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Abstract
The output of predictive models is routinely recalibrated by reconciling low-level predictions with known

quantities defined at higher levels of aggregation. For example, models predicting vote probabilities at the

individual level in U.S. elections can be adjusted so that their aggregation matches the observed vote totals

in each county, thus producing better-calibrated predictions. In this research note, we provide theoretical

grounding for one of the most commonly used recalibration strategies, known colloquially as the “logit

shift.” Typically cast as a heuristic adjustment strategy (whereby a constant correction on the logit scale is

found, such that aggregated predictions match target totals), we show that the logit shift offers a fast and

accurate approximation to a principled, but computationally impractical adjustment strategy: computing

the posterior prediction probabilities, conditional on the observed totals. After deriving analytical bounds

on the quality of the approximation, we illustrate its accuracy usingMonte Carlo simulations.We also discuss

scenarios inwhich the logit shift is lesseffectiveat recalibratingpredictions:when the target totals aredefined

only for highly heterogeneous populations, and when the original predictions correctly capture the mean of

true individual probabilities, but fail to capture the shape of their distribution.

Keywords: recalibration, Poisson–Binomial distribution, logit shift, election prediction

1 Problem Description
A common problem in predictive modeling is that of calibrating predicted probabilities to

observed totals. For example, an analyst may generate individual-level scores pi ∈ (0,1), i =

1, . . . ,N , to estimate the probability that each of the N registered voters in a particular voting
precinct will support the Democratic candidate in an upcoming election. After the election,

the analyst can observe the total number of Democratic votes, D, cast among the subset
V ⊂ {1, . . . ,N } of registered voters who cast a ballot. However, she cannot observe individual-

level outcomes due to the secret ballot. In the absence of perfect prediction, the analyst will find

that
∑

i ∈V pi � D . She must decide how to compute recalibrated scores, p̃i , to better reflect the

realized electoral outcome.

This practical problem has direct implications for public opinion research. For example, Ghitza

and Gelman (2020) recalibrate their Multilevel Regression and Postratification (MRP) estimates of

voter support levels after an election to match county-level totals, whereas Schwenzfeier (2019)

proposes using the amount bywhich original predictions are adjusted in the recalibration exercise

to estimate nonresponse bias in public opinion polls. The problem is also important to campaign

work. Campaigns frequently seek to target voters who are likely to have supported their party

in the prior presidential election. Estimates of prior party support may also serve as predictor

variables in models estimating support in successive elections. Recalibrating the scores to match

known aggregated outcomes is a crucial step to improve the scores’ accuracy and bolster future

electioneering.
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A common heuristic solution to the recalibration problem is the so-called “logit shift” (e.g.,

Ghitza and Gelman 2013; Ghitza and Gelman 2020; Hanretty, Lauderdale, and Vivyan 2016; Kuri-

waki et al. 2022).1 To motivate this approach, consider a simple scenario in which the pi are

generated from a logistic regression model. The recalibrated scores p̃i are then computed by

uniformly shifting the model’s intercept until the p̃i sum to the desired total D, with all other
coefficients kept constant.

Explicitly, we define the scalar α ∈ [0,∞) such that its log is equal to the intercept shift,

logit(p̃i ) = logit(pi )− log(α ), (1)

where logit(z ) = log(z/(1− z )). Denote also the inverse of the logit function as σ(z ) = exp(z )/(1+

exp(z )).We next define the summed, recalibrated probabilities as a function of α ,

h(α ) =
∑
i ∈V

p̃i =
∑
i ∈V

σ (logit(pi )− log(α )) , (2)

and solve for the value of α that satisfies the equation

h(α ) = D . (3)

The function h(·) is monotonic in α , so Equation (3) can be solved in logarithmic time using binary

search. The resulting scores p̃i are defined explicitly in Equation (1), and they recalibrate the

original predictions so that
∑

i ∈V p̃i = D .

