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Abstract

Homotopy theory folklore tells us that the sheaf defining the cohomology theory Tmf of topological
modular forms is unique up to homotopy. Here we provide a proof of this fact, although we claim no
originality for the statement. This retroactively reconciles all previous constructions of Tmf.
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1. Introduction

Generalised cohomology theories are powerful tools in algebraic topology, not only
in their immediate utility in topology and geometry, but also in their ability to
unify various areas of mathematics. The two most prominent examples of such are
singular cohomology and topological K-theory, which possess connections to algebra,
functional analysis, differential geometry and physics.

In this article, we discuss the cohomology theory Tmf of topological modular
forms, a higher order analogue of singular cohomology and topological K-theory. This
theory Tmf possesses connections to number theory and arithmetic geometry through
modular forms and the moduli stack of elliptic curves, as well as to string topology
and physics through a map from the string bordism groups to the Tmf-cohomology
of spheres; see [Beh20, DFHH14] for general introductions. Moreover, the recent
advances in equivariant topological modular forms [GM20, Lur19], applications
to various computations in homotopy theory [GHMR05, WX17] and conjectural
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connections to topological field theories [ST11] all suggest that we are still now only
scratching the surface of Tmf.

At present, there is a singular definition of Tmf, and that is as the global sections
Γ(MEll, O top). Here, and elsewhere in this article, MEll is the compactification of
the moduli stack of elliptic curves and O top is the Goerss–Hopkins–Miller–Lurie
sheaf; see [Beh20] for more background. For transparency, we remind the reader
that the word sheaf is used in a homotopy-theoretic sense, as it takes values in
the ∞-category of E∞-rings—the homotopically meaningful environment to study
cohomology theories with a highly structured multiplication. The first published
construction of this sheaf is due to Behrens [DFHH14, Section 12], and is based on
the unpublished work of Goerss, Hopkins and Miller.

One can find variations of this construction in the literature, some using logarithmic
geometry on the moduli stack MEll [HL16], and others using oriented derived elliptic
curves and p-divisible groups [Lur18]. This leads us to a fundamental question:

Are these different constructions in any way compatible?

This question would be easily answered if one could show that O top is the ‘unique’
sheaf with a certain property, assuming this property holds for each competing
construction. Moreover, such uniqueness could also be used to further justify the
significance of O top; we leave it to the reader to come to their own conclusions on
that front. The property we would like to consider is that of an elliptic cohomology
theory.

DEFINITION 1.1. Let E be a generalised elliptic curve over a ring R with irreducible
geometric fibres, which is equivalent data to a morphism of stacks Spec R→MEll. We
say that a homotopy commutative ring spectrum E is an elliptic cohomology theory for
E (or Spec R→MEll) if we have the following data:

(1) E is weakly 2-periodic, meaning the homotopy group π2E is a projective
π0E-module of rank one and for every integer n, the canonical map of
π0E-modules

π2E ⊗
π0E

πnE → πn+2E

is an isomorphism;
(2) the groups πkE vanish for all odd integers k, so in particular E is complex

orientable;
(3) there is a chosen isomorphism of rings π0E � R; and
(4) there is a chosen isomorphism of formal groups Ê � ĜE over R, between the

formal group of E and the classical Quillen formal group of E ; see [Lur18,
Section 4].

We say a collection of such E is natural if the isomorphisms in parts (3) and (4) above
are natural with respect to a specified subcategory of affine schemes over MEll. (Other
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variations of this definition can be found elsewhere in the literature; see [DFHH14,
Section 12.6] or [Lur09a, Definition 1.2].)

The following is a simple uniqueness statement for O top as a functor valued
in homotopy commutative ring spectra—a much weaker structure than that of an
E∞-ring.

PROPOSITION 1.2. The functor hO top : Uop → CAlg(hSp), from the small affine étale
site U of MEll to the 1-category of homotopy commutative ring spectra, is uniquely
defined up to isomorphism by the property that it defines natural elliptic cohomology
theories on U .

The proof of the above statement follows from the fact that each section O top(R)
is Landweber exact; see [DFHH14, Section 12 and Remark1.4] for some discussion.
A remarkable fact about O top is that the property that it defines natural elliptic
cohomology theories actually characterises this sheaf with values in the ∞-category
CAlg of E∞-rings. The following is stated (without proof) in [Lur09a, Theorem 1.1]
and [Goe10, Theorem 1.2].

THEOREM 1.3. The sheaf of E∞-rings O top on the small étale site of MEll is uniquely
defined up to homotopy by the property that it defines natural elliptic cohomology
theories on the small affine étale site of MEll. The same holds for the restriction O top

sm

of O top to the small étale site of Msm
Ell, the moduli stack of smooth elliptic curves.

(Along the way, we prove similar uniqueness statements for completions of O top at a
prime, its rationalisations as well as localisations as the height 1 and height 2 Morava
K-theories.)

The difference between Proposition 1.2 and Theorem 1.3 is two-fold: Theorem 1.3
states not only that O top is uniquely defined up to homotopy as a sheaf of E∞-rings (as
opposed to a diagram in CAlg(hSp)), but that statement is made in an ∞-category (as
opposed to the 1-category CAlg(hSp)).

The utility of Theorem 1.3 is evident. For example, and as indicated above,
it retroactively shows that the various constructions of O top found in [DFHH14,
Section 12], [HL16] and [Dav21, Section 1] (and also [Lur18, Section 7], [Dav20,
Section 5.3], [Dav22a, Section 6.1] and [Dav22b, Section 1] over the moduli stack of
smooth elliptic curves) all agree up to homotopy. Importantly, Theorem 1.3 constructs
noncanonical (see Remark 2.2) equivalences of E∞-rings between all available defini-
tions of Tmf; a conclusion which does not follow directly from Proposition 1.2. The
author also finds the proof long and complex enough to warrant a publicly available
write-up.

