the investment strategy and the other for the automatic
adjustment rule. For optimizing these parameters, we define an expected utility maximization problem
that involves the benefits of all the generations including those in the future, following Gollier (2008).
As this optimization problem cannot be solved analytically, we solve it numerically using Bayesian opti-
mization (BO), a machine learning approach to optimizing a black-box function (e.g., Shahriari et al.
2016). As discussed later, the use of BO is our computational contribution, in line with the recent deploy-
ments of machine learning in the insurance literature (e.g., Hainaut 2018; Gabrielli 2020; Wüthrich
2020; Scognamiglio 2022; Schnürch and Korn 2022).

To answer the question above, our main finding is that IRS can improve the welfare of participants
without borrowing and shareholders, if the financial market is volatile and the participants are risk-
averse; IRS may not be welfare-improving if this condition is not satisfied. We compare the welfare
of the IRS-DC plan participants and the welfare of the corresponding individual DC plan participants,
where the latter uses the optimal life cycle strategy (Merton 1971). Several different settings of the
financial market and the risk aversion of participants are investigated, and the above finding is obtained.

The paper proceeds as follows. Section 2 introduces the IRS-DC pension model, which is analyzed in
Section 3. Section 4 explains the expected utility maximization problem, how to solve it with BO, and
the setup for simulations. Section 5 presents numerical analyses, including the funding ratio process,
the individual benefit accounts of the IRS-DC fund, and the certainty equivalents of the participants.
Section 6 concludes. The appendix contains a short tutorial on BO, the proofs of analytic results, and
additional numerical analyses.

2. Pension model
This section describes the IRS-DC pension model. The pension fund contains multiple overlapping
generations, where there are always incoming and outgoing generations. Each generation pays fixed
contributions annually to the pension fund. Before explaining the details, we summarize below the key
features of the pension fund:

(i) The pension fund collectively invests the contributions from different generations (participants)
in a financial market.

(ii) Each participant maintains her account in the pension fund that records her accumulated
pension rights.

(iii) The growth rate of individual accounts is automatically adjusted based on the fund’s investment
performance and a notional funding ratio so that IRS is implemented.

Section 2.1 describes the IRS-DC pension model in detail. Section 2.2 compares it with related
pension models in the literature.

2.1. Description of the IRS-DC pension model
Figure 1 provides a schematic illustration of our pension model. The pension fund covers N overlap-
ping working generations in each operating year (e.g., N = 40). The pension fund is fully funded. For
simplicity, we assume that each generation consists of one hypothetical participant. Let t � 0 denote the
time, with the unit being 1 year. We assume that the fund starts at time t = 0 with N initial generations.
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Figure 1. Schematic illustration of the pension model. The horizontal axis indicates time t and the ver-
tical axis generation identifiers. For each generation, the black and white circles indicate the time points
when that generation joins and retires from the pension fund, respectively; the orange line indicates the
duration of the participation in the fund. For example, the generation i joins the fund at time t = i − N
and retires at t = i. For each time point, the blue box indicates the current participants of the pension
fund, and black diamonds indicate those participants (only shown for the generations displayed in the
figure). For example, at time t = i − 1, the generations i, i + 1, . . . , i + N − 1 are participating in the
fund.

2.1.1. Generation identifier
We use an integer i ∈N as the identity of the generation who retires at time t = i (see Figure 1). Namely,
the generation i joins the fund at time t = i − N and leaves the fund at time t = i; thus, this generation is
in the fund for N years. Using this notation, we can define the set of all the working generations in the
fund at any time point t � 0 as:

Iw(t) := {i|i = [t] + 1, [t] + 2, . . . , [t] + N},
where [t] denotes the integer part of t (e.g., if t = 3.4 then [t] = 3; if t = 3 then [t] = 3).

2.1.2. Financial market and pension asset dynamics
We consider a financial market where there exist two investment opportunities: a risky asset (e.g., a
stock) and a risk-free asset (e.g., a bank account or a bond), denoted by S(t) and F(t), respectively.
Specifically, we consider the Black–Scholes market, where S(t) is driven by a diffusion process with
constant drift μ > 0 and volatility σ > 0, while F(t) develops at a risk-free rate r > 0 such that μ > r:

dS(t) = μS(t)dt + σS(t)dZ(t), S(0) = 1; (2.1)

dF(t) = rF(t)dt, F(0) = 1, (2.2)

where Z(t) is a standard Brownian motion under the real-world probability measure.
Let A(t) denote the asset of the pension fund at time t, with A(0) > 0 being the initial asset. For

simplicity, we assume that the fund invests a constant fraction π ∈ [0, 1] of the pension asset A(t) in the
stock S(t) and the rest 1 − π in the risk-free asset F(t); thus, we can write the dynamics of the pension

https://doi.org/10.1017/asb.2023.18 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.18


ASTIN Bulletin 519

asset as:

dA(t) = πA(t)

S(t)
dS(t) + (1 − π )A(t)

F(t)
dF(t), π ∈ [0, 1]. (2.3)

We assume that the fund is prohibited from from borrowing (π > 1) and short selling (π < 0).
At the beginning of each year t = 0, 1, 2 . . . , each working generation pays a constant amount of

contribution, c > 0, to the pension fund. Since there are N working generations, the fund thus receives
a total of Nc contributions at the beginning of each year. At the same time, the fund pays a lump-sum
benefit to the generation t, who retires at time t.

The dynamics of the pension asset can thus be written as:

dA(t) = A(t)(π (μ − r) + r) dt + A(t)πσ dZ(t), A(0) = A0, t > 0, (2.4)

A(t)+ = A(t) + Nc − Bt(t), t = 0, 1, 2, . . . , (2.5)

where (2.4) is obtained by substituting (2.1) and (2.2) into (2.3), A(t)+ := limε→+0 A(t + ε) denotes the
right continuous limit, and Bt(t) is the benefit paid to the generation t who has just retired and defined in
(2.6) and (2.7) below (the double t notation of Bt(t) is deliberate and its meaning will be clear shortly).

Therefore, the pension asset develops continuously over time t > 0, while there is a jump at each
integer time t = 0, 1, 2, . . . (i.e., at the beginning of each year) when there are incoming and outgoing
cash flows of Nc and Bt(t), respectively.

2.1.3. Individual accounts and retirement benefits
Like pure DC and notional DC plans, each participant (generation) in our IRS-DC pension fund has
her individual account, which keeps track of her pension rights. It records her annual contributions and
grows according to the indexation rate (2.11) defined below. The terminal value of the account at the
time of retirement becomes the lump-sum retirement benefit.

More formally, let Bi(t) denote the individual account of generation i ∈N at time t ∈ [i − N, i], which
starts from Bi(i − N) = 0 when this generation enters the fund at time t = i − N. Then, we define its
dynamics as:

Bi(t)+ = Bi(t) + c, t = i − N, i − N + 1, . . . , i − 1, (2.6)

dBi(t) = Bi(t)g(t)dt, i − N � t � i. (2.7)

where g(t) is the indexation rate at time t, defined in (2.11) below. Namely, the individual account Bi(t)
grows continuously from the entry time t = i − N until retirement at t = i according to the indexation
rate g(t) as (2.7), while the account accumulates the annual contribution c at the beginning of every year
as (2.6). The account value at the time of retirement t = i, that is, Bt(t), is the retirement benefit of the
generation i; see (2.5).

2.1.4. Indexation rate and notional liability
We now define the indexation rate g(t) that determines the growth rate of individual accounts as in (2.7),
which in turn affects the pension’s asset dynamics in (2.5). To this end, following Bams et al. (2016)
and Donnelly (2017), we first define a notional liability of the fund as:

L(t) :=
∑
i∈Iw(t)

Bi(t), t � 0. (2.8)

That is, we define the notional liability L(t) of the fund at time t as the sum of individual accounts Bi(t)
for the current working generations i ∈ Iw(t).

If there is no cash flow in (2.5), the solution to the asset process (2.4) is given by stochastic exponen-
tial, which is a classic result in financial mathematics (e.g., Karatzas and Shreve 1991, Chapter 5), as:
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Figure 2. Schematic illustration of the cash flows in our pension model for two time points t = i and
t = i + 1. In the blue dotted box, A(t) denotes the pension fund’s asset, whose dynamics follow (2.4) and
(2.5). In the orange dotted box, Bi(t), Bi+1(t), and Bi+2(t) denote the individual accounts of generations
i, i + 1, and i + 2, respectively, whose dynamics follow (2.6) and (2.7). At time t = i, there is an incom-
ing cash flow of Nc contributions from the N working generations, and an outgoing cash flow of the
retirement benefit Bi(i) for the generation i, who retires at time t = i; see (2.2). This retirement benefit is
determined by the individual account Bi(t), which accumulates the annual contribution c at the begin-
ning of each year and develops continuously according to the indexation rate g(t) = μ̃ + θ ln (A(t)/L(t));
see (2.7). On the other hand, the asset process A(t) develops continuously according to the investment
performance of the portfolio with the constant-mix strategy π ; see (2.4). Each “+c” represents the
accumulation of the annual contribution in the individual account: at time t, the amount c is added to
each of Bi+1(t) and Bi+2(t).