This approach does not depend on how the original pi are estimated—so while it is common

for these scores to be obtained via logistic regression, it is possible to implement the logit shift

with any model that produces predicted probabilities. An alternative characterization of this

approach emerges from information theory: solving Equation (3) is equivalent to finding the set of

probabilities p̃i which sum to D andminimize the summed Kullback–Leibler divergence (Kullback
and Leibler 1951) between the distribution induced by p̃i and the distribution induced by the

original scores pi .2

Such a recalibration strategy cannot universally be expected to perform well. As the logit shift

is rank-preserving, it cannot correct for substantial heterogeneity in the direction of prediction

errors in the individual pi ’s (e.g., instances in which prediction errors are negative for Black voters

but positive for White voters). Furthermore, as it relies on limited information conveyed by the

aggregated outcomes to determine the best value for its constant shift, it cannot rectify instances

in which these original predictions get the average scores right, but miss the shape of the true

score distribution altogether (e.g., when individual predicted probabilities are bell-shaped, but

true probabilities are more uniformly distributed).3

1 The procedure is also sometimes referred to as the “logit swing,” and it bears resemblance to the commonly used Platt
scaling procedure for calibrating support vector machines and other margin classifiers (Platt et al. 1999). The logit shift,
however, is designed to calibrate to observed totals when individual scores are not observable.

2 For more details, see the Supplementary Material.
3 That researchers cangenerateworse-calibrated scoreswith the logit shift is demonstratedby the following simpleexample:
suppose that there is a set of true individual-level probabilities, p true

i
, such that the precinct-level Democratic vote tally is

sampled as

D =
∑
i ∈V

Bern(p truei ), (4)

and consider the extreme case in which the original predicted scores are exactly correct: ptrue
i

= pi . Under the sampling
model in Equation (4), and assuming independence across i ∈ V, the precinct total D has variance

var(D ) =
∑
i ∈V

p truei (1−p truei ).
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In this research note, we provide analytical justification for using the logit shift under circum-

stances in which it can be expected to generate better-calibrated scores, and illustrate conditions

underwhich thisheuristic strategycan fail to improvecalibrationof a setofpredictedprobabilities.

To do so, we introduce a principled procedure for score updating which computes the updated

scores as posterior probabilities, conditional on observed totals. In our running example, this

meanswe treat theoriginal scorespi asakindofpriorDemocratic supportprobability,whereas the

updated scores p̃i reflect conditional Democratic voting probabilities given observed aggregate

outcomes. Next, we show that this Bayesian take on recalibration is well approximated by the

heuristic logit shift in large samples, demonstrating this result both analytically and through a

simulation study. Then, we rely on similar simulation exercises to illustrate conditions under

which the logit shift can fail as a recalibration strategy. We conclude with a discussion of potential

extensions of the logit shift for other recalibration problems.

2 Recalibration as a Posterior Update
To motivate the posterior update approach, we introduce additional notation. We define each

voter i’s choice as abinary variableWi ∈ {0,1}, whereWi = 1 signifies aDemocratic vote andWi = 0

signifies a Republican vote.4 TheWi are modeled as independent Bernoulli random variables,

whereWi ∼Bern(pi ). Thepi =�(Wi = 1) canbe thoughtof as theprior, unconditionalprobabilityof

casting a Democratic vote. In this model, scores can straightforwardly be recalibrated by defining

a set of updated scores, {p�
i
} (which automatically sum to D over actual voters i ∈ V) using the

following conditional probability:

p�i = �
���Wi = 1

������
∑
j ∈V

Wj = D
�	


=
�
(
Wi = 1,

∑
j ∈VWj = D

)
�
(∑

j ∈VWj = D
)

= pi ×
�
(∑

j�i Wj = D −1
)

�
(∑

j ∈VWj = D
) ,

(5)

where a sum taken over “j � i ” is understood to mean a sum over all voters inV other than i.
From the final line of Equation (5), we observe that the recalibrated p�

i
is obtained by mul-

tiplying the original pi by a unit-specific probability ratio. The numerator represents the prob-

ability that there are D − 1 Democratic votes among all voters in V except voter i, whereas the
denominator represents the probability that there are D Democratic votes among all voters inV.

Given our assumptions about theWi , computing each of these probabilities requires evaluating

the distribution function of a Poisson–Binomial random variable, which emerges as the sum of

independent but not identically distributed Bernoulli random variables (Chen and Liu 1997).

While simple and theoretically elegant, this recalibration approach is highly impractical. Calcu-

lation of Poisson–Binomial probabilities is extremely computationally demanding even atmoder-

ate sample sizes, despite recent advances in the literature (Junge 2020; Olivella and Shiraito 2017).