1.1. Outline. To prove Theorem 1.3, we first reduce the question to one of the
connectedness of a certain moduli space; see Section 2. In Section 3, we formulate
and prove a statement about spaces of natural transformations which we often use;
we suggest that the reader initially skips this section and only returns when they
deem it necessary. Our proof of Theorem 1.3 (reformulated as Theorem 2.1) occurs in
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Section 4, and follows Behrens’ construction of Tmf rather closely: first, we work with
the separate chromatic layers, before gluing things together in both a transchromatic
sense and then an arithmetic sense. The K(1)-local case in this section requires a
statement about p-adic Adams operations on p-adic K-theory, which is the focus of
our final technical Section 5.

1.2. Conventions. We assume that the reader is familiar with the language of
∞-categories as well as the techniques used in the construction of O top as described
by Behrens [DFHH14, Section 12]. Furthermore, we advise the reader keeps a copy
of idem in their vicinity. Write MapC(X, Y) for the mapping space between any
two objects X, Y in an ∞-category C, and HomhC(X, Y) for its zeroth truncation, or
equivalently, for π0 MapC(X, Y). Let us also suppress the notation distinguishing a
1-category from its nerve, considered as an∞-category, and the same for a 2-category,
such as the small étale site over MEll; see [Lur, Tag 007J].

2. A reformulation

Let us now make a statement to help us prove Theorem 1.3.

THEOREM 2.1. Write U (respectively Usm) for the (2-) category of affine schemes with
étale maps to MEll (respectively Msm

Ell). Then the spaces

Z = Fun(Uop, CAlg) ×
Fun(Uop,CAlg(hSp))

{hO top}

Z sm = Fun(Uop
sm, CAlg) ×

Fun(Uop
sm,CAlg(hSp))

{hO top}

are connected.

REMARK 2.2. As mentioned in [Lur18, Remark 7.0.2], the moduli space Z sm is not
contractible. In other words, Theorem 2.1 states that O top is unique as a CAlg-valued
presheaf of elliptic cohomology theories on U sm only up to homotopy, and does not
claim anything more about the contractibility of this space. We would like to guide the
reader to an explanation of this fact given by Tyler Lawson on mathoverflow.net;
see [Law].

PROOF OF THEOREM 1.3 FROM THEOREM 2.1. The ∞-category of sheaves of
E∞-rings on the étale site of MEll is equivalent, by restriction and right Kan extension,
to the∞-category of sheaves of E∞-rings on the affine étale site of MEll; see [Dav22a,
Lemma 6.1.10] for a similar argument following the ‘comparison lemma’ of [Hoy14,
Lemma C.3]. Note that the latter is an ∞-subcategory of Fun(Uop, CAlg), and that
if a functor F : Uop → CAlg defines natural elliptic cohomology theories and there
is an equivalence F � G, then G also defines natural elliptic cohomology theories.
These two observations show that it suffices to prove the space Z ′ is connected, where
Z ′ is the component of Fun(Uop, CAlg)� spanned by those functors which define
natural elliptic cohomology theories. There is a map Z → Z ′ as both O top and any
presheaf of E∞-rings, equivalent to O top as a diagram of homotopy commutative ring
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spectra, define natural elliptic cohomology theories. The map Z → Z ′ induces an
equivalence on π0 as [DFHH14, Section 12 and Remark 1.6] states that any functor
Uop → CAlg(hSp) which defines natural elliptic cohomology theories is isomorphic
to hO top. (The argument outlined in [DFHH14, Section 12 and Remark 1.4] is stated
for hSp, but the statement can be modified for CAlg(hSp). Indeed, the crucial fact is
that there are no phantom maps between Landweber exact spectra, meaning the functor
from hSp to the 1-category of generalised cohomology theories is fully faithful on
such spectra. The analogous fact in the multiplicative context follows, meaning the
functor from CAlg(hSp) to the 1-category of multiplicative cohomology theories is
fully faithful on Landweber exact homotopy commutative ring spectra.) Theorem 2.1
then implies that the moduli space Z ′ is also connected. The same argument can be
made for Z sm. �

REMARK 2.3. Write UQ for the small affine étale site of MEll × Spec Q and for each
prime p, write Up for the small affine étale site of MEll × Spf Zp. The construction
of O top, as found in [DFHH14, Section 12] for example, proceeds first with a rational
construction O top

Q over UQ, and a p-complete construction O top
p over Up. The methods

of our proof for Theorem 2.1 show that the moduli spaces ZQ and Zp, of realisations of
hO top

Q and hO top
p over these aforementioned sites, are also connected. This means that

analogues of Theorem 1.3 also hold for both O top
Q and O top

p . The same hold for the
p-complete and rational version of O top

sm for similar reasons. Moreover, following
the ‘arithmetic compatibility’ discussed in the proof of Theorem 2.1, it follows that
the localisations O top[P−1] and O top

sm [P−1] satisfy their own version of Theorem 1.3,
where P is any set of primes.

The following is a short remark on the homotopy groups of elliptic cohomology
theories which is important later.

REMARK 2.4. Let E be an elliptic cohomology theory for some E : Spec R→MEll. It
follows that there is a natural isomorphism π2kE � ω⊗k

E for all integers k, where ωE is
the dualising line for the formal group Ê; see [Lur18, Section 4.2]. Indeed, as the odd
homotopy groups of E vanish, we see E possesses a complex orientation that yields the
classical Quillen formal group ĜQ0

E over π0E ; see [Lur18, Example 4.1.2], for example.
From this, we see E is complex periodic, meaning it has a complex orientation and is
weakly 2-periodic (see [Lur18, Section 4.1]), and [Lur18, Example 4.2.19] then implies
that π2E is isomorphic to the dualising line for the formal group ĜQ0

E . Part (4) of
Definition 1.1 states that π2E is naturally isomorphic to ωE, and part (1) gives us the
claim above.

3. Spaces of natural transformations

To prove Theorem 2.1, we show that any two functors O and O ′ in Z can be
connected by a path in Z . In particular, we would like effective tools for studying
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spaces of natural transformations between functors of ∞-categories. The following is
known to experts, and a model categorical interpretation can be found in [DKS89].