A(t) = A(0) exp

(∫ t

0

μ̃ds +
∫ t

0

σ̃dZ(s)

)
, (2.9)

where μ̃ > 0 and σ̃ > 0 are constants defined as:

μ̃ := π (μ − r) + r − 1

2
π 2σ 2, σ̃ := πσ . (2.10)

Following Goecke (2013, Equation (5)),1 we then define the indexation rate g(t) as:

g(t) = μ̃ + θ ln

(
A(t)

L(t)

)
, t � 0, (2.11)

where θ > 0 is a constant, μ̃ is from (2.10), A(t) is the pension fund’s asset process (2.4) (2.5), and L(t)
is the notional liability (2.8).

Figure 2 provides a schematic illustration of the cash flows in our pension model for two time points
t = i and t = i + 1. In the following, let us take a closer look at the role of various important factors.

1Our indexation rate corresponds to Goecke (2013, Equation (5)) with ρtarget = 0.
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2.1.5. The role of the indexation rate
While we will present a more formal analysis in Section 3, we provide here an intuitive discussion of
how the indexation rate (2.11) works. As defined in (2.7), the indexation rate g(t) controls the growth
rate of individual accounts Bi(t). The first term μ̃ in (2.11) is the expected annual log return using the
same investment strategy π in the financial market without participating in the pension fund. In the
second term, A(t)/L(t) is the notional funding ratio that quantifies the balance between the asset A(t)
and the notional liability L(t). The second term adjusts the growth rate of individual accounts Bi(t), and
the parameter θ � 0 specifies the strength of the adjustment.

If θ = 0, then individual accounts grow deterministically at the rate μ̃; therefore in this case, the
retirement benefits are ex ante determined, that is, the pension plan becomes a DB plan, thus removing
the investment risk of pension participants. However, it risks the sustainability of the pension fund, as
the fund is of a DC type by design, and thus there is no way of adjusting the contributions when the fund
is underfunding.

On the other hand, if one sets a large value of θ > 0, then pension participants bear more investment
risks to improve the sustainability of the pension fund. For example, suppose that the pension asset
exceeds the notional liability, that is, A(t) > L(t) =∑

i∈Iw(t) Bi(t). One can interpret this situation as that
the fund yields a high return in the investment and thus there is a “surplus.” Then the log notional funding
ratio becomes positive, ln (A(t)/L(t)) > 0, and the indexation rate g(t) shall be larger than μ̃; therefore,
individual accounts Bi(t) grow faster, reflecting the high investment return. On the other hand, if A(t) <

L(t) =∑
i∈Iw(t) Bi(t), which happens when the fund yields a low return and thus there is a “deficit.” In

this case, we have ln (A(t)/L(t)) < 0, and thus the indexation rate g(t) shall be smaller than μ̃; therefore,
individual accounts Bi(t) grow more slowly, reflecting the low investment return.

This argument implies that the adjustment parameter θ should be neither too small nor too large. One
should choose θ appropriately to achieve a good trade-off between the risks of individual participants
and the pension fund. We present a more formal analysis in Section 3.

2.2. Comparison with related pension models
We compare the IRS-DC model with related pension models in the literature. Goecke (2013) studies the
indexation rate (2.11) for the return smoothing in a self-financing pension plan. Goecke (2013)’s model
consists only of one generation, and there exists no cash flow of contributions and payments. The earlier
work by Baumann and Müller (2008) considers the indexation rate (2.11) where the risk-free rate r is
used instead of μ̃. Our model is a continuous-time version of the discrete-time model of Bams et al.
(2016), which itself is an extension of the overlapping generations model of Gollier (2008). Bams et al.
(2016) use the indexation rate in (2.11) but do not analytically study its use. Donnelly, (2017) considers a
funded collective DC pension plan. Donnelly, (2017)’s model consists of fixed multiple overlapping gen-
erations, and there exists no new incoming generation. Donnelly, (2017) uses an automatic adjustment
rule similar to Goecke, (2013)’s (and thus ours) but is different in its concrete form.

Cui et al. (2011) consider a funded DB-based hybrid pension system that can adjust both benefits
and contributions. Their pension model does not have individual accounts. The present value of base
benefits and contributions are made equivalent ex ante, but there is no direct link between one’s actual
benefits and contributions. Their model is DB-based in this sense. They use automatic adjustment rules
for contributions and retirement benefits based on the funding ratio. Chen et al. (2016) consider a hybrid
pension plan as their second-pillar pension system, in which there exist individual accounts. They also
use automatic adjustment rules for contributions and individual accounts’ indexation rates. While the
adjustment rules of Cui et al. (2011) and Chen et al. (2016) are conceptually similar to ours, they are dif-
ferent in their forms. For example, Chen et al. (2016) use the “tangent hyperbolic adjustment function,”
while our adjustment rule is based on the log notional funding ratio. Moreover, Cui et al. (2011) and Chen
et al. (2016) define the liabilities in a DB manner, taking into account future retirement benefits, while
we define our notional liability in a DC manner, that is, as the sum of current individual account values.
Again, our liability is notional, since the fund does not provide any promise on retirement benefits.
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Automatic adjustment mechanisms have been implemented in real pension systems; see OECD,
(2021, Chapter 2) for an overview. Notably, Sweden’s first-pillar notional DC pension system uses
an automatic adjustment rule for the indexation rate of individual accounts Settergren (2001). This
adjustment mechanism is based on a notional funding ratio2. and is conceptually similar to other rules
discussed here (see e.g., Hagen 2013, Equations (6.2) and (6.3)). The Swedish first-pillar notional DC
pension system defines its notional liability essentially in the same way as (2.8) (Settergren 2001,
Equation (3)).3

3. Analysis
We present an analysis of the IRS-DC pension model in Section 2, focusing on the role of the indexation
rate (2.11) for achieving IRS. In particular, we study how the adjustment parameter θ in the indexation
rate impacts the funding ratio, which measures the stability of the pension fund, and the retirement
benefits of individual participants.

In Section 3.1, we first study the dynamics of the log funding ratio. Based on this, we analyze the
effects of the adjustment parameter on the dynamics of the funding ratio in Section 3.2 and on the retire-
ment benefit of an individual participant in Section 3.3. In the latter, we obtain an analytic expression
of the retirement benefit in terms of the log funding ratio and the adjustment parameter. Based on this
expression, we compare the retirement benefits of the IRS-DC plan and the corresponding pure DC plan
in Section 3.4. This last analysis provides insights into how IRS works in the IRS-DC plan.

3.1. Dynamics of the log funding ratio
We start by analyzing the dynamics of the log funding ratio defined as:

ρ(t) := ln

(
A(t)

L(t)

)
. (3.1)

Goecke, (2013, Proposition A.1) shows that ρ(t) is an Ornstein–Uhlenbeck process under the assumption
that there exists no cash flow. Baumann and Müller (2008, Section 3.1) obtain a similar result, but again
assuming no cash flow. Since our model involves explicit cash flows as in (2.5), these earlier results are
not directly applicable. Nevertheless, we show here that ρ(t) in our model is also an Ornstein–Uhlenbeck
process if the time t is between integer time points. (Recall that cash flows in our model occur only at
integer time points; see (2.5)). This result and intermediate derivations are later used for deriving further
results, so we present them here for completeness.

Let t0 ∈N be an arbitrary integer time point, which corresponds to the beginning of a year. Then by
(2.4), with A(t0)+ being the initial value after the contributions, the asset process A(t) for t0 < t < t0 + 1
is written as:

A(t) = A(t0)+ exp

(∫ t

t0

μ̃ds +
∫ t

t0

σ̃dZ(s)

)
.

Notice the difference from the previous expression (2.9), which starts from t = 0 and holds only under
the assumption that there exists no cash flow. Similarly, by (2.7), (2.8), and (2.11), the notional liability
L(t) is given as:

L(t) = L(t0)+ exp

(∫ t

t0

μ̃ds + θ

∫ t

t0

ρ(s)ds

)
. (3.2)

2The funding ratio in Sweden’s notional DC pension system is notional since both “assets” and “liabilities” are notional, as it
is a PAYG system.

3Since retirees leave the fund immediately after receiving lump-sum benefits, Equation (5) in Settergren (2001) does not exist
in our case and thus Equation (3) in Settergren (2001) is equal to the notional liability in (2.8).
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Then for t0 < t < t0 + 1, the log funding ratio ρ(t) can be expanded as:

ρ(t) = ln A(t) − ln L(t)

= ln A(t0)+ +
∫ t

t0

μ̃ds +
∫ t

t0

σ̃dZ(s) − ln L(t0)+ −
∫ t

t0

μ̃ds − θ

∫ t

t0

ρ(s)ds (3.3)

= ρ(t0)+ − θ

∫ t

t0

ρ(s)ds +
∫ t

t0

σ̃dZ(s). (3.4)

The last expression is obtained because the two identical terms
∫ t

t0
μ̃ds in (3.3) are canceled out. This is

the result of the expected log return μ̃ being used in defining the indexation rate (2.11), which in turn
results in (3.2).

Equation (3.4) indicates that the log funding ratio ρ(t) for t0 < t < t0 + 1 is an Ornstein–Uhlenbeck
process with initial value ρ(t0)+ (e.g., Karatzas and Shreve 1998, p. 358), which can be written as:

ρ(t) = e−θ(t−t0)ρ(t0)+ + σ̃

∫ t

t0

e−θ(t−s)dZ(s), t0 ∈N, t0 < t < t0 + 1. (3.5)

This expression shows that ρ(t) = ln (A(t)/L(t)) is mean-reverting in the sense that, irrespective of the
value of ρ(t0)+, it tends to 0 (in expectation) as t increases. In other words, the funding ratio A(t)/L(t)
tends to 1 as t increases.