To compute the recalibrated p�
i
values, we would need to compute one unique Poisson–Binomial

If even a modest proportion of the p true
i

are far from 0 and 1, it is unlikely that any given sample satisfies D = �[D ] =∑
i ∈V p true

i
(and it is impossible if �[D ] is not an integer). That is, even a perfectly calibrated set of predictions may fail

to aggregate to the observed D. Under these conditions, conducting the logit shift after observing a value of Dwill almost
always adjust the probabilities away from their true values p true

i
, worsening the calibration of the initial scores pi .

4 Throughout this note, we focus on a binary outcome for simplicity. The same logic applies in cases of multinomial
outcomes, however, by using the Poisson–Multinomial distribution (see Lin, Wang, and Hong 2022).
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probability for each voter. Hence, if the number of actual voters |V| were even modestly large, it

would be computationally infeasible to obtain these exact posterior probabilities.

2.1 The Logit Shift Approximates the Recalibrating Posterior
2.1.1 Preliminaries. In this section, we show analytically why the logit shift is a good approximation

to the posterior update in Equation (5). We begin by defining two terms. In direct analogy to the

right-hand side of Equation (2), we define the function

f (s, t ) = σ (logit(s )+ log(t )) =
1

1+ 1−s
s (t )

.

Next, we define the Poisson–Binomial ratio

φi =
�
(∑

j�i Wj = D
)

�
(∑

j�i Wj = D −1
) .

Simple substitution, along with a useful recursive property of the Poisson–Binomial distribu-

tion,5 makes clear that

∑
i ∈V

f (pi ,φi ) =
∑
i ∈V

1

1+ 1−pi
pi

φi

=
∑
i ∈V

1

1+ 1−pi
pi

�(
∑

j�i Wj=D)
�(

∑
j�i Wj=D−1)

=
∑
i ∈V

pi ×�
(∑

j�i Wj = D −1
)

pi ×�
(∑

j�i Wj = D −1
)
+ (1−pi )×�

(∑
j�i Wj = D

)
=
∑
i ∈V

� (Wi = 1,
∑

i ∈VWi = D )

� (
∑

i ∈VWi = D )

=
∑
i ∈V

p�i

= D .

(6)

In words, Equation (6) shows that the unit-specificφi is precisely the “shift” (in the sense of the

secondargument to the function f ) that turns each pi into thedesired, recalibratedposterior prob-
ability p�

i
. The logit shift, however, uses a constant α to approximate the vector of recalibrating

shifts {φi }i ∈V . What remains, therefore, is to show that the single value of α that solves Equation

(3) is a very good approximation ofφi for all values of i.
To do so, we establish that the value of α is bounded by the range of {φi }i ∈V , and that eachφi ,

in turn, haswell-defined bounds. Thiswill allowus to find that, in practice, the range of values that

the unit-specific shifts φi can take is very small, and thus that a constant shift α can approximate

them very well.

5 Namely,

�
���
∑
j

Wj = D
�	
 = pi ×�

���
∑
j�i

Wj = D −1
�	
+ (1−pi )×�

���
∑
j�i

Wj = D
�	
 .

Evan T. R. Rosenman et al. � Political Analysis 654

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
2.

31
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2022.31


Theorem 1. The value of α which solves Equation (3) satisfies

min
i

�
(∑

j�i Wj = D
)

�
(∑

j�i Wj = D −1
) ≤ α ≤ max

i

�
(∑

j�i Wj = D
)

�
(∑

j�i Wj = D −1
) .

Proof. The proof can be found in the Supplementary Material. �

Theorem 2. For any choice of i ∈ V, we have

�
(∑

j ∈VWj = D +1
)

�
(∑

j ∈VWj = D
) ≤

�
(∑

j�i Wj = D
)

�
(∑

j�i Wj = D −1
) ≤

�
(∑

j ∈VWj = D
)

�
(∑

j ∈VWj = D −1
) .

Proof. The proof can be found in the Supplementary Material. �

2.1.2 Main Results. The bounds fromTheorem 2 apply regardless of the choice of i, so we can combine
the two theorems to observe

�
(∑

j ∈VWj = D +1
)

�
(∑

j ∈VWj = D
) ≤ min

i

�
(∑

j�i Wj = D
)

�
(∑

j�i Wj = D −1
) ≤ α

≤ max
i

�
(∑

j�i Wj = D
)

�
(∑

j�i Wj = D −1
) ≤

�
(∑

j ∈VWj = D
)

�
(∑

j ∈VWj = D −1
) .

