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1. Introduction. In (1), the writer defined a process of integration that 
leads to a kind of Riemann integral under certain rather general conditions. 
The purpose of this paper is to show how it is possible to use the process of 
integration of (1) to obtain integrals in a product space that satisfy a Fubini 
theorem. In this connection, we define a class of integrands that are the 
analogues of continuous functions in the product space, establish some of their 
properties, and finally arrive at a Fubini theorem for this class. 

2. Notation, terminology, and background material. If F is a family 
of sets, we let VJF denote its union, i.e., the set of points belonging to at least 
one member of F, and we let C\F denote its intersection, i.e., the set of points 
belonging to each member of F. In case F^ is a set for each (3 in an index set B, 
we let yjpeB F/3 and r\peB Fp denote, respectively, the union and intersection of 
the appropriate family. We say that a family F covers a set A if and only if 
A (Z yj ¥. H A and B are sets, then by A — B we mean the set of those 
points that are in A but not in B. We denote the empty set by 0. 

We allow real-valued functions to take on the values + co or — oo. We 
agree that 0 ( + °°) = 0(— oo) = 0 and c(+ °°) = + °°, c{— oo) = — oo if 
c > 0 (the signs are reversed if c < 0). If A is a set of real numbers, we denote 
by sup A and inf A the supremum and infimum, respectively, of A. We keep 
in mind that sup 0 = — oo , inf 0 = + °° • If F is a real-valued function and 
A is a subset of its domain, we use the notations supzeA F(x) and infxeA F(x) 
to denote, respectively, the supremum and infimum of the values taken by F 
on the set A. We note that empty sums are zero. 

We say that 12 is an outer measure on S if and only if the domain of 12 is the 
set of all subsets of S and 

0 < Q ( 4 ) < E ^ F Q ( / 3 ) 

whenever F is a finite or countably infinite family and A C ^ F C S. This is 
equivalent to the usual definition, namely 12(0) = 0; 12(̂ 4) < 12(5) whenever 
A C B C S; and l î ( U F ) < X^eF ®(P) whenever F is a finite or countably 
infinite class of subsets of S. 

We say that the set A C 5 is U-measurable if and only if 12 is an outer measure 
on S and 12(E) = 12(£ H A) + 12(E - A) whenever E C S. It is well known 
that if 12 is an outer measure on S, then the class of all 12-measurable sets is a 
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cr-algebra that includes all sets E for which fl(E) = 0 (in particular, the null 
set) and their complements (in particular, S)\ cf. (2, p. 87). 

If F0 is any non-empty family of subsets of a given set S, and g is any non-
negative function whose domain is F0, then for any set A d S we let 9J?(F0; A) 
denote the family of all finite or countably infinite subfamilies G of F0 that cover 
A (9Jî(F0; A) may happen to be empty), and define the function g so that 

g(A) = inf £ g(fi). 
G€$M(F0; A) /3eG 

It is well known that g is an outer measure on 5 (2, pp. 90-91). 
The technique just described is used in (1) to define a kind of integral, as 

follows. Taking a non-empty family F0 of subsets of 5 as above, we assume 
that 9K(F0; S) 9^ 0 and consider a finite-valued, non-negative-valued function 
</> defined on F0. For any function / bounded and non-negative on S, we define 
/* on Fo so that/*03) = 0(0) supxePf(x) whenever 0 ^ 0 G F0, and/*(0) = 0 
if 0 G Fo. Subjecting /* to the process described in the preceding paragraph, 
we obtain, in conformity with the notation there employed, an outer measure 
/* on S. We call this outer measure the integral of / and denote its value on an 
arbitrary set A Cl S by J Af. For unbounded functions that are non-negative 
throughout S, we use the chopped-off functions /(w), n = 1, 2, . . . and define 
JAf = \imnJAf{n); this leads again to an outer measure on S. Thus defined, 
each such integral defines its own class of //-measurable subsets of S. We let 
Stf, denote the intersection of all these classes; evidently each of these integrals 
is completely additive on S$, which is itself a completely additive class of 
subsets of 5. However, at this point we can be sure only that S</> includes 0 and 
5 as members. For functions of variable sign on S we introduce the positive 
and negative parts of / , namely /+ and /_, and define JAf = fAf+ — JA/-
whenever A C. S and at least one term on the right side is finite. If both are 
finite when A = 5, we say that / is <j>-sumrnable. An integral that plays a 
special role in this theory is JKS, where Ks is the characteristic function of S. 
W7e denote this integral by $ and its value for any set A C 5 by $ (A ). This is 
in conformity with the notation of the preceding paragraph. 

Without further restrictions on F0 and 0, the integrals just defined have very 
few useful properties. We therefore assume the following: Whenever a € F0 

and & Ç F0, then (a — 0) 6 F0 (and hence a Pi 13 £ F0) ; also 

4>{a) > 0 ( « n / 3 ) + 0 ( a - 0). 

This restriction ensures that S^ contains S (Fo), the smallest <7-algebra of sets 
containing F0; in fact S^ consists of all sets of the form D — N, where D Ç S (F0) 
and 4>{N) = 0. Thus our integrals are all completely additive on a large family 
of sets. It turns out (1, §5) that finite additivity with respect to the integrand 
is ensured for a class of functions possessing a kind of continuity property. 
Thus the integrals behave like a kind of Riemann integral in this respect. In 
order to achieve the more general Lebesgue theorems, F0 and 0 have to satisfy 
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additional