3.2. Effects of the adjustment parameter on the funding ratio
Based on the expression (3.5), we next study how the adjustment parameter θ affects the dynamics of
the log funding ratio ρ(t). We summarize key observations in the following proposition, the proof of
which can be found in Appendix A.1.

Proposition 1. Let ρ(t) = ln (A(t)/L(t)) be the log funding ratio and θ > 0 be the adjustment parameter
of the indexation rate g(t). Let t0 ∈N∪ {0} and t0 < t < t0 + 1. Then we have the following:

(i) The conditional expectation and variance of ρ(t) given ρ(t0)+ are given by:

E[ρ(t) | ρ(t0)+] = e−θ(t−t0)ρ(t0)+, (3.6)

V[ρ(t) | ρ(t0)+] = σ̃ 2

∫ t

t0

e−2θ(t−s)ds, (3.7)

where σ̃ > 0 is the standard deviation of the annual log return in (2.10).
(ii) As θ tends to zero, the conditional expectation of ρ(t) given ρ(t0)+ tends to ρ(t0)+:

lim
θ→+0

E[ρ(t) | ρ(t0)+] = ρ(t0)+, (3.8)

and the conditional variance of ρ(t) given ρ(t0)+ tends to σ̃ 2 times t − t0:

lim
θ→+0

V[ρ(t) | ρ(t0)+] = σ̃ 2(t − t0). (3.9)

(iii) As θ tends to infinity, the conditional expectation and variance of ρ(t) given ρ(t0)+ tend to zero:

lim
θ→∞

E[ρ(t) | ρ(t0)+] = 0, lim
θ→∞

V[ρ(t) | ρ(t0)+] = 0. (3.10)

Proposition 1 shows how the adjustment parameter θ affects the notional funding ratio A(t)/L(t) and
thus the stability of the pension fund. Point (iii) shows that a larger θ lets A(t)/L(t) approach 1 more
quickly and thus makes the fund more stable, while point (ii) indicates that a smaller θ makes the fund
more volatile. Recall that the value of θ determines how strong the adjustment in the indexation rate g(t)
works for the individual accounts Bi(t); see (2.11). Therefore, a larger θ results in a stronger adjustment
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of the individual accounts Bi(t) so that the notional liability L(t) =∑
i∈Iw(t) Bi(t) is adjusted more quickly

to match the fund’s asset A(t); this is an intuitive explanation of how a large θ improves the stability of
the pension fund.

While a larger θ may be beneficial for the fund’s stability, it results in a stronger adjustment of the
individual accounts Bi(t), which may make the retirement benefits volatile. Therefore, it is important to
understand the effects of θ on the retirement benefits; we analyze this next.

3.3. Effects of the adjustment parameter on the pension benefits
We next study how the adjustment parameter θ affects the retirement benefit of each generation. To
this end, we obtain an analytic expression of the retirement benefit in terms of the log funding ratio, as
summarized in the following proposition. The proof can be found in Appendix A.2.

Proposition 2. Let c > 0 be the annual contribution, μ̃ > 0 and σ̃ > 0 be the mean and the standard
deviation of the annual log return in (2.10), ρ(t) = ln (A(t)/L(t)) be the log funding ratio, and θ > 0 be
the adjustment parameter of the indexation rate g(t) in (2.11). Then for generation i ∈N, the retirement
benefit Bi(i) is given by:

Bi(i) =

c
N∑

n=1

exp

(
nμ̃︸︷︷︸
(I)

+ (1 − e−θ )
n∑

�=1

ρ(i − �)+︸ ︷︷ ︸
(II)

+ σ̃

n∑
�=1

∫ i−�+1

i−�

(
1 − e−θ(i−�+1−s)

)
dZ(s)︸ ︷︷ ︸

(III)

)
. (3.11)

Proposition 2 enables studying the effects of the adjustment parameter θ on the retirement benefit Bi(i)
of the i-th generation, who retires at time t = i. The expression (3.11) consists of N terms, in which each
term is indexed by n = 1, . . . , N. (Recall that N is the total number of years each generation contributes
to the fund). One can understand the n-th term in (3.11) as corresponding to the contribution c made at
time t = i − n, that is, n years before the retirement at time t = i.

We can make the following observations for the exponent of the n-th term in (3.11):

• The term (I) corresponds to the deterministic growth term μ̃ in the indexation rate g(t); see
(2.11).

• The term (II) represents the effects of the fund’s “surplus” or “deficit” in the last n years before
the retirement. One can understand that there is a “surplus” if

∑n
�=1 ρ(i − �)+ > 0; in this case,

the retirement benefit increases accordingly, as a redistribution of the surplus. On the other
hand, there is a “deficit” if

∑n
�=1 ρ(i − �)+ < 0, and the retirement benefit decreases accord-

ingly; one can understand this as risk sharing to make the fund sustainable. The adjustment
parameter θ determines the strength of the effects of this term, as we have limθ→+0 (1 − e−θ ) = 0
and limθ→∞ (1 − e−θ ) = 1.

• The term (III) shows the effects of the volatility of the fund’s investment in the last n years before
the retirement; recall the definition of σ̃ = πσ in (2.10). The adjustment parameter θ controls
the influence of this volatility, as we have limθ→+0 (III) = 0 and limθ→∞ (III) = σ̃

∫ i

i−n
dZ(s).

From these observations, one can understand that the adjustment parameter θ determines how
strongly the retirement benefit is linked to the fund’s actual investment performance. For a larger θ ,
the terms (II) and (III) become more significant, and the retirement benefit is more directly influenced
by the fund’s investment performance. For a smaller θ , the terms (II) and (III) become less significant,
and the retirement benefit is determined mainly by the deterministic growth term (I). This asymptotic
analysis supports the informal discussion in Section 2.1.5 on the mechanism of the indexation rate.

One may conclude that a smaller θ may be more beneficial for individual participants, because it
makes the retirement benefits less volatile. However, as discussed in Section 3.2, a smaller θ makes
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the fund’s operation more volatile, and thus a larger θ is more desirable for the fund’s sustainability.
Therefore, θ should be neither too small nor too large. We will discuss how to select the adjustment
parameter θ (and the investment strategy π ) in Section 4.

3.4. Effects of intergenerational risk sharing
Lastly, we discuss the effects of IRS, by comparing the pension benefits of the IRS-DC plan and the
corresponding pure DC plan. Because our focus is to understand how IRS works, we assume here that
the pure DC plan uses the same investment strategy π as the IRS-DC plan. (Note that, in our numerical
analysis in Section 5, we consider this setting as well as the setting where the pure DC plan uses the
optimal investment strategy.)

Consider two hypothetical individuals from generation i ∈N, who retire in the year i. One individual
participates in the IRS-DC plan and receives the retirement benefit (3.11). The other participates in the
pure DC plan using the investment strategy π and receives the retirement benefit denoted by Ai(i). It is
easy to see that Ai(i) is given by:

Ai(i) = c
N∑

n=1

exp

(
nμ̃︸︷︷︸
(I’)

+ σ̃

∫ i

i−n

dZ(s)︸ ︷︷ ︸
(II’)

)
. (3.12)

By comparing (3.11) and (3.12), we can make the following observations:

• The term (I) in (3.11) and the term (I’) in (3.12) are the same.
• The term (II) in (3.11), which represents the effects of the fund’s surplus or deficit, does not

exist in (3.12). This is reasonable, because there is no IRS in the pure DC plan.
• The term (III) in (3.11), which shows the influence of the volatility of the investment, corre-

sponds to the term (II’) in (3.12). Indeed, the term (III) converges to the term (II’) as θ → ∞.
However, one can see that the term (III) is smaller than the term (II’) for any fixed value
of θ . The smaller volatility in (3.11) is the result of IRS and is controlled by the adjustment
parameter θ .

This comparison describes how IRS works in the IRS-DC plan: IRS reduces the volatility of invest-
ment returns (term (III) in (3.11)), by letting the individuals share the fund’s surplus or deficit (term (II)
in (3.11)). This effect of IRS is particularly important for protecting individual participants when the
market is turbulent. Our numerical analysis in Section 5 shows that IRS is beneficial in this way.

4. Optimizing the investment strategy and adjustment parameter
We describe how to optimize the parameters of the IRS-DC pension model, namely the investment
strategy π and the adjustment parameter θ , so as to maximize the welfare of pension participants. In
Section 4.1, we first introduce an expected utility maximization problem that involves the welfare of all
the generations including those from the future. Since there is no analytical solution for this maximiza-
tion problem, we next explain how to solve it numerically using BO in Section 4.2. We then describe
the setting of simulations in Section 4.3, which will be used later in our numerical analysis.

4.1. Expected utility maximization problem
We consider a hypothetical social planner (fund manager) who decides the investment strategy π and the
adjustment parameter θ for the welfare of all the generations. To define the utility of this social planner,
let Uγ :(0, ∞) → ( − ∞, ∞) be the constant relative risk aversion (CRRA) utility function:
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Uγ (x) := x1−γ

1 − γ
, γ > 0, (γ �= 1), (4.1)

where γ > 0 is the level of relative risk aversion. We then define the utility of the social planner as the
sum of discounted utilities of the retirement benefits for all the generations:

∞∑
i=1

β iUγ (Bi(i)), (4.2)

where β > 0 is a discounting factor and Bi(i) is the retirement benefit of the i-th generation who retires
at time t = i; see Figure 2, (2.6) and (2.7).