(7)

This is useful, because we can now use the outer bounds in Equation (7) to obtain a bound

on the approximation error when estimating recalibrated scores p�
i
(obtained from the posterior

update approach) via p̃i (obtained from the logit shift).

Theorem 3. For large sample sizes, we obtain

p̃i = p�i +O

(
1∑

j ∈V pj (1−pj )

)
.

Proof. The proof can be found in the Supplementary Material. �

Theorem 3 relies on the tightness of the bound in (7). Under the assumption of an independent

Bernoulli sampling model for individual vote choices, the upper and lower bounds differ by a

factor inversely proportional to the variance of D—the Poisson–Binomial variable representing
total votes for the Democratic candidate. Theorem 3 states that the error in using the logit shift

to approximate the posterior recalibration update is bounded by a term of the same order.

Thus, Theorem 3 implies that the magnitude of the approximation error is inversely propor-

tional to sample size, and becomes quite small for large enough samples. As the binding bounds

in Equation (7) are tight for even moderately large |V|, the approximation can be expected to

perform well in most practical settings.

However, Theorem 3 does not imply that the logit shift is a universally good recalibration
strategy. Rather, it implies that when a strategy like the posterior update is appropriate, the

logit shift offers a very close approximation at a low computational cost. Next, we illustrate

the approximation’s accuracy for even modestly sized electorates, under various possible score

distributions, using a simple Monte Carlo simulation.

Evan T. R. Rosenman et al. � Political Analysis 655

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
2.

31
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2022.31


Figure 1. The distributions used in simulations in Section 2.2. We assume that the initial scores pi and the
true probabilities ptrue

i
are drawn fromeachof these six distributions. These are the sameas the distributions

provided in Biscarri, Zhao, and Brunner (2018).

Table 1. Discrepancy between the logit shift and the exact Poisson–Binomial probabilities (as measured by
RMSE, 1− R2, and KL divergence), under various settings. All results are calculated in the case where the
observed D is equal to 0.8×

∑
i pi.

pi setting Sampling distribution Sample size RMSE 1−R2 KLD

Uniform Uniform(0, 1) 100 0.00195 5.81×10−5 1.21×10−3

Uniform Uniform(0, 1) 1,000 0.00021 5.51×10−7 1.43×10−4

Close to 0 Beta(0.1, 3) 100 0.00772 1.06×10−2 1.68×10−2

Close to 0 Beta(0.1, 3) 1,000 0.00043 3.11×10−5 5.24×10−4

Close to 1 Beta(3, 0.1) 100 0.00369 1.12×10−4 6.38×10−3

Close to 1 Beta(3, 0.1) 1,000 0.00034 1.12×10−6 5.13×10−4

Extremal 0.5*Beta(0.1, 3) + 0.5*Beta(3, 0.1) 100 0.00496 1.16×10−6 1.22×10−2

Extremal 0.5*Beta(0.1, 3) + 0.5*Beta(3, 0.1) 1,000 0.00050 1.19×10−6 1.05×10−3

Central Beta(3, 3) 100 0.00161 7.66×10−5 7.04×10−4

Central Beta(3, 3) 1,000 0.00016 7.16×10−7 6.63×10−5

Bimodal 0.5*Beta(3, 10) + 0.5*Beta(10, 3) 100 0.00227 6.72×10−5 1.74×10−3

Bimodal 0.5*Beta(3, 10) + 0.5*Beta(10, 3) 1,000 0.00023 6.77×10−7 1.93×10−4

2.2 Numerical Precision Simulations
To illustrate the precision of the logit shift approximation, we simulate two scenarios: a small-

samplecase (where |V| =100) andamore typical,modestly sizedsamplecase (with |V| =1,000).6

We draw the initial probabilities pi according to the six distributions discussed in Biscarri, Zhao,

and Brunner (2018). We consider the case in which the observed D is 20% below the expectation,∑
i pi . The six distributions are visualized in Figure 1.