PROPOSITION 3.1. Let C,D be ∞-categories and F, G : C → D be functors. Suppose
that for all objects X, Y in C, the mapping space MapD(FX, GY) is discrete, meaning
the natural map

MapD(FX, GY)→ HomhD(hFX, hGY)

is an equivalence of spaces. Then the mapping space MapFun(C,D)(F, G) is also discrete,
so the natural map

MapFun(C,D)(F, G)→ Homh Fun(C,D)(F, G) � HomFun(C,hD)(hF, hG)

is an equivalence of spaces, where an h before a functor denotes post-composition
with the unit map D → hD of the homotopy category-nerve adjunction of
[Lur09b, Proposition 1.2.3.1].

PROOF. By [GHN17, Proposition 5.1], the space of natural transformations from F to
G is naturally equivalent to the limit of the diagram

Tw(C)op T−→ Cop × C Fop×G−−−−−→ Dop ×D MapD(−,−)
−−−−−−−−→ S , (3-1)

where Tw(C) is the twisted arrow category of C (see [GHN17, Definition 2.2]), and
the Tw(C)→ C × Cop is the natural right fibration (see idem). (We stick to the notation
and conventions of [GHN17], which is a particular choice out of a possible two; see
[GHN17, Warning 2.4].) The limit of Equation (3-1) is, by definition, the end of the
composition Cop × C → S . Consider the following not a priori commutative diagram
of∞-categories:

Tw(C)op Cop × C Dop ×D S

h Tw(C)op hCop × hC hDop × hD S≤0

T Fop×G MapD(−,−)=M

T ′ hFop×hG HomhD(−,−)=H

(3-2)

Above, the vertical functors are the obvious ones, and hence the left and middle
squares commute. Additionally, S≤0 ⊆ S denotes the ∞-category of discrete spaces.
Our hypotheses dictate that the dashed arrow above exists, which we now denote by
P, such that the upper-right and lower-left triangles commute. As the inclusion of
∞-subcategories S≤0 ⊆ S preserves limits, we note it suffices to compute the limit
of Equation (3-1) as the limit of P ◦ T inside S≤0. As this limit lands in S≤0, which
is equivalent to the nerve of the 1-category of sets, we see the limit of P ◦ T can be
calculated as the limit of the lower-horizontal composition of Equation (3-2). We then
obtain the following natural equivalences, twice employing [GHN17, Proposition 5.1],
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first for general∞-categories, and again in the classical 1-categorical case:

MapFun(C,D)(F, G) � lim
Tw(C)

M(Fop × G)T � lim
Tw(C)

PT

� lim
Tw(hC)

H(hFop × hG)T ′ � HomFun(hC,hD)(hF, hG).

The final (discrete) space above is naturally equivalent to HomFun(C,hD)(hF, hG) from
the natural equivalence of∞-categories Fun(C, hD) � Fun(hC, hD). �

4. The proof of Theorem 2.1

Let O : Uop → CAlg be an object of Z . Hence, it comes equipped with an
equivalence hφ : hO top → hO of functors Uop → CAlg(hSp). To see Z is connected,
it suffices to show hφ can be lifted to an equivalence φ : O top → O of presheaves
of E∞-rings on U . Fix such an hφ for the remainder of this proof. Let us work
section-wise, so we also fix an object Spec R→MEll inside U , and write

hφ : E top := hO top(R)→ hO(R) =: E

for the given natural equivalence of homotopy commutative ring spectra. To naturally
lift this map to one of E∞-rings, we work through the layers of chromatic homotopy
theory. This means we first work K(2)-locally, K(1)-locally and then K(0)-locally,
where K(n) denotes the nth Morava K-theory spectrum at a prime p, before gluing
these cases together with a p-complete statement followed by an arithmetic statement.

In what follows, we write (−)K(n) for the K(n)-localisation of E∞-rings, and this
notation is also used for the post-composition of a presheaf into CAlg with the
K(n)-localisation functor.

K(2)-local case. Writing (̂−) for base-change over Spf Zp, we define Spf Rss →Mss
Ell

as the base-change of Spf R̂→ M̂Ell over Mss
Ell, where the latter is the completion

of M̂Ell at the moduli stack Mss
Ell,Fp

of supersingular elliptic curves over Fp. This
pullback Spf Rss is affine by [DFHH14, Section 12 and Remark 8.7]. Write Ess for the
elliptic curve defined by Spf Rss →Mss

Ell. Serre–Tate and Lubin–Tate theories yield
another description of Rss. Indeed, as Mss

Ell,Fp
is zero-dimensional and smooth over

Spec Fp, it follows that Spec Rss/I is étale over Fp, where I is the finitely generated
ideal generating the topology on Rss. This implies Rss/I splits as a finite product

∏
i κi

where each κi is a finite field of characteristic p. This provides a splitting of E0, the
reduction of Ess over R/I, into E0 �

∐
Ei

0. Writing Ri � W(κi)�u1� for the universal
deformation ring of the pair (κi, Êi

0) with associated universal formal group Êss
Ri

,
we obtain a natural equivalence Rss �∏i Ri as Ess : SpfRss →Mss

Ell was étale; see
[DFHH14, Section 12 and Corollary 4.3].

By [DFHH14, Section 12 and Proposition 4.4], the K(2)-localisations E top
K(2) and

EK(2) are elliptic cohomology theories for Rss, and also split into products E top
i and

Ei in the homotopy category hCAlgK(2). It follows from [GH04, Section 7] (also see
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[Lur18, Remark 5.0.5] or [PV19, Section 7]) that these K(2)-local E∞-rings E top
K(2) and

EK(2) are naturally equivalent to the product of Lubin–Tate E∞-rings associated to the
formal groups Êss

κi
over the (finite and hence also) perfect fields κi. By idem, we see

that morphisms between these Lubin–Tate E∞-rings are defined by the associated
morphisms on the pairs (κi, Êss

κi
). As hφK(2) yields an equivalence on π0 as well as

an equivalence on associated Quillen formal groups, we see hφK(2) lifts to a morphism
φK(2) : E top

K(2) → EK(2) of K(2)-local E∞-rings, which is unique up to contractible choice.
This uniqueness allows us to use Proposition 3.1 to conclude that this collection of
morphisms of E∞-rings define a natural morphism φK(2) : O top

K(2) → OK(2) of presheaves
of E∞-rings on U .