Lastly, we define our expected utility maximization problem as:

max
π ,θ

E

[ ∞∑
i=1

β iUγ (Bi(i))

]
subject to 0 � π � 1, θ > 0, (4.3)

where the expectation is with respect to the retirement benefits Bi(i) for all generations i ∈N. Recall that
Bi(i) are path-dependent and depend on the investment strategy π and the adjustment parameter θ .

We numerically solve the maximization problem (4.3), since neither the expected utility in (4.3) nor
the solution for π and θ are available in closed form. We approximate the expected utility in (4.3) by
Monte Carlo simulations and optimize π and θ using BO, as explained next.

4.2. BO for expected utility maximization
We briefly explain here how we use BO for solving the expected utility maximization problem (4.3). For
details, see Appendix B and references therein. BO is a modern machine learning approach for glob-
ally optimizing a black-box objective function and has been shown to be more efficient than traditional
approaches such as grid search (Shahriari et al., 2016). It has been widely used in applications where
the objective function is computationally expensive to evaluate, such as the optimization of hyperpa-
rameters of a large-scale AI model (Snoek et al. 2012). The current work is the first attempt to apply
BO in optimizing a pension system.

The objective function in (4.3) takes π and θ as an input and outputs the expected utility:

(π , θ ) �→ f (π , θ ) := E

[ ∞∑
i=1

β iUγ (Bi(i))

]
,

where we note again that Bi(i) depends on π and θ . The key idea of BO is to “learn” the landscape of the
objective function f (π , θ ) while searching for π and θ that maximizes the objective function. BO first
evaluates the function values f (π , θ ) for some initial candidates of π and θ and obtains a rough estimate
for the landscape of f (π , θ ). In the next step, BO finds π and θ such that the function value f (π , θ ) and
its uncertainty are both high, so as to balance the so-called exploitation-exploration trade-off . BO then
evaluates f (π , θ ) for these π and θ and updates the estimate of the landscape of f (π , θ ). BO iterates this
learning optimization procedure. Estimates of the maximizers (π ∗, θ ∗) = arg max f (π , θ ) are obtained
after a sufficient number of iterations (Bull, 2011).

The above procedure is called “Bayesian” because the learning of the objective function is done
by a Bayesian nonparametric method (Rasmussen and Williams, 2006). The Bayesian method is used
because it can yield both an estimate of the landscape and its uncertainties, which are crucial for the
exploitation-exploration trade-off and for gaining the optimization efficiency. For implementation, we
use the R package mlrMBO (Bischl et al., 2017) in our numerical analysis.
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Table 1. Sharpe ratios of different financial markets estimated by empirical
data for three financial markets from the United States, Germany, and China.
We use the stock market index and the 10-year treasury bond as surrogates
for risky and risk-free assets. We only have access to the data for the Chinese
market after 2003. For each market, the Sharpe ratio is reported for two
periods: from 1992 (or 2003 for China) to 2021, and from 2003 to 2010, the
latter being a period around the financial crisis.

Country: United States Germany China
Stock: S&P 500 DAX SSECI
Bond: 10y T-bond 10y T-bond 10y T-bond
Period: 1992–2021 1992–2021 2003–2021
Sharpe ratio: 0.2827 0.2114 0.0631
Period: 2003–2010 2003–2010 2003–2010
Sharpe ratio: 0.0798 0.3122 0.0485

4.3. Simulation setting
We explain here how we approximate the expected utility in (4.3) by Monte Carlo simulations, which is
necessary for applying BO. Moreover, we describe the problem setting for our numerical analysis in the
next section. First of all, we set the number of working generations as N = 40, the discounting factor in
(4.3) as β = 0.98, and the annual contribution as c = 1.

4.3.1. Financial market
We consider three settings for the financial market that represent different market risks, to investigate
when IRS in the IRS-DC model works most effectively. The market price of risk, a.k.a the Sharpe ratio,
is defined by:

λ := μ − r

σ
(4.4)

where μ and σ are the rate and volatility of the stock, respectively, and r is the rate of the risk-free
asset; see Section 2.1.2. The Sharpe ratio quantifies the performance of a risky project in relation to
a risk-free investment. It is one of the most frequently used performance measures, and we use it to
describe different financial markets in our experiments. Typically, a Sharpe ratio above 0.5 in the long
run indicates great investment performance and is difficult to achieve, while a Sharpe ratio between
0.1 and 0.3 is often considered reasonable and can be achieved more easily (e.g., Sharpe 1998). Table 1
shows the Sharpe ratios for different financial markets estimated from historical data4. It shows that high
values of the Sharpe ratio are around 0.3, and low values can be below 0.05.

For the simulation, we consider the following three settings for the financial market, with different
levels of the Sharpe ratio:

Market 1: λ1 = μ1 − r1

σ1

= 0.065 − 0.02

0.15
= 0.3;

Market 2: λ2 = μ2 − r2

σ2

= 0.065 − 0.01

0.25
= 0.22;

4Since we only have limited access to the data of the Chinese market before 2003, we only report the Sharpe ratios for periods
after 2003 for the Chinese market. We report the Sharpe ratios for longer and shorter periods, the latter being a period around the
financial crisis, to show that the Sharpe ratio may depend on the period considered.
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Market 3: λ3 = μ3 − r3

σ3

= 0.065 − 0.01

0.5
= 0.11.

We refer to Markets 1, 2, and 3 as M1, M2, and M3 for brevity, respectively. We call M1, M2, and M3
the markets with high, intermediate, and low Sharpe ratios, respectively. The calibrated values from the
real world for the longer period (Table 1) justify the use of the chosen Sharpe ratios in our experiment.

4.3.2. Risk aversion of the social planner
The relative risk aversion γ in the the CRRA utility function (4.1) represents the social planner’s risk
attitude: the social planner becomes more risk-averse if γ is larger. To study the impacts of γ on the
optimal investment strategy π and adjustment parameter θ , we consider three settings: γ = 3, 5, 10.

4.3.3. Entry cohorts
The generations with indicators i = 1, . . . , 40 are those who participate in the IRS-DC plan at time t = 0
and are called entry cohorts. For t < 0, that is, before participating in the IRS-DC plan, we assume that
the entry cohorts participate in a pure DC plan that applies the optimal life cycle investment strategy,
following Gollier (2008). Namely, the pure DC plan invests a large amount into the stock when the
participant is young and gradually reduces the amount invested in the stock as the participant approaches
retirement. To be more precise, for a generation i where i = 1, . . . , 40, let Bi(t) be the individual account
of generation i and Yi(t) be the net present value at time t of all the future contributions of generation i;
then the optimal fraction π ind

i (t) of generation i’s wealth to be invested in the stock is given by:

π ind
i (t) := π c Bi(t) + Yi(t)

Bi(t)
. (4.5)

See Merton (1971, Equation 71). Notice that π c is the so-called Merton constant defined as:

π c := λ

γ σ
, (4.6)

where λ is the Sharpe ratio in (4.4). Note that Yi(t) can be calculated straightforwardly here, as the
interest rate risk is excluded.

For an individual with the CRRA utility function, the life cycle investment strategy (4.5) provides the
highest expected utility (Merton, 1971, Gollier, 2008). Hence, the life cycle investment strategy and its
variants have been popular choices for pure DC plans (e.g., Booth and Yakoubov 2000; Haberman and
Vigna 2002). Note that, when an individual is young, the discounted future income Yi(t) is much higher
than her current wealth in the account Bi(t), and thus π ind(t) in (4.5) is much larger than 1. Therefore, the
life cycle investment strategy (4.5) implies a high-leverage (i.e., borrowing) strategy when the individual
is young5 (see Figure 3).

The life cycle investment strategy is also used in Section 5.5 to make a comparison between the
IRS-DC and the optimal pure DC plans.

4.3.4. Euler–Maruyama approximation
For simulating the dynamics of the asset process (2.4), we use the Euler–Maruyama approximation.
Given a finite time horizon T > 0, we divide the interval [0, T ] into n equal time intervals:

[0, T] = [0, �, 2�, · · · , n�],

5Note that (4.5) is a random variable as Bi(t) is a random variable. Therefore, (4.5) can increase in a short horizon of time, but
in the long run, it decreases in expectation as t increases, since as t increases Yi(t) decreases and Bi(t) increases in expectation.
For more details on the life cycle strategy, we refer to Merton (1971).
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Figure 3. Realizations of the optimal life cycle investment strategy (4.5) for an individual who partici-
pates in the pure DC plan for her entire working period of 40 years. The left and right figures are for the
Markets 1 and 3, respectively. Three values of the risk aversion γ = 3, 5, 10 are considered. The vertical
axis represents (4.5) and the horizontal axis represents the time.

where we set the step size as � = 1/12, which corresponds to 1 month. Then we simulate the asset
process as:

A(t + �) = A(t) + (π (μ − r) + r)� + πσ
√

�Z,

A(t)+ = A(t) + 40c − Bt(t), if t ∈N∪ {0},
where Z is a standard normal random variable. The dynamics of the asset process in a pure DC plan is
simulated in a similar way.

The step size � = 1/12 implies that the indexation rate (2.11) is adjusted monthly according to the
funding ratio. This monthly update is more frequent than the annual cash flows of the fund. This setting
reflects the fact that the market values of individual accounts usually vary more frequently than cash
flows in reality. The IRS-DC fund is assumed to be fully funded at t = 0 implying that the initial value
of the notional funding ratio is 1: A(0)/L(0) = 1. (The influence of the initial funding ratio is examined
in the numerical analysis in Section 5.2.)