6 Code to replicate these and all other simulation results is available at https://doi.org/10.7910/DVN/7MRDUW Rosenman,
McCartan, and Olivella 2022.
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We compute the exact posterior probabilities using Biscarri’s algorithm as implemented in the

PoissonBinomial package (Junge 2020), and compare it against the estimates obtained using the
logit shift heuristic. We report the RMSE, the proportion of variance in the posterior probabilities

p�
i
that is not explained by ourmethod, and the summedKullback-Leibler (KL) divergence. Results

are given in Table 1.

These results demonstrate that the logit shift and the posterior probability approach are

virtually identical, as expected. Across a wide variety of distributions, we find that the two

approaches deviate only nominally—even in small samples of 100 voters. Moreover, as expected,

the approximation gets even more accurate as the sample size increases, as illustrated by the

reduction across error metrics (sometimes of several orders of magnitude) as we move from 100

to 1,000 voters.

As an approximation, then, the logit shift can be expected to work well when the target total it

relies on is based on at least a modest number of voters. We now turn to the question of when we

can expect the logit shift to work as a calibration strategy.

3 Why the Logit Shift Can Fail To Generate Well-Calibrated Predictions
The close correspondence between the logit shift and the full posterior update need not mean

that the logit shift produces better calibrated scores in all cases. Probabilities updated through the

logit shift maintain the same ordering of the original predictions,7 and can only correct predicted

score distributions thatmisrepresent the location (rather than the overall shape) of the true score

distribution. These limitations can prevent the updated scores from improving the calibration of

predicted probabilities, and can even exacerbate calibration problems among subsets of voters.

We discuss how these issues can manifest in practice, and illustrate the potential problems

using Monte Carlo simulations. We again adopt the independent Bernoulli model of Section 2,

associating with each individual a true Democratic support probability p true
i

as well as an initial

predicted score pi . We investigate whether logit shifting the pi scores generates updated predic-

tions p̃i that are more closely aligned with p
true
i

than the original scores pi .

3.1 Heterogeneity and Target Aggregation Levels
Perhaps the most serious limitation of the logit shift stems from the fact that it cannot alter the

ordering of the original probabilities pi . This has implications for the ideal grouping level at which

we conduct the logit shift. Throughout this note, we have supposed that the logit shift is used

within each voting precinct to generate updated scores whose sum is equal to the precinct’s vote

total. Yet it is entirely plausible (and indeed common in academic research) to conduct the update

at higher levels of aggregation, e.g., counties or states.

Executing the update at higher levels of aggregation, however, can imply more heterogeneity

in prediction errors—heterogeneity that may not be correctable using the rank-preserving logit

shift with a single target total (Kuriwaki et al. 2022). To see why, consider an example in which
there are two groups of voters: Black voters and White voters. Suppose that for all Black voters,

pi = 0.7 and p true
i

= 0.8, whereas for all White voters, pi = 0.3 and p true
i

= 0.2—i.e., the initial scores

underestimate Democratic support among Black voters and overestimate Democratic support

amongWhite voters. The logit shift will either increase or decrease all probabilities within a given

grouping. Suppose that we choose a high level of aggregation—e.g., the state level—at which

to conduct the logit shift, and White voters constitute a large majority of the state’s voters. The

predicted tally of Democratic votes will significantly overshoot the observed vote count D. Hence,
the logit shift will adjust all voters’ Democratic support probabilities downward. This will yield

7 In fact, while this may seem like it is the result of using a constant α to update all scores, it is in fact a property of the
Bayesian update strategy, which is itself rank-preserving (despite defining individual “shifts”).
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Table 2. We consider three racial proportions within the precinct, and report
cor(p̃i ,p

true
i

)−cor(pi ,p
true
i

)

cor(pi ,p
true
i

)
sepa-

rately forWhite and Black voters in each pair of columns. Initial scores are drawn froma different distribution
in each row. Positive values means the logit shift has improved the correlation with the true probabilities,
whereas negative values mean the logit shift has worsened the correlations with the true probabilities.

Initial score dist W (70%) B (30%) All W (80%) B (20%) All W (90%) B (10%) All

Uniform 0.010 −0.017 0.002 0.011 −0.023 0.005 0.012 −0.032 0.007

Close to 0 0.072 −0.062 0.011 0.126 −0.109 0.043 0.249 −0.366 0.160

Close to 1 0.037 −0.071 0.017 0.069 −0.175 0.042 0.065 −0.209 0.050

Extremal 0.043 −0.046 0.015 0.083 −0.117 0.041 0.094 −0.083 0.077

Central 0.005 −0.009 0.001 0.004 −0.009 0.001 0.004 −0.004 0.003

Bimodal 0.004 −0.006 0.001 0.006 −0.011 0.003 0.006 −0.014 0.005

improved predictions for all White voters, but worse predictions for Black voters, whose initial

projected support levels were too low rather than too high.