K(1)-local case. Consider the K(1)-localisation of the map hφ of homotopy com-
mutative ring spectra hφK(1) : E top

K(1) := hO top
K(1)(R)→ hOK(1)(R) =: EK(1). Recall from

[DFHH14, Section 12.6], that the p-adic K-theory of an E∞-ring has the structure
of a θ-π∗KUp-algebra, functorially in maps of E∞-rings. (Recall that for a spec-
trum X, one defines its p-adic K-theory as the homotopy groups of the localisation
K∧∗X = π∗LK(1)(X ⊗ KUp).) Let us write Mord

Ell for the moduli of generalised elliptic
curves over p-complete rings with ordinary reduction modulo p (see [DFHH14,
Section 12(1.1)]), and Mord

Ell (p∞) for the moduli stack of generalised elliptic curves E
over p-complete rings and level structure given by an isomorphism Ĝm � Ê of formal
groups.

Let us work globally for a moment. Recall how the global sections of O top
K(1), written

as TmfK(1), are constructed in [DFHH14, Section 12]. For odd primes p, we define
TmfK(1) as the F×p-homotopy fixed points of Tmf(p)ord, where this K(1)-local E∞-ring
is such that its p-adic K-theory W is given by pulling back the span of formal stacks

Mord
Ell (p)→Mord

Ell ←Mord
Ell (p∞)

and Mord
Ell (p) is the moduli of generalised elliptic curves E over p-complete rings

with ordinary reduction modulo p and level structure given by an isomorphism
μp � Ê[p] of finite group schemes—both of the stacks on the left and right above
are affine by [DFHH14, Section 12 and Lemma 5.2], and written as Spf V1 and
Spf V∧∞, respectively. The F×p-structure on Tmf(p)ord comes from the fact that W
is an F×p-torsor over V∧∞. The Goerss–Hopkins obstruction theory used to realise
Tmf(p)ord as an F×p-equivariant K(1)-local E∞-ring with p-adic K-theory W also
implies that such an F×p-equivariant K(1)-local E∞-ring is unique up to homotopy;
see [DFHH14, Section 12 and Theorem 7.1] for the obstruction theory and the
proof of [DFHH14, Section 12 and Theorem 7.7] for justification that this works
F×p-equivariantly. Pulling back OK(1) to Mord

Ell , we see that F (p) := OK(1)(Mord
Ell (p))

defines an elliptic cohomology theory for Mord
Ell (p) by assumption, and by [DFHH14,

Section 12 and Proposition 6.1] we see the p-adic K-theory of F (p) is isomorphic to W
as Z×p-equivariant Zp-algebras. To see that this isomorphism is indeed an isomorphism
of F×p-equivariant θ-algebras, we need to see that the algebraic p-adic Adams operation
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ψ
p
alg on W agrees with the topological p-adic Adams operation ψ

p
top on the p-adic

K-theory of F (p). This is done in the proof of Lemma 5.1 after Equation (5-2), to be
stated and proven in Section 5 below. The uniquess of Tmf(p)ord up to homotopy gives
us an equivalence of F×p-equivariant K(1)-local E∞-rings Tmf(p)ord � F (p). Taking
F×p-homotopy fixed points gives us an equivalence of E∞-rings between TmfK(1) and
the global section of OK(1) (note that O is an étale sheaf as it defines natural elliptic
cohomology theories, so there is a well-defined notion of global sections). We now
obtain a K(1)-local E∞-TmfK(1)-algebra structure on the sections of OK(1).

Suppose now that p = 2. By [DFHH14, Section 16], there are pushout diagrams of
K(1)-local E∞-rings

P(S[−1])K(1) SK(1)

SK(1) Tζ

ζ

0 P(S)K(1) SK(1)

Tζ TmfK(1)

θ( f )−h( f )

0

for specified elements ζ ∈ π−1SK(1) and θ( f ) − h( f ) ∈ π0Tζ , where P denotes the free
E∞-ring functor from Sp. It is shown in [DFHH14, Section 16] (after the proof of
Remark 7.3) that all K(1)-local E∞-elliptic cohomology theories have θ( f ) = h( f )
in their homotopy groups. This, combined with the fact that π−1 of an elliptic
cohomology theory vanishes, implies that OK(1) naturally takes values in K(1)-local
E∞-TmfK(1)-algebras.

We return to the local picture, equipped with the knowledge that OK(1) takes values
in K(1)-local E∞-TmfK(1)-algebras. For another object Spec R′ →MEll inside U ,
consider the map induced by the p-adic K-theory functor

MapCAlgK(1)
TmfK(1)

(E top
K(1), E

′
K(1))→ HomθAlg(V∧∞)∗

(K∧∗ E top
K(1), K∧∗ E ′K(1)), (4-1)

where E ′K(1) := OK(1)(R′). As in the construction of O top
K(1) found in [DFHH14,

Section 12] before Proposition 7.16, the map of Equation (4-1) is an equivalence
of spaces. Despite the fact that each hφK(1) is currently just a morphism of
homotopy commutative ring spectra, Lemma 5.1 will guarantee that its zeroth
p-adic K-theory is a morphism of θ-algebras. Moreover, this induced map of p-adic
K-theories will be a morphism of (V∧∞)∗-θ-algebras from the natural identifications
of the preceeding paragraphs. As Z-graded p-adic K-theory obtains a θ-algebra
structure from that in degree zero, the p-adic K-theory of hφK(1) defines an element
inside the codomain of Equation (4-1) when R′ = R. By Proposition 3.1, we can
therefore lift hφK(1) : hO top

K(1) → hOK(1) to a morphism φK(1) : O top
K(1) → OK(1) of

presheaves of (K(1)-local E∞-TmfK(1)-algebras, so in particular of) E∞-rings on U .