4.3.5. Time horizon T
While the expected utility in (4.3) involves the infinite horizon, it is intractable for simulations and
we need to use a finite horizon T . In our numerical analysis, we set the horizon as T = 80 years. For
approximating the expected utility in (4.3), we then simulate 10,000 paths for the asset process until the
horizon T and compute the Monte Carlo average. Note that, in this setting, the generations i = 41, . . . , 80
are those who spend their entire working periods in the IRS-DC plan.

4.3.6. Upper bound of the adjustment parameter θ

While the adjustment parameter θ can take an arbitrarily large value in theory, for numerical optimization
of θ we need to set its upper bound. The range of θ is set as 0 < θ � 1 in our numerical analysis.

5. Numerical analysis
This section presents our numerical analysis of the IRS-DC pension model. In Section 5.1, we first dis-
cuss the optimal investment strategy and adjustment parameter obtained by BO. In Section 5.2, we then
study the dynamics of the funding ratio and discuss how the adjustment parameter θ affects its stability.
The stability of the funding ratio can be understood as the stability of the pension fund’s operation.
In Sections 5.3, 5.4, and 5.5, we focus on the individual accounts in the IRS-DC fund. We first study
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Table 2. Optimal investment strategy π ∗ and adjustment parameter θ ∗

obtained by Bayesian optimization for the nine different settings, result-
ing from the three different values of the Sharpe ratio λ and the three
different values of the risk aversion γ . For comparison, the Merton
constant is shown for each setting.

λ = 0.3 γ = 3 γ = 5 γ = 10
π ∗: 0.832 0.519 0.267
θ ∗: 1 1 1
Merton constant: 0.667 0.4 0.2
λ = 0.22: γ = 3 γ = 5 γ = 10
π ∗: 0.479 0.334 0.124
θ ∗: 0.0651 0.0535 0.0237
Merton constant: 0.293 0.176 0.088
λ = 0.11: γ = 3 γ = 5 γ = 10
π ∗: 0.131 0.06 0.0544
θ ∗: 0.0835 0.072 0.0000493
Merton constant: 0.073 0.044 0.022

the dynamics of individual accounts in Section 5.3, and then the distribution of retirement benefits in
Section 5.4. Lastly, we study the welfare of pension participants in Section 5.5. Additional numerical
analyses on a time-varying investment strategy and the influence of population structure are reported in
the online appendix.

5.1. Optimal investment strategy and adjustment parameter
As explained in Section 4.3, we consider nine different settings for the numerical analysis, resulting
from three different values for the relative risk aversion (γ = 3, 5, 10) of the social planner and three
different values for the Sharpe ratio (λ = 0.3, 0.22, 0.11) of the financial market. In each setting, we find
the optimal investment strategy π and the adjustment parameter θ by BO, as described in Section 4. We
report the resulting optimal values of π and θ in Table 2. For comparison, we also report the Merton
constant (4.6) for each setting in Table 2, which will be used in the experiment in Section 5.5.

For each value of the Sharpe ratio λ, the optimal π ∗ and θ ∗ tend to decrease as the risk aversion γ

increases (with the exception of the case λ = 0.3, where θ ∗ remains 1). Regarding the optimal investment
strategy π ∗, this tendency can be anticipated by the same tendency in the Merton constant (4.6), which
is inversely proportional to the risk aversion γ . Regarding the optimal adjustment parameter θ ∗, this
tendency can be expected from the analysis in Section 3.3, where it is shown that a smaller adjustment
parameter θ lowers the volatility of the retirement benefits; thus, a higher risk aversion γ leads to
smaller θ ∗.

For each value of the risk aversion γ , the optimal π ∗ and θ ∗ tend to be smaller as the Sharpe ratio λ

becomes smaller (for the cases γ = 3, 5 and λ = 0.22, 0.11, the adjustment parameter θ ∗ is comparably
small). One can understand this tendency in a similar way as the discussion in the above paragraph,
since the Sharpe ratio represents the market price of risk. Note that θ ∗ is extremely small for γ = 10 and
λ = 0.01, which implies the IRS-DC plan becomes similar to a DB plan, as discussed in Section 3.3; in
this case, π ∗ is also very small, meaning that the asset is mainly invested in the risk-free asset.

5.2. Funding ratio process
We next study the dynamics of the funding ratio A(t)/L(t), investigating the influences of the adjustment
parameter θ and the initial funding ratio A(0)/L(0).
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Figure 4. The influence of the adjustment parameter θ on the funding ratio process A(t)/L(t) in Market
3. Panel (a) shows the mean and standard deviation of the funding ratio A(t)/L(t) over 10,000 simu-
lations as a function of time t, for π = 0.131 and each of three values of the adjustment parameter:
θ1 = 0.04, θ2 = 0.0835, and θ3 = 0.2. Panel (b) shows the paths of A(t)/L(t) with θ1 = 0.04 correspond-
ing to the top 10%, 50%, and 90% values of the utility of the social planner over the 10,000 simulations.
Panels (c) and (d) show those with θ2 = 0.0835 and θ3 = 0.2, respectively.

5.2.1. Influence of the adjustment parameter
We first examine the influence of the adjustment parameter θ . We fix the investment strategy to
π = 0.131, which is optimal for Market 3 with γ = 3 (see Table 2). We consider three values for the
adjustment parameter: θ1 = 0.04, θ2 = 0.0835, and θ3 = 0.2, where θ2 is optimal for Market 3 with γ = 3.
For each value of the adjustment parameter, we simulate the IRS-DC fund 10,000 times in Market 3;
the results are summarized in Figure 4.

Figure 4(a) shows the mean and standard deviation of the funding ratio A(t)/L(t) over the 10,000
simulations as a function of time t, for each of the three values of θ . The standard deviation is the
smallest for θ3 = 0.2 and the largest for θ1 = 0.04; therefore, the larger the adjustment parameter, the
smaller the standard deviation of the funding ratio. This observation validates our analysis in Section 3,
which indicates that a larger adjustment parameter θ makes the funding ratio lower. Moreover, the mean
of the funding ratio is close to 1 for θ2 = 0.0835 and θ2 = 0.2, while the mean (and standard deviation)
gradually increase for θ3 = 0.04. This observation is also consistent with the analysis in Section 3, which
implies that a smaller adjustment parameter lets the funding ratio A(t)/L(t) converge to 1 more slowly.

Figure 4(b), (c), and (d) show the paths of the funding ratio for three representative scenarios defined
as follows. We pick up the three scenarios from the 10,000 simulations that correspond to the top 10%,
50%, and 90% values of the utilities of the social planner (see (4.2)) and plot the funding ratio processes
in these scenarios; these three scenarios can be interpreted as representing “good,” “medium,” and “bad”
realizations of the financial market. The discrepancy between the paths of the funding ratio in these
scenarios reduces as θ increases. This implies that the funding ratio volatility decreases as θ increases
and is consistent with our analysis in Section 3.
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Figure 5. The influence of the initial funding ratio A(0)/L(0) on the funding ratio process A(t)/L(t).
Panel (a) shows the mean and standard deviation of A(t)/L(t) in Market 3 over 10,000 simulations, for
π = 0.131 and each of three settings of the initial funding ratio: A(0)/L(0) = 1 (red), A(0)/L(0) = 0.9
(green; underfunded), and A(0)/L(0) = 1.1 (blue; overfunded). Panel (b) shows those in Market 1 with
π = 0.267 and θ = 1 and the same three values of the initial funding ratio.

5.2.2. Influence of the initial funding ratio
We next examine the influence of the initial funding ratio A(0)/L(0) on the dynamics of the funding ratio
A(t)/L(t). We consider three cases for the initial funding ratio: (1) A(0)/L(0) = 0.9, (2) A(0)/L(0) = 1,
and (3) A(0)/L(0) = 1.1. We simulate the IRS-DC fund 10,000 times for each case and calculate the
mean and standard deviation of A(t)/L(t). Figure 5 shows the results for (a) Market 3 with π = 0.131
and θ = 0.0835, which are optimal for γ = 3 in Market 3, and for (b) Market 1 with π = 0.267 and
θ = 1, optimal for γ = 10 in Market 1. Regardless of the initial funding ratio A(0)/L(0), the mean of the
funding ratio A(t)/L(t) converges to 1 as t increases. For Market 3, where the adjustment parameter θ is
small, the mean of the funding ratio converges to 1 slowly; for Market 1, where the adjustment parameter
is larger, the mean converges to 1 immediately. Therefore, these results suggest that the IRS-DC fund can
self-stabilize the funding ratio to 1, and a larger adjustment parameter θ leads to a quicker stabilization;
again, this is consistent with the analysis in Section 3.

5.3. Dynamics of individual accounts
We next study the dynamics of individual accounts in the IRS-DC plan. As for the analysis in Section 3.4,
to study the effects of IRS, each individual account in the IRS-DC plan is compared with the correspond-
ing account in a pure DC plan that uses the same investment strategy π ∗ in Table 2. (A pure DC plan
using the optimal life cycle investment strategy is compared in Section 5.5.) Since IRS is absent, the
dynamics of an individual account in the pure DC plan is given by the asset process yielding (3.12).