To illustrate the potential issues raisedby heterogeneity,we simulate a two-group situation like

theone just described.We suppose that there are onlyWhite andBlack voters present in aprecinct

of n = 1,000 individuals, and again suppose that the initial scores are drawn from the same six

probability distributions visualized in Figure 1. We assume further that the majority of voters

are White, and that their Democratic support probabilities are overestimated by 10 percentage

points, whereas a minority of voters are Black, and their Democratic support probabilities are

underestimated by 10 percentage points.8 Crucially, the ordering of pi and p true
i

is not the same
in this setting.

Weconsider three racial proportionswithin theprecinct: a 70–30split ofWhiteandBlackvoters,

an 80–20 split, and a 90–10 split. In each case, we sample the initial scores pi ; then compute the

true probabilities p true
i

; then sample the aggregated outcomes, and conduct the logit shift of pi .

We then report

cor(p̃i ,p
true
i

)− cor(pi ,p
true
i

)

cor(pi ,p
true
i

)

as our success metric. Positive values mean that the logit shift has improved the correlation with

the true probabilities, whereas negative values indicate that the logit shift has worsened the

correlations with the true probabilities. We compute the quantity separately for Black and White

voters, and report results in Table 2.

As expected, in each setting, scores get better for White voters and worse for Black voters. The

relative changes are largest when the precinct is 90% White, in which case significant accuracy

can be lost for Black voters. The correlation computed over all voters improves in these more

homogeneous precincts, as large improvements are achieved for a large proportion of the voters

therein (i.e., for White voters).

Accordingly, using a lower level of aggregation—e.g., voting precincts—will ameliorate the

problem only if precincts are more racially homogeneous than the state as a whole. While the

errors may increase for the minority in the more homogeneous context, the overall calibration

of the updated scores would increase, as a larger proportion of the voters would be accurately

8 In our simulations, the shifts are themselves induced by first randomly designating voters as White or Black, and then
applying the appropriate logit shift to their scores. A Beta(0.1, 0.5) is substituted for the “Close to 0” distribution and a
Beta(0.5, 0.1) for the “Close to 1” distribution, so as to allow for these shifts to be plausible.
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adjusted. Thankfully, we can generally expect greater homogeneity within smaller aggregation

units than what would be observed in the electorate as a whole.

Theorem4. Consider two sets of aggregation units,A andB, with theA units nested inside the
B units. Then, for eachB unit, the overall proportion of people comprising aminority within their
A unit is at least as small as the proportion of people comprising aminority within the enclosing
B unit.

Proof. The proof can be found in the Supplementary Material. �

For example, based on the 2020 Census data and census race/ethnicity categories, 39.8% of

the voting-age population was a minority nationwide, 38.7% was a minority within their state,

35.3% was a minority within their county, 28.7% was a minority within their tract, and 12.9% was

a minority within their Census block (U.S. Census Bureau 2021). This implies that researchers and

practitionerswouldbenefit fromapplying the logit shiftat the lowest level of aggregation forwhich

aggregate data are available—provided the number of votes being aggregated is large enough to

ensure that the logit shift accurately approximates the posterior update.9

3.2 Limits to What Can Be Learned From a Total
While it is clear that the logit shift cannot fully ameliorate errors when the ordering of pi and p

true
i

differs, it is also possible to observe little improvement in calibration even in contexts in which

the initial ordering is correct. In such instances, we will only see gains from applying the logit shift

if the observed target total D differs substantially from the expected total under the set of initial

scores.