K(0)-local case. The Morava K-theory spectrum K(0) is equivalent to Q, the
Eilenberg–MacLane spectrum of the rational numbers. We can actually lift hφQ

globally, meaning we are not working section-by-section. Consider post-composing
the functors O top and O with the localisation functor CAlg→ CAlgQ, and denote
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the resulting presheaves with the subscript Q. By construction (also see [HL16,
Proposition 4.47]), the functor O top

Q is formal and by [Mei21, Proposition 4.8], the
sheaf OQ is also formal. This yields the following chain of equivalences lifting hφQ:

φQ : O top
Q

�−→ π∗O
top
Q

π∗hφQ,�
−−−−−−→ π∗OQ

�←− OQ

Transchromatic compatibility. We now have morphisms fitting into the following
not a priori commutative solid diagram of presheaves of p-complete E∞-rings on U :

O top
p O top

K(2)

Op OK(2)

O top
K(1) (O top

K(2))K(1)

OK(1) (OK(2))K(1)

φp φK(2)

φK(1)

α
top
chrom

(φK(2))K(1)

αchrom

(4-2)

The right face commutes by the naturality of the unit of the K(1)-localisation functor.
We also claim that the lower face commutes. In other words, we claim that for
each Spec R→M inside U , there is a natural path γ(R) between αchrom ◦ φK(1)

and (φK(2))K(1) ◦ αtop
chrom as maps of E∞-Tmf-algebras. Note that the E∞-Tmf-algebra

structure on (OK(2))K(1) can come from either one of these maps (and a posteriori,
these two choices will agree up to homotopy). As we see from the discussion following
[DFHH14, Section 12 and Lemma 8.8], the p-adic K-theory functor induces an
equivalence

MapCAlgTmfK(1)
(E top

K(1), (EK(2))K(1))
�−→ HomθAlg(V∧∞)∗

(K∧∗ E top
K(1), K∧∗ (EK(2))K(1)), (4-3)

where (V∧∞)∗ denotes the p-adic K-theory of Tmf; see [DFHH14, Section 12.5] and
[Beh20, Section 6]. As αchrom ◦ φK(1) and (φK(2))K(1) ◦ αtop

chrom are isomorphic as functors
into CAlg(hSp) and hence also in the codomain of Equation (4-3), we see these
morphisms are homotopic as morphisms of E∞-rings by the above equivalence.
From the equivalence in Equation (4-3), we can employ Proposition 3.1 to obtain a
homotopy between αchrom ◦ φK(1) and (φK(2))K(1) ◦ αtop

chrom as morphisms of presheaves
of K(1)-local E∞-TmfK(1)-algebras from O top

K(1) to (OK(2))K(1). Using the fact that the
front and back faces of Equation (4-2) are Cartesian, we obtain a natural morphism
of presheaves of p-complete E∞-rings φp : O top

p → Op on U which agrees with hφp

inside the category of presheaves functors from U to CAlg(hSp), as indicated by the
dashed morphism in Equation (4-2).
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Arithmetic compatibility. Currently, we have morphisms φQ and φp fitting into the
not a priori commutative solid diagram of presheaves of E∞-rings on U :

O top ∏
p O top

p

O
∏

p Op

O top
Q

(∏
p O top

p

)
Q

OQ

(∏
p Op

)
Q

φ
∏
φp

φQ (
∏
φp)Q

(4-4)

Similar to the transchromatic compatibilities, the right face naturally commutes, so we
are left to argue why the lower face commutes. To study the lower face, let us first work
on the open substacks MEll[c−1

4 ] and MEll[Δ−1] of MEll, which themselves form a
cover of MEll; see [DFHH14, Section 12.9]. We then follow an analogous argument to
the transchromatic situation above; see the discussion following [DFHH14, Section 12
and Lemma 9.4] which shows the discreteness of the desired mapping spaces. Indeed,
as the two homotopies witnessing the commutativity of the lower face of Equation
(4-4) restricted to the substacks MEll[c−1

4 ] and MEll[Δ−1] agree on their intersection
MEll[c−1

4 ,Δ−1] (as the mapping spaces in question are discrete), these homotopies then
glue to a homotopy on MEll. This yields a homotopy witnessing the commutativity
of the lower face of Equation (4-4). As the front and back faces of Equation (4-4) are
Cartesian, we obtain our final natural equivalence of presheaves of E∞-rings φ : E top →
E on U , lifting hφ.

Therefore, Z is connected. The same argument can be made for Zsm; see
Remark 5.6 for why Lemma 5.1 simplifies in this case.

5. Compatibility of θ-algebra structures

The above proof of Theorem 2.1 is contingent on Lemma 5.1 below, whose proof we
find rather delicate. Recall from [DFHH14, Section 12.6] that the p-adic K-theory of an
E∞-ring has the structure of a θ-algebra, and this structure is functorial in morphisms
of E∞-rings.

LEMMA 5.1. Fix a prime p. Let O be an object of Z and hφ : hO top �−→ hO be the
given equivalence of diagrams of homotopy commutative ring spectra. Then for any
étale Spec R→MEll, the map induced by

hφK(1) : F top
K(1) := hO top

K(1)(R)→ hOK(1)(R) =: FK(1)

on the zeroth p-adic K-theory ring is a morphism of θ-algebras.
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In general, it is not true that a morphism of homotopy commutative ring spectra
should induce a morphism of θ-algebras upon taking their p-adic K-theory, even
if the homotopy commutative ring spectra involved come equipped with some
E∞-structures.

However, in the situation above, the sections of the K(2)-localisation of the sheaf
of E∞-rings O have a prescribed E∞-structure given by Lubin–Tate spectra (also
called Morava E-theories); see the K(2)-local case in the proof of Theorem 2.1
above. In particular, this means that an equivalence of homotopy commutative ring
spectra F top

K(2) � FK(2) can be refined to an equivalence of E∞-rings, as both objects are
naturally Lubin–Tate spectra. It follows that the K(1)-localisation of this equivalence
of E∞-rings induces a morphism of θ-algebras on p-adic K-theory. The comparison
map in the chromatic fracture square between the K(1)-localisation of O and the
K(1)-localisation of its K(2)-localisation is also a map of E∞-rings. If we can show
this map induces an injection on p-adic K-theory, then it would be clear that the
equivalence of homotopy commutative ring spectra F top

K(1) � FK(1) induces a morphism
of θ-algebras on p-adic K-theory, which would lead us to Lemma 5.1.