Figure 6 shows arbitrarily chosen paths of the individual accounts from the generation i = 41 in the
IRS-DC and pure DC plans, for the three market settings and risk aversion γ = 10. For Market 1, for
which the adjustment parameter θ ∗ is large (see Table 2), the paths of the IRS-DC and DC accounts
are similar. In contrast, for Markets 2 and 3, for which the adjustment parameter θ ∗ is smaller, the IRS-
DC account accumulates more stably than the pure DC account. This observation is consistent with
the discussions in Sections 2.1.5, 3.3, and 3.4 where it is argued that a smaller adjustment parameter θ

reduces the volatility of an IRS-DC account as a result of IRS.
We next quantify the effects of IRS on stabilizing the accumulation of an IRS-DC account. To this

end, we calculate the increment-ratio-based roughness (IR roughness) (Bardet and Surgailis 2011), a
measure of roughness/smoothness of a stochastic process, for each path of the IRS-DC and pure DC
accounts. The IR roughness takes a value between 0 and 1, and a larger value indicates that the path is
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Figure 6. Examples of paths of the IRS-DC and pure DC accounts for the generation i = 41 in the three
market settings with risk aversion γ = 10.

smoother; see Appendix C for details. Table 3 shows the average of the IR roughness over the 10,000
simulations for each of the IRS-DC and pure DC accounts from the generation i = 41. For all the nine
settings considered, the IRS-DC account has a larger IR roughness than the pure DC account, which
implies that the IRS-DC account is smoother. Therefore, IRS makes the accumulation of the IRS-DC
account more stable than the pure DC account (Recall that the only difference between the IRS-DC and
DC plans here is the existence of IRS).

5.4. Distribution of retirement benefits
We next study how IRS affects the distribution of retirement benefits. Figure 7 shows the histograms of
retirement benefits (from the 10,000 simulations) of the IRS-DC and pure DC accounts for the generation
i = 41, for the three market settings and risk aversion γ = 10. (Results for γ = 3, 5 are shown in the
online appendix.) For Market 1, for which the adjustment parameter θ ∗ of the IRS-DC plan is large, the
histograms of the IRS-DC and pure DC retirement benefits are almost identical. On the other hand, for
Markets 2 and 3, for which the adjustment parameter is smaller, the volatility of the IRS-DC benefits
is smaller than the pure DC benefits. In particular, for Market 3, for which the adjustment parameter is
close to 0, the volatility of the IRS-DC benefits is very small. These observations support the analysis
in Sections 3.3 and 3.4 that a smaller adjustment parameter θ makes the retirement benefits less volatile
by IRS. Moreover, our result is consistent with similar observations made by Bams et al. (2016) and
Donnelly (2017) that a collective DC scheme can reduce the volatility of retirement benefits.

5.5. Welfare of participants
Lastly, we study how IRS can improve the welfare of the IRS-DC plan participants in terms of their
expected utilities. To this end, we make a comparison with a pure DC plan that uses the optimal life
cycle investment strategy in (4.5), which yields the highest expected utility for an individual investor.
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Table 3. Average IR roughness over 10,000 simulations calculated for
each of the IRS-DC and pure DC accounts, for the three market settings
and the three levels of risk aversion.

IR roughness γ = 3 γ = 5 γ = 10
Market 1 IRS-DC 0.937 0.944 0.959

DC 0.732 0.739 0.754
Market 2 IRS-DC 0.993 0.996 1.000

DC 0.731 0.735 0.752
Market 3 IRS-DC 0.991 0.998 1.000

DC 0.737 0.751 0.753

Figure 7. Histograms of the retirement benefits (obtained from the 10,000 simulations) of the IRS-DC
and pure DC accounts for the generation i = 41, for the three market settings and risk aversion γ = 10.
In each figure, the red and green histograms are those of the IRS-DC and pure DC benefits, respectively;
the brown part shows the overlap between the two histograms.

For simplicity, we assume that each participant in the IRS-DC plan has the same CRRA utility Uγ

in (4.1) as the social planner. Similarly, to make a comparison straightforward, we assume that each
participant in the pure DC plan has the same CRRA utility. To measure the welfare, we calculate the
certainty equivalent (CE) for each participant. That is, for an IRS-DC participant from the generation i
with retirement benefit Bi(i), the CE is defined as the quantity CE(IRS-DC)

i > 0 satisfying

Uγ (CE(IRS-DC)
i ) =E[Uγ (Bi(i))], (5.1)

where we approximate the expectation in the right-hand side by the empirical average of 10,000 realiza-
tions of Bi(i). The CE of each participant in the pure DC plan is calculated similarly. Note that, since the
utility function is strictly concave, the expected utility is monotonically increasing with respect to the
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Figure 8. Certainty equivalents of the participants in the IRS-DC and pure DC plans for the generations
i = 41, . . . , 80, for the three market settings and risk aversion γ = 10.

CE; the higher the CE implies, the higher the expected utility. We calculate the CEs of the participants
in the IRS-DC plan and the pure DC plans for the generations i = 41, . . . , 80.

Figure 8 shows the CEs of the IRS-DC and pure DC participants for the generations i = 41, . . . , 80,
for the three market settings and risk aversion γ = 10. (Results for γ = 3, 5 are shown in the online
appendix.) For Market 1, where the Sharpe ratio is high, the pure DC participants obtain higher welfare
than the IRS-DC participants. On the other hand, for Markets 2 and 3, where the Sharpe ratio is lower, the
IRS-DC participants obtain higher welfare than the pure DC participants. This observation indicates that
the IRS-DC plan can provide higher welfare than the optimal DC plan when the market is more volatile
(in the sense of having a lower Share ratio). Therefore, IRS is expected to be particularly advantageous in
protecting individual participants when the market is turbulent (e.g., when there is an economic shock).

While it has been generally known in the literature that IRS is welfare-improving, there are a few
key differences in our contribution. To explain this, we make a comparison with closely related works.
Gollier (2008) shows that IRS is welfare-improving over the optimal life cycle investment strategy, but
his analysis is based on the assumption that the pension fund can perform borrowing for investment
(i.e., the investment strategy π can be larger 1); this assumption is not realistic for pension funds in
reality. Moreover, his second-best strategy assumes the existence of a “shareholder” that helps finance
the pension fund. Our result above shows that IRS can be welfare-improving even when borrowing is
prohibited for the pension fund (i.e., 0 < π < 1) and without a shareholder.

Cui et al., (2011) show that a hybrid pension plan with IRS can provide higher welfare than a pure
DC plan with an “optimal” investment strategy. However, their “optimal” individual investment strategy
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is not allowed to perform borrowing, and therefore it is less optimal than the optimal life cycle strategy
(4.5), which performs borrowing. Moreover, Cui et al. (2011) optimize the parameters of the pension
fund so as to maximize the expected utility of one specific entry cohort, not all the generations; they then
compare this entry cohort’s welfare with a pure DC plan participant’s welfare. This way of optimizing
the pension system is not appropriate as it ignores the other generations’ welfare. On the other hand, we
show that the IRS-DC plan, which optimizes for all the generations’ utilities as in (4.3), can improve the
welfare over the optimal life cycle investment strategy, when the market is volatile.

Bams et al. (2016) consider a similar pension model as ours, but they do not show that their model
can provide higher welfare than individual DC plans. Similarly, Donnelly (2017) considers a related
collective DC plan but does not compare it with individual DC plans. Chen et al. (2016) study a three-
pillar model in which the second pillar is a collective DC, DB, or hybrid pension plan and make a
comparison with the corresponding three-pillar model with the second pillar being an individual DC
plan. While they show that the former yields higher welfare than the latter, they assume that the both
plans use the same investment strategy, with the fraction invested in the stock being π = 0.5; therefore,
their individual DC plan is not optimal. Different from these previous works, we make a comparison
with the optimal life cycle investment strategy. By doing so, we show that the volatility of the financial
market is a key factor that determines whether IRS is welfare-improving over the optimal life cycle
investment strategy.

6. Concluding remarks
We have shown that a fully funded collective DC pension system with IRS can improve the welfare
of individual participants, as compared with individual DC benchmarks using the optimal life cycle
investment strategy, when the financial market is volatile. Key new findings to the literature include that
(i) the welfare improvement can be achieved without relying on borrowing and shareholders, in contrast
to, for example, Gollier (2008), and that (ii) whether IRS improves the welfare depends on the volatility
of the financial market, as measured by the Sharpe ratio. These observations suggest that a fully funded
pension system with a realistic investment strategy (i.e., without borrowing) can implement IRS and
protect individual participants from a turbulent market.

Our investigation has been based on a stylized model, which we call the IRS-DC pension model,
that uses an indexation rate of individual accounts as a device for IRS. This indexation rate, originally
introduced by Goecke (2013), is automatically adjusted according to the notional funding ratio of the
pension fund, so as to balance the welfare of different generations and the sustainability of the pension
fund. We have analyzed the funding ratio process and retirement benefits in the IRS-DC model, and how
their volatility is controlled by the adjustment parameter in the indexation rate. Moreover, we have shown
how the adjustment parameter and the investment strategy can be optimized by using BO, a machine
learning method for global optimization.

There are a number of possible future directions. First, as we have shown the effectiveness of the
indexation rate of Goecke (2013) as a means for IRS in a collective pension system, the same indexa-
tion rate may be applied to other collective schemes, such as hybrid pension systems (e.g., Cui et al.
2011; Chen et al. 2016) and notional DC pension systems (e.g., Settergren 2001), where other forms of
automatic adjustment rules are used for adjusting the individual accounts and/or contributions. This is
worth investigating, as automatic adjustment rules have been used in real pension systems, such as the
Dutch and Swedish pension systems (OECD, 2021, Chapter 2).