To see why, recall that the logit shift (and the posterior it approximates) relies only on infor-

mation about the aggregated outcomes to update individual scores. This total ismost informative

about themeanof the true individual probabilities, as differently shapeddistributions of p true
i

that

are consistent with the observed total can share the same mean, but distributions with different

means will typically result in different observed totals. As a result, even if initial individual scores

are ranked correctly, the extent to which the observed total will provide useful information will

depend on the extent to which the mean of the initial scores differs from the mean of the true

probabilities. This highlights an important weakness of the logit shift: it cannot correct for an

incorrect shape of the initial score distributions, but only for an incorrectmean.
To illustrate this issue through simulation, we use the same six probability distributions used

in Table 1, but we alter the setup. Consider each of the 36 possible pairs of distributions. For each

pair, we sample 1,000 voters such that the true probabilities p true
i

follow the first distribution, and

the initial scores pi follow the second distribution, but the rank of each unit i is identical within
each of the two distributions. We sample the outcomes under the Bernoulli model, and conduct

the logit shift on the initial scores pi to generate the updated scores p̃i . Table 3 reports the results,

with each entry again presenting

cor(p̃i ,p
true
i

)− cor(pi ,p
true
i

)

cor(pi ,p
true
i

)

from the simulation involving the corresponding distributions.

Recall that the uniform, extremal, central, and bimodal distributions all have means of 0.5.

As expected, if both the true probability distribution and the initial score distribution have the

9 As the results in Table 1 indicate, the approximation is already highly accurate when aggregating even 100 people. Thus,
considering the average number of voters per precinct in the United States is approximately 1,000, the size constraints are
not difficult to satisfy.
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Table 3. In each cell, we report
cor(p̃i ,p

true
i

)−cor(pi ,p
true
i

)

cor(pi ,p
true
i

)
when the initial scores and true probabilities are

drawn from the respective row and column distributions. Positive values means the logit shift has improved
the correlation with the true probabilities, whereas negative values mean the logit shift has worsened the
correlations with the true probabilities.

Initial prediction distribution

Uniform Close to 0 Close to 1 Extremal Central Bimodal

Uniform 0.000 0.653 0.841 0.000 0.000 0.000

Close to 0 0.648 0.000 4.609 1.681 0.461 0.889

Close to 1 0.675 2.361 0.000 1.463 0.459 0.914

Extremal 0.000 1.147 1.125 0.000 0.001 0.000
True distr.

Central 0.000 0.548 0.487 0.000 0.000 0.000

Bimodal 0.000 0.719 0.837 0.000 −0.001 0.000

same mean, the correlation shifts are essentially zero. In contrast, much larger improvements in

correlation are seen when the skewed “Close to 0” and “Close to 1” distributions (which have

meansof 0.032 and0.968, respectively) are used. The intuition is clear: the observedprecinct total

is muchmore informative when it differs drastically from the mean of the initial scores.

4 Discussion
In this paper, we have considered the problem of updating voter scores to match observed vote

totals from an election. We have shown that the simple “logit shift” algorithm is a very good

approximation to computing the exact posterior probability that conditions on the observed

total. This is a useful insight for campaign analysts and researchers alike, because the logit

shift is significantly more computationally efficient than the calculation of the exact posterior

recalibration update, yet the approximation is extremely accurate even in small samples.

We have also discussed limitations of this approach in terms of its ability to recover a true set of

individual support probabilities. Crucially, logit-shifted probabilities retain the same ordering as

the initial set of scores, which implies that the original scoring model must discriminate positive

and negative (but unobservable, in the case of voting) individual caseswell. Users of the logit shift

can increase the chances of having correctly ranked initial scores by applying the logit shift at low

levels of aggregation,where heterogeneity of prediction errors is likely to be low. In turn, users can

expect to see little improvements to calibrationwhen their initial scores capture the correctmean

of the true unit probabilities, even if the shape of the true and predicted score distributions differ.

The limits ofwhat can be learned froma single aggregated outcomeabout individual probabilities

makes this problem hard to address in practice.

While not without pitfalls, the logit shift represents a useful and computationally efficient

method of updating individual-level scores to incorporate information froma completed election.

Furthermore, recent developments can help correct some of the limitations we have highlighted.

For instance, minimizing differences with respect to multiple aggregated targets can help resolve

issues raised by heterogeneity in prediction errors among subgroups, and provide more infor-

mation about the shape of the distribution of true probabilities (e.g., Kuriwaki et al. 2022). A
fruitful avenue for future research would explore whether these attempts can also be justified

as approximations to a posterior update that conditions on multiple totals, highlighting the

connectionsbetween the logit shiftand theproblemofecological inference (e.g., King, Tanner, and

Rosen 2004; Rosenman 2019). Establishing those connections represents a promising potential

extension of the insights provided in this note.
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Data Availability Statement
Replication code for this article is available in Rosenman et al. (2022), at https://doi.org/10.7910/
DVN/7MRDUW.