This is first done for an explicit étale morphism into MEll, which has the properties
that it covers Msm

Ell and each of its connected components is an integral domain. Some
descent and deformation theory is then used to obtain this result for a general étale
morphism.

PROOF. To show λ : K∧0F top → K∧0F , the map induced by hφ on p-adic K-theory, is
a morphism of θ-algebras, one must check it commutes with the stable p-adic Adams
operations ψ� for every � ∈ Z×p as well as the action of the operator θ. The stable p-adic
Adams operations ψ� are constructed on the spectrum KUp, so we automatically have
compatibility with them for any map of spectra. It is shown shortly that both rings
above are étale over the ring V∧∞, and hence they are V∧∞-torsion free, where we remind
the reader that V∧∞ is the ring of generalised p-adic modular forms discussed after the
proof of [DFHH14, Section 12 and Lemma 5.2] or in the K(1)-local discussions of
[Beh20]. In particular, this implies that both K∧0F top and K∧0F are Zp-torsion free, in
which case the operator θ is an equivalent datum to the p-adic Adams operator ψp;
see [GH04, Remark 2.2.5]. It therefore suffices to show that the following diagram of
Zp-algebras commutes:

K∧0F top K∧0F

K∧0F top K∧0F

ψ
p
top

λ

ψ
p
top

λ

(5-1)

Let us write Rord for the base-change of Spec R→MEll over Mord
Ell → M̂Ell →MEll,

where Mord
Ell is the moduli stack of generalised elliptic curves over p-complete rings

whose reduction modulo p is ordinary. By [DFHH14, Section 12 and Proposition 7.16],
we see F top

K(1) is an elliptic cohomology theory for Spf Rord →Mord
Ell , and we can also
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consider FK(1) as an elliptic cohomology theory using hφK(1). Define W using the
Cartesian diagram of formal stacks

Spf W Mord
Ell (p∞)

Spf Rord Mord
Ell

where Mord
Ell (p∞) is the formal stack of generalised elliptic curves E with ordinary

reduction modulo p with a given isomorphism of formal groups η : Ĝm → Ê; see
[DFHH14, Section 12.5]. The stack Mord

Ell (p∞) is represented by the formal affine
scheme Spf V∧∞ which is ind-étale over Mord

Ell ; see the discussion after the proof of
[DFHH14, Section 12 and Lemma 5.2]. This W also has the structure of a θ-algebra
(see [DFHH14, Section 12.6]), and we denote the p-adic Adams operation on W by
ψ

p
alg. By [DFHH14, Section 12 and Proposition 6.1], or rather its proof, we obtain

isomorphisms of Zp-algebras vtop : K∧0F top � W and v : K∧0F � W, which are natural
in complex orientation-preserving morphisms in CAlg(hSp). These isomorphisms are
not a priori isomorphisms of θ-algebras; see [DFHH14, Section 12 and Definition
6.2]. As F obtains the structure of an elliptic cohomology theory for Rord from the
equivalence hφK(1), we see that the following diagram of isomorphisms of Zp-algebras
commutes:

K∧0F top K∧0F

W

λ

vtop v

By construction (see [DFHH14, Section 12 and Remark 6.3]), we see vtop is an
isomorphism of θ-algebras. To show λ is a morphism of θ-algebras, it suffices to show
v is a morphism of θ-algebras, or in other words, Equation (5-1) commutes if and only
if the following diagram of Zp-algebras commutes:

K∧0F W

K∧0F W

ψ
p
top

v

ψ
p
alg

v

(5-2)

Let us now prove this is the case for a specific étale map Spec R→MEll.

Choosing a particular étale morphism. Recall the moduli stack Msm
1 (N) of smooth

elliptic curves with Γ1(N)-level structure. These objects are discussed at length in
[DR73, Section IV.3] and [KM85], and summaries for homotopy theorists can be found
in [Beh20, (6.3.8)] or [Mei22, Section 2.1], for example. Importantly, recall the map
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Msm
1 (N)→Msm

Ell,Z[1/N] is an étale cover and that for N ≥ 4, the moduli stack Msm
1 (N)

is in fact affine. This implies that the morphism of stacks

Spec A =Msm
1 (4) �Msm

1 (5)→Msm
Ell,Z[1/2] �Msm

Ell,Z[1/5] →Msm
Ell →MEll

is étale, and the restriction to Msm
Ell is an étale cover. By base-change over Spf Zp, we

obtain an étale map E : Spf Â→ M̂Ell. Following [DFHH14, Section 12 and Remark
8.7], write A∗ for the graded ring defined by A2k = ω

⊗k
E (Spf Â) where E is the elliptic

curve over Â defined by the map of formal stacks above. Note that the Hasse invariant
v1 for E lives in A2(p−1). Let us also make the following definitions:

Aord
∗ = (A∗)[v−1

1 ]∧p , Ass
∗ = (A∗)∧(p,v1), (Ass

∗ )ord = (Ass
∗ )[v−1

1 ]∧p .

If we omit the subscript ∗, we are implicitly considering the ring in degree zero. By
[DFHH14, Section 12 (8.6)], there is a canonical map α∗ : Aord

∗ → (Ass
∗ )ord as v1 is

invertible in (Ass
∗ )ord, and we now define Wss using the diagram of stacks

Spf Wss Spf W Mord
Ell (p∞)

Spf(Ass)ord Spf Aord Mord
Ell

α̃

α

where all squares are Cartesian. The ring Wss obtains a θ-algebra structure from the
above diagram, and in such a way that α̃ : W → Wss is a morphism of θ-algebras; see
the discussion after the proof of [DFHH14, Section 12 and Lemma 8.6]. We claim that
α̃ comes from a map of E∞-rings.