Second, as BO provides an efficient way of optimizing the parameters of a pension system, it enables
researchers to study optimal pension systems under more realistic but complex setups. For example,
BO may be applied to optimize the three-pillar pension system of Chen et al. (2016), which involves a
number of parameters, by expected utility maximization; this may enable showing that their collective
scheme is welfare-improving over the optimal individual benchmark using the life cycle investment
strategy, as we have shown for our collective scheme.
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Third, our finding that IRS is welfare-improving in a volatile market is worth further investigation
in a more realistic setup of the financial market. While our setup of the Black–Scholes market (i.e.,
log-normally distributed stock returns) follows many of related works e.g., Cui et al. 2011; Chen et al.
2016), it is known that this setup does not necessarily hold in reality (e.g., Cont 2001). For example, the
log returns of real stocks are known to have heavy tails, which implies that real financial markets are
more volatile than the Black–Scholes market. Similarly, it is more realistic to assume that the interest
rate is stochastic and time-varying, rather than assuming a constant interest rate. Extending the current
work to these more realistic settings will enable a deeper understanding of the functionality of the IRS.

Fourth, the discontinuity risk may be discussed for the IRS-DC model. We have implicitly assumed
the mandatory participation of individuals by modeling that the population in each generation remains
the same, as in related works (e.g., Gollier 2008; Chen et al. 2016). One could relax this assumption by
making the participation voluntary and study individuals’ preferences and how they impact the sustain-
ability of the pension fund and the welfare of different generations (e.g., Beetsma et al. 2012). Because
contributions are not adjusted in the IRS-DC plan by design, it may be anticipated that the IRS-DC plan
is less prone to discontinuity risk than DB-based pension plans. However, if voluntary participation
changes the populations of different generations, the effectiveness of the IRS may be affected (as sug-
gested by the additional numerical analysis in the online appendix). It will be interesting to investigate
whether mandatory participation is necessary for the IRS-DC plan to maintain effective IRS.
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Appendix A. Proofs
A.1. Proof of Proposition 1

Proof. The identity (3.6) follows from taking the conditional expectation of (3.5), using that the
Brownian motion Z(s) for t0 < s < t is independent of the conditioning variable ρ(t0)+ and hence the
conditional expectation of Z(s) is zero. Equation (3.7) follows by using the Ito Isometry in (3.5):

V[ρ(t) | ρ(t0)+] = σ̃ 2
E

[(∫ t

t0

e−θ(t−s)dZ(s)

)2
]

= σ̃ 2

∫ t

t0

e−2θ(t−s)ds.

Equations (3.8) and (3.9) follow by taking the limits in (3.6) and (3.7).
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A.2. Proof of Proposition 2
Proof. Let t0 ∈N be such that i − N � t0 � i − 1. Let ρ(t) = ln (A(t)/L(t)) be the log notional funding

ratio. By (2.6), (2.7), and (2.11), we have

Bi(t0 + 1) (A1)

= Bi(t0)+ exp

(
μ̃ + θ

∫ t0+1

t0

ρ(s)ds

)
= (Bi(t0) + c) exp

(
μ̃ + θ

∫ t0+1

t0

ρ(s)ds

)
,

(a)= (Bi(t0) + c) exp

(
μ̃ + ρ(t0)+ − ρ(t0 + 1) +

∫ t0+1

t0

σ̃dZ(s)

)
,

(b)= (Bi(t0) + c) exp

(
μ̃ + (1 − e−θ )ρ(t0)+ −

∫ t0+1

t0

e−θ(t0+1−s)σ̃dZ(s) +
∫ t0+1

t0

σ̃dZ(s)

)
,

= (Bi(t0) + c) exp

(
μ̃ + (1 − e−θ )ρ(t0)+ + σ̃

∫ t0+1

t0

(
1 − e−θ(t0+1−s)

)
dZ(s)

)
, (A2)

where (a) follows from (3.4) and (b) follows from (3.5).
We show a proof by induction. Suppose that, for m ∈N with 0 < m � N − 1, we have

Bi(i − m) = c
N∑

n=m+1

exp

(
(n − m)μ̃ + (1 − e−θ )

n∑
�=m+1

ρ(i − �)+

+ σ̃

n∑
�=m+1

∫ i−�+1

i−�

(
1 − e−θ(i−�+1−s)

)
dZ(s)

)
(A3)

Note that the identity (A3) holds for m = N − 1, since we have by (A2) and Bi(i − N) = 0:

Bi(i − N + 1) = c exp

(
μ̃ + (1 − e−θ )ρ(i − N)+ + σ̃

∫ i−N+1

i−N

(
1 − e−θ(i−N+1−s)

)
dZ(s)

)
.

By using (A2) with t0 = i − m, the assumption (A3) implies that

Bi(i − m + 1) =

(Bi(i − m) + c) exp

(
μ̃ + (1 − e−θ )ρ(i − m)+ + σ̃

∫ i−m+1

i−m

(
1 − e−θ(i−m+1−s)

)
dZ(s)

)

=
[

c
N∑

n=m+1

exp

(
(n − m)μ̃ + (1 − e−θ )

n∑
�=m+1

ρ(i − �)+

+ σ̃

n∑
�=m+1

∫ i−�+1

i−�

(
1 − e−θ(i−�+1−s)

)
dZ(s)

)
+ c

]

× exp

(
μ̃ + (1 − e−θ )ρ(i − m)+ + σ̃

∫ i−m+1

i−m

(
1 − e−θ(i−m+1−s)

)
dZ(s)

)

= c
N∑

n=m

exp

(
(n − m + 1)μ̃ + (1 − e−θ )

n∑
�=m

ρ(i − �)+

+ σ̃

n∑
�=m

∫ i−�+1

i−�

(
1 − e−θ(i−�+1−s)

)
dZ(s)

)
,
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which is the same expression as (A3) with m being replaced by m − 1. Therefore, by induction, (A3)
holds with m = 0, which is (3.11). This completes the proof.

Appendix B. Tutorial on Bayesian optimization
We provide here a short tutorial on Bayesian optimization (BO). For further details and references, see
for example Shahriari et al. (2016).

Let � be a parameter set and f : � →R be the objective function to be maximized. In our problem,
this parameter set is � = [0, 1] × [0, 1] and each x := (π , θ ) ∈ � represents a pair of the investment
strategy π and adjustment parameter θ . We define the objective function as the CE of the expected
utility in (4.3) with input parameters x = (π , θ ):

f (x) := f (π , θ ) := CE(π , θ ), (B1)

where CE(π , θ ) � 0 is such that Uγ (CE(π , θ )) =E

[ ∞∑
t=1

β tUγ (Bt(t))

]
.

Note that the expected utility is a function of x = (π , θ ), as the payment Bt(t) depends on π and θ .
Since the CRRA utility function Uγ is strictly monotonically increasing with respect to its argument,
the maximizer of the CE is the same as the maximizer of the expected utility:

arg max
(π ,θ)∈�

CE(π , θ ) = arg max
(π ,θ)∈�

E

[ ∞∑
t=1

β tUγ (B(t))

]
.

Thus, the maximization of the expected utility can be equivalently formulated as the maximization of
the objective function (B1).

In our study, the expected utility is approximated by the Monte Carlo average of 10,000 simulations
of the asset process A(t) (and thus the resulting Bt(t)) for t = 1, . . . , T := 80. Therefore, each evaluation
of f (x) for a given x = (π , θ ) involves 10,000 simulations over 80 years on monthly basis, which is
computationally expensive. If A(t) � 0 happens at any t > 0 for any of 10,000 simulations of the financial
market, we set the objective function value to its minimum: that is, f (x) = 0.

B.1 Procedure of Bayesian optimization
First, we generate initial design points x1, . . . , xninit for some ninit ∈N and evaluate the function values
f (x1), . . . , f (xninit ) on these points. One can generate these initial points randomly (e.g., uniform sampling
on �) or deterministically (e.g., grid points). In our study, we use the design given by Latin hypercube
sampling (McKay et al. 2000) on � with ninit = 10.

Below we use the notation Dn := {(xi, f (xi))}n
i=1 ⊂ � ×R to write the collection of points x1, . . . , xn

and the resulting function values f (x1), . . . , f (xn). Dn can be understood as “data” or “observations” about
f after n-time evaluations of the function. We also denote by α(x; Dn) the acquisition function, whose
concrete form will be introduced later in Section B.3. The acquisition function α(x; Dn) is a function of
x ∈ � and defined from Dn.

BO iterates the following procedure for n = ninit + 1, ninit + 2, . . . , M, where M is the total number of
function evaluations.

(i) Compute xn+1 ∈ arg maxx∈� α(x; Dn),
(ii) Simulate f (xn+1) and augment the data Dn+1 := Dn ∪ {(xn+1, f (xn+1))}.

An estimate of the optimal parameters is then given as the maximizer from the evaluated inputs
x1, . . . , xM:

x∗ ∈ arg max {f (x) | x ∈ {x1, . . . , xM}}
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Figure B1. Illustrations of Gaussian process regression, adapted from Kanagawa et al.(2018, Figure 1).
Left: The green curves are five sample paths from the prior Gaussian process (B2) using the Matérn ker-
nel (B3) with h = 1. The thick black line is the prior mean function m(x) = 0. Right: the three points are
noise-perturbed observations (xi, yi)3

i=1, where yi = f ∗(xi) + εi with f ∗ being the ground-truth function
and εi being an independent zero-mean Gaussian noise with variance σ 2 := 0.01. The thick black curve
is the posterior mean function mn(x) in (B5) and the two thin black curves are the posterior standard devi-
ation function σn(x) = √

kn(x, x) in (B7), in which K−1
n is replaced by (Kn + σ 2I)−1 and fn := (y1, y2, y3)�.