Supplementary Material
For supplementary material accompanying this paper, please visit https://doi.org/10.1017/

pan.2022.31.

References
Biscarri, W., S. D. Zhao, and R. J. Brunner. 2018. “A Simple and Fast Method for Computing the Poisson
Binomial Distribution Function.” Computational Statistics & Data Analysis 122: 92–100.

Chen, S. X., and J. S. Liu. 1997. “Statistical Applications of the Poisson-Binomial and Conditional Bernoulli
Distributions.” Statistica Sinica 7 (4): 875–892.

Ghitza, Y., and A. Gelman. 2013. “Deep Interactions with MRP: Election Turnout and Voting Patterns among
Small Electoral Subgroups.” American Journal of Political Science 57 (3): 762–776.

Ghitza, Y., and A. Gelman. 2020. “Voter Registration Databases and MRP: Toward the Use of Large-Scale
Databases in Public Opinion Research.” Political Analysis 28 (4): 507–531.

Hanretty, C., B. Lauderdale, and N. Vivyan. 2016. “Combining National and Constituency Polling for
Forecasting.” Electoral Studies 41: 239–243.

Junge, F. 2020. “Package ‘PoissonBinomial’.” Computational Statistics & Data Analysis 59: 41–51.
King, G., M. A. Tanner, and O. Rosen. 2004. Ecological Inference: NewMethodological Strategies. New York:
Cambridge University Press.

Kullback, S., and R. A. Leibler. 1951. “On Information and Sufficiency.” The Annals of Mathematical Statistics
22 (1): 79–86.

Kuriwaki, S., S. Ansolabehere, A. Dagonel, and S. Yamauchi. 2022. “The Geography of Racially Polarized
Voting: Calibrating Surveys at the District Level.” OSF Preprints. https://doi.org/10.31219/osf.io/mk9e6

Lin, Z., Y. Wang, and Y. Hong. 2022. “The Poisson Multinomial Distribution and its Applications in Voting
Theory, Ecological Inference, and Machine Learning.” https://doi.org/10.48550/ARXIV.2201.04237

Olivella, S., and Y. Shiraito. 2017. “poisbinom: A Faster Implementation of the Poisson-Binomial
distribution.” R Package Version 1.0.1.

Platt, J., et al. 1999. “Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized
Likelihood Methods.” Advances in Large Margin Classifiers 10 (3): 61–74.

Rosenman, E. 2019. “Some New Results for Poisson Binomial Models.”
https://doi.org/10.48550/ARXIV.1907.09053

Rosenman, E., C. McCartan, and S. Olivella. 2022. “Replication Data for: Recalibration of Predicted
Probabilities using the ‘Logit Shift’: Why Does It Work, and When Can It Be Expected to Work Well?”
Version V1. https://doi.org/10.7910/DVN/7MRDUW

Schwenzfeier, M. 2019. “Which Non-Responders Drive Non-Response Bias?” In PolMeth XXXVI. Cambridge.
U.S. Census Bureau. 2021. 2020 Census. U.S. Department of Commerce.

Evan T. R. Rosenman et al. � Political Analysis 661

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
2.

31
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.7910/DVN/7MRDUW
https://doi.org/10.1017/pan.2022.31
https://doi.org/10.1017/pan.2022.31
https://doi.org/10.31219/osf.io/mk9e6
https://doi.org/10.48550/ARXIV.2201.04237
https://doi.org/10.48550/ARXIV.1907.09053
https://doi.org/10.7910/DVN/7MRDUW
https://doi.org/10.1017/pan.2022.31

	1 Problem Description
	2 Recalibration as a Posterior Update
	2.1 The Logit Shift Approximates the Recalibrating Posterior
	2.1.1 Preliminaries
	2.1.2 Main Results

	2.2 Numerical Precision Simulations

	3 Why the Logit Shift Can Fail To Generate Well-Calibrated Predictions
	3.1 Heterogeneity and Target Aggregation Levels
	3.2 Limits to What Can Be Learned From a Total

	4 Discussion