CLAIM 5.2. The zeroth p-adic K-theory of the canonical map of E∞-rings

αchrom : Ford := OK(1)(A)→ (OK(2)(A))K(1) =: (F ss)ord

is isomorphic to α̃. �

PROOF OF CLAIM 5.2. Specialising from the case of FK(1) discussed above, we see
that Ford is an elliptic cohomology theory for the map Spf Aord →Mord

Ell , and similarly
by [DFHH14, Section 12 and Lemma 8.8], we see that (F ss)ord is an elliptic coho-
mology theory for the map Spf(Ass)ord →Mord

Ell . The same is true for A = O top
K(1)(A)

and (O top
K(2)(A))K(1) = A′, and in this case, we know that taking π0 of αtop

chrom : A→ A′
is isomorphic to α : Aord → (Ass)ord by construction; see [DFHH14, Section 12 and
Remark 8.7]. The naturality of hφ : O top → O and the chromatic fracture square imply
that π0 of the natural map of E∞-rings αchrom : Ford → (F ss)ord also realises α, and
hence taking zeroth p-adic K-theory realises α̃. This proves Claim 5.2. �

Recall that Ford = OK(1)(A) for our choice of A above. Consider the diagram of
Zp-algebras
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K∧0Ford W

K∧0 (F ss)ord Wss

K∧0Ford W

K∧0 (F ss)ord Wss

α̃

(5-3)

where the maps are the obvious ones used above, and all the vertical morphisms are the
unstable Adams operations: ψp

top on the left and ψp
alg on the right. Note that the upper

and lower faces commute by Claim 5.2, the right face commutes as α̃ : W → Wss is
a morphism of θ-algebras and the left face commutes as αchrom is a morphism of
E∞-rings. Most importantly, the front face also commutes. Indeed, from the arguments
in the K(2)-local case of the proof of Theorem 2.1, we see F ss is naturally equivalent
to a product of K(2)-local Lubin–Tate spectra recognising the given elliptic curve
over Spf Ass, and we can then apply [DFHH14, Section 12 and Theorem 6.10]; the
hypotheses and proof of this theorem are dispersed between pages 21 and 24 of idem.
The back face of Equation (5-3) is precisely Equation (5-2) for R = A.

CLAIM 5.3. The morphism α̃ : W → Wss is injective.

Using this claim for now, to show that the back face of Equation (5-3) commutes,
it suffices to do so after post-composing with α̃. This follows from the above
considerations by a diagram chase. Hence, the back face of Equation (5-3) commutes,
which yields the commutativity of Equation (5-2) for this particular choice of étale
map Spec A→MEll.

PROOF OF CLAIM 5.3. As Mord
Ell (p∞)→Mord

Ell is an ind-étale cover (see [DFHH14,
Section 12 and Lemma 5.1]), it is faithfully flat. By base-change, we see that Aord → W
and (Aord)ss → Wss are also faithfully flat, and hence α̃ is injective if we can show α
is injective. To do this, we show α∗ : Aord

∗ → (Ass
∗ )ord is injective. Using the notation

above, we find ourselves with the following commutative diagram of graded rings,
where all maps are the indicated localisations or completions:

A∗ A∗[v−1
1 ] A∗[v−1

1 ]∧p = Aord
∗

Ass
∗ Ass

∗ [v−1
1 ] Ass

∗ [v−1
1 ]∧p = (Ass

∗ )ord

γ β α∗

Let us now make the following remarks from this diagram.
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(1) From our choice of A, we have A = A1 × A2, where A1 represents M1(4)sm

and A2 represents M1(5). Moreover, both A1 and A2 are integral domains; see
[Zhu14, Proposition 2.1] and [BO16, Theorem 1.1.1], respectively, where the following
isomorphisms are constructed:

A1 � Z
[ 1

4 , a, b,Δ−1] A2 � Z
[ 1

5 , b,Δ−1] Δ = a2b4(a2 − 16b) = b5(b2 − 11b − 1).

It then follows that γ can be written in the following commutative diagram of graded
rings:

A∗ Ass
∗ = (A∗)∧(v1)

A∗,1 × A∗,2 Ass
∗,1 × Ass

∗,2

γ

γ1×γ2

The ring A is Noetherian as it is finitely presented over Spec Z, so both A1 and A2
are Noetherian integral domains. In particular, the completion maps γi are flat for
i = 1, 2. If we know these maps γi are nonzero, then it immediately follows that they
are injective. To see that they are nonzero, it suffices to show that v1 is not a unit inside
both A∗,1 and A∗,2. This is where our choice of A comes in. If our fixed prime p � 2, 5,
then for both i = 1, 2, the image of the map

Spf Âi → M̂sm
Ell → M̂Ell

contains a supersingular elliptic curve, as all supersingular elliptic curves are contained
in the smooth locus of M̂Ell. This implies that v1 cannot be a unit, else Spf Âi → M̂Ell

would define only ordinary elliptic curves of height one. Similarly, if p = 2, then the
p-completion of A is Â2, and we again see v1 is not a unit so γ2 = γ is injective. The
same holds for Â1 when p = 5. This implies that γ1 × γ2 is always injective, and hence
γ is injective.

(2) As β is the v1-localisation of γ, and localisation is exact, we see that β is also
injective.

(3) Standard arguments show that the p-completion of β, also known as α∗, is also
injective. Indeed, limits are left exact, so it suffices to show each αk

∗ in the following
commutative diagram of rings is injective, for every k ≥ 1:

A∗[v−1
1 ] A∗[v−1

1 ]/pk

Ass
∗ [v−1

1 ] Ass
∗ [v−1

1 ]/pk

β αk
∗

Given an element x such that αk
∗(x) = 0, then we first note that any lift x over x is sent to

a β(x) such that pkβ(x) = 0. However, Ass
∗ [v−1

1 ] is flat over Z, as we have the following
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composite of flat maps:

Z→ Zp → Â→ A∗
γ
−→ Ass

∗ → Ass
∗ [v−1

1 ];

the second map is flat as Spec A→MEll is étale and MEll is smooth over Z, and the
third map is flat as each ω⊗k

E (Spf A) is a line bundle and hence projective of rank 1.
This implies that Ass

∗ [v−1
1 ] is torsion-free, and hence β(x) = 0. As β is injective, this

implies x = 0 and x = 0, and hence αk
∗ is injective.