(These modifications are theoretically justified; see e.g., Kanagawa et al. (2018) and references therein
for details.) The green curves are five sample paths from the posterior Gaussian process (B4).

The acquisition function α(x; Dn) determines the next point xn+1 to evaluate the objective function f .
Note that the computational cost of solving maxx∈� α(x; Dn) is negligible compared to the computational
cost of evaluating f (xn+1), as α(x; Dn) can be evaluated cheaply.

The acquisition function is designed so as to balance the exploitation and exploration. Exploitation is
a strategy to search for in a region near the current maximizer in x∗

n := arg max{f (x) | x ∈ {x1, . . . , xn}};
exploration is to search for in a region far from the evaluated points x1, . . . , xn. This exploration–
exploitation trade-off is enabled by the learning and uncertainty quantification of the response surface
of f from the data Dn. This is done by Gaussian process regression, which we will explain next.

B.2. Gaussian process regression
Gaussian process regression (Rasmussen and Williams 2006) is a Bayesian nonparametric method
for learning (or approximating) an unknown function f : � →R from its finite observations (data)
Dn = {(xi, f (xi))}n

i=1. Recall that Bayesian inference in general proceeds as follows: (a) define a prior
distribution for the quantity of interest, (b) collect observations (data) related to that quantity, and (c)
update the prior distribution to the posterior distribution using the observed data, applying Bayes’
rule. In Gaussian process regression, the quantity of interest is the unknown function f , and (a’) one
defines a prior distribution of f as a Gaussian process (or Gaussian random field), (b’) collects data
Dn = {(xi, f (xi))}n

i=1, and (c’) updates the prior Gaussian process to the posterior Gaussian process,
applying Bayes’ rule. See Figure B1 for illustrations of Gaussian process regression.

8.2.1 Prior Gaussian process
A Gaussian process is completely specified by its mean function m : � →R and covariance function
k : � × �. We write f ∼ GP(m, k) to mean that f is a sample path of the Gaussian process with mean
function m and covariance function k. Then we have m(x) =E[f (x)], x ∈ � and k(x, x′) =E[(f (x) −
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m(x))(f (x′) − m(x′))], x, x′ ∈ �. By specifying m and k, we implicitly specify the corresponding Gaussian
process.

For simplicity, we consider a Gaussian process with the zero-mean function (i.e., m(x) = 0, ∀x ∈ �)
for our prior distribution of the objective function f :

f ∼ GP(0, k). (B2)

What we need is to specify the covariance function k. By doing so, we can express our assumption or
knowledge regarding key properties of the objective function f , such as its smoothness and structure.

Popular choices of covariance kernels include square exponential kernel k(x, x′) = exp ( − ‖x −
x′‖2/h) with h > 0 and Matérn kernels. In our study, we use the so-called Matérn-5/2 kernel of the
form:

k(x, x′) =
(

1 +
√

5‖x − x′‖
h

+ 5‖x − x′‖2

3h2

)
exp

(
−

√
5‖x − x′‖

h

)
(B3)

where h > 0 is a scale parameter. In our simulation study, we use the default value for h of the mlrMBO
package. Roughly, this kernel leads to f ∼ GP(0, k) that is almost surely twice differentiable (e.g.,
Kanagawa et al. 2018, Section 4.4). Thus, with this kernel, we essentially assume this degree of
smoothness for the objective function, and this is our prior assumption.

B.2.2. Posterior Gaussian process
The use of a Gaussian process as a prior leads to an analytic expression of the resulting posterior distribu-
tion. Given data Dn = {(xi, f (xi))}n

i=1, the posterior distribution of f is also given as a Gaussian process:

f |Dn ∼ GP(mn, kn), (B4)

where mn : � →R is the posterior mean function and kn : � × � →R is the posterior covariance
function, given by:

mn(x) =E[f (x)|Dn] = f�
n K−1

n kn(x), x ∈ �, (B5)

kn(x, x′) =E[(f (x) − mn(x))(f (x′) − mn(x))|Dn]

= k(x, x′) − kn(x)�K−1
n kn(x′), x, x′ ∈ �, (B6)

where fn := (f (x1), . . . , f (xn))�, kn(x) := (k(x, x1), . . . , k(x, xn))� ∈R
n and Kn := (k(xi, xj))n

i,j=1 ∈R
n×n.

For the detail of the above derivation, see Rasmussen and Williams (2006).
The posterior mean function mn in (B 5) is an approximation of the objective function f based on the

data Dn. It works as a computationally cheaper surrogate model of f . On the other hand, the posterior
standard deviation:

σn(x) := √
kn(x, x) =√

E[(f (x) − mn(x))2|Dn] (B7)

quantifies the uncertainty about the unknown function value f (x). These mn and σn are the building
blocks of the acquisition function, as we will see next.

B.3. Acquisition function
We now introduce the concrete form acquisition function α(x; Dn). There are many acquisition func-
tions proposed in the literature; see Shahriari et al. (2016, Section IV). Most popular ones include the
EI (Expected Improvement), GP-UCB (Gaussian Process Upper Confidence Bound), and ES (Entropy
Search). In this paper, we use the EI acquisition function, which is standard and theoretically well studied
(Bull 2011). Let

f ∗
n := max

i=1,...,n
f (xi), x∗

n ∈ arg max{f (x) | x ∈ {x1, . . . , xn}}.
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Figure B2. Demonstration of Bayesian optimization with γ = 10 (see Section B.4). The points represent
the values of (π , θ ) evaluated by Bayesian optimization. The green points are the initial 10 points given
by Latin hypercube sampling. The red point is the maximizer found by Bayesian optimization after 100
evaluations, and the blue points (largely overlapping the red point) are the 10 second-best points.

be the maximum and the maximizer of the objective function f (x) over the currently evaluated inputs
x1, . . . , xn. The EI acquisition function α(x; Dn) at x is defined as the expected improvement of the func-
tion value f (x) over the current maximum f ∗

n , where the expectation is with respect to the posterior
Gaussian process (B4):

a(x; Dn) := Ef ∼GP(mn ,kn)[ max (f (x) − f ∗
n , 0)]

= σn(x)φ

(
mn(x) − f ∗

n

σn(x)

)
︸ ︷︷ ︸

Exploration

+ (mn(x) − f ∗
n )�

(
mn(x) − f ∗

n

σn(x)

)
︸ ︷︷ ︸

Exploitation

, (B8)

where φ : R→ [0, ∞) is the probability density function of a standard Gaussian random variable, and
� : R→ [0, 1] is its cumulative distribution function: �(y) := ∫ y

−∞ φ(s)ds, y ∈R.
The first term in (B8) represents the exploration, as it becomes large when σn(x), which represents the

uncertainty about the function value f (x), is large. This is typically the case when x is far from already
evaluated locations x1, . . . , xn. The second in (B8) represents the exploitation, as it becomes large when
mn(x) − f ∗

n is large and σn(x) is small. This is typically the case when x is near the current maximizer x∗
n.

Thus, the EI acquisition function naturally balances the exploration–exploitation trade-off, and the next
point xn+1 ∈ arg maxx∈� α(x; Dn) achieves such a balance.

B.4. Demonstration
Figure B2 shows an example of points x = (π , θ ) evaluated by BO for γ = 10. The green points are the
ninit = 10 initial design points x1, . . . , xninit generated by Latin hypercube sampling. The total number of
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evaluated points is M = 100. The red point is the maximizer x∗
M, and the blue points are the 10 other

second-best parameters (largely overlapping with the red point). For a comparison, we show 10 × 10
grid points.

Appendix C. IR roughness measure
To describe the IR roughness measure (Bardet and Surgailis 2011), we suppose that the path of each
individual account is represented by a function h : [0, T̃] →R, where T̃ = 40 is its terminal time. Note
that T̃ is the terminal time for one generation but is different from the terminal time for the operation
of the pension fund T . Discretizing the domain to n − 1 ∈N intervals, the first-order IR roughness is
defined as:

R1,n(h) := 1

n − 1

n−2∑
j=0

∣∣h(̃T j+1
n

) − h(̃T j
n
) + h(̃T j+2

n
) − h(̃T j+1

n
)
∣∣∣∣h(̃T j+1

n
) − h(̃T j

n
)
∣∣+ ∣∣h(̃T j+2

n
) − h(̃T j+1

n
)
∣∣ . (C1)

By the triangle inequality, the numerator in the sum is less than or equal to the denominator, and thus
R1,n(h) takes values between 0 and 1. When the signs of the two increments h(̃T(j + 1)/n) − h(̃Tj/n) and
h(̃T(j + 2)/n) − h(̃T(j + 1)/n) are the same, the numerator equals the denominator; when those signs
are different, the numerator is smaller than the denominator. As such, R1,n(h) reflects the sign changes
of the function h and thus quantifies its roughness. Intuitively, R1,n(h) is close to 0 when h is rough, and
is close to 1 when h is smooth. In fact, Bardet and Surgailis (2011) show that, for a sufficiently smooth
h, R1,n(h) converges to 1 as n → ∞.
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