It follows that α̃ is injective. �

Proof for a general étale morphism. Let Spec R→MEll be an arbitrary étale
morphism and consider the Cartesian diagram of stacks

Spec B Spec A

Spec R MEll

where Spec A =Msm
1 (4) �Msm

1 (5) is the stack of the previous paragraph and note
that Spec B is affine as MEll is separated; see part (2) of [Sta, Tag 01SG]. All of
the morphisms above are étale by base-change, so we can consider the morphism of
E∞-rings O(A)→ O(B).

CLAIM 5.4. The morphism of E∞-rings O(A)→ O(B) is étale.

PROOF. Recall from [Lur17, Section 7.5] that a morphism A→ B of E∞-rings is étale
if the morphism π0A→ π0B of discrete commutative rings is étale and the natural map
of π0B-modules

π0B ⊗
π0A

π∗A→ π∗B

is an isomorphism. The fact that π0O(A)→ π0O(B) is étale follows from the facts
that A→ B is étale and O defines natural elliptic cohomology theories. The condition
on the higher homotopy groups also follows as O defines natural elliptic cohomology
theories; see Remark 2.4. �

By [Lur17, Theorem 7.5.0.6], the π0-functor induces an equivalence of∞-categories

CAlgét
O(A)

π0−→ CAlgét
A ,

where the superscript indicates subcategories of étale algebras. By Claim 5.4, for any
étale E∞-O(A)-algebra B such that π0B is isomorphic to B as an A-algebra, there is
an equivalence of E∞-O(A)-algebras O(B) � B, which is unique up to contractible
choice. As we have proven Lemma 5.1 for Spec A, it follows from the proof of
Theorem 2.1 above that the equivalence of homotopy commutative ring spectra
hφ(A) : O top(A) � O(A) can be lifted to a morphism of E∞-rings. The composite
O(A) � O top(A)→ O top(B) is also an étale E∞-O(A)-algebra recognising B, and hence
we obtain a natural equivalence of E∞-O(A)-algebras O top(B) � O(B). As O top(B)
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is θ-compatible (see [DFHH14, Section 12 and Remark 6.3]), we see O(B) is also
θ-compatible, meaning that Equation (5-2) commutes for R = B. Finally, let us turn
our attention to O(R)→ O(B).

CLAIM 5.5. The morphism induced by O(R)→ O(B) on zeroth p-adic K-theory is
injective.

Assuming the above claim, it immediately follows that Equation (5-2) commutes for
our arbitrary R. Indeed, Claim 5.5 provides us with an injection of θ-algebras induced
by O(R)→ O(B), which allows us to check the commutativity of Equation (5-2) in
the same diagram for R = B, which we know commutes by the above paragraph.

PROOF OF CLAIM 5.5. The morphism Spec B→ Spec R can be factored into the
following diagram of formal stacks:

Spf WB Spf Wsm
R Spf WR Mord

Ell (p∞)

Spf B̂ord Spf R̂ord,sm R̂ord Mord
Ell

Spf B̂ Spf R̂sm Spf R̂ M̂Ell

Spec B Spec Rsm Spec R MEll

Spec A Msm
Ell MEll

(5-4)

Every square above is Cartesian, and the (̂−) indicates base-change over Spf Zp.
By [DFHH14, Section 12 and Proposition 6.1], the morphism WR → WB above is
isomorphic to the morphism induced by O(R)→ O(B) on p-adic K-theory, and hence
it suffices to see the composite map

WR → Wsm
R → WB, (5-5)

featured in the upper-left corner of Equation (5-4), is injective. As Spec A→Msm
Ell is

an étale cover, then by base-change, we see Wsm
R → WB is also faithfully flat and hence

injective. Observe that WR → Wsm
R is an open immersion of formal affine schemes by

base-change as Msm
Ell →MEll is an open immersion of stacks. Moreover, we claim

the open immersion R→ Rsm has scheme theoretically dense image as Δ is a nonzero
divisor in R; see [Sta, Tag 01RE]. Indeed, to see Δ is not a zero divisor, it suffices
to show that the image of Spec R→MEll has nontrivial intersection with the image
of Msm

Ell. This is clear on the level of underlying topological spaces, as the inclusion
|Msm

Ell| → |MEll| is equivalent to open immersion of coarse moduli spaces |A1
Z| → |P

1
Z|
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which adds the point at∞, and the map |Spec R| → |MEll| is open as étale morphisms
are in particular flat and locally of finite presentation; see [Sta, Tag 06R7]. As all the
right vertical maps in Equation (5-4) are flat, and R→ Rsm is quasi-compact (as a map
of affine schemes), then [Sta, Tag 0CMK] tells us that WR → Wsm

R also has scheme
theoretically dense image. Another application of [Sta, Tag 01RE] shows this open
immersion WR → Wsm

R must be injective. Therefore, the composite in Equation (5-5)
is injective. �

This finishes our proof of Lemma 5.1.

REMARK 5.6. There is a potential improvement that could be made to this article.
If the reader can find an affine étale cover Spec A→MEll such that the analogous
Claim 5.3 holds, which is a purely algebro-geometric pursuit, then the rest of
Theorem 2.1 follows formally. Indeed, in this case, one can prove that O top is uniquely
defined on the Čech nerve of such a cover by copying the proofs of Theorem 2.1 and
Lemma 5.1 seen above. One can then use spectral deformation theory and descent to
show that Theorem 2.1 follows from this particular case. With this in mind, the reader
might also notice that restricting Theorem 1.3 to the moduli stack of smooth elliptic
curves vastly simplifies the above proof.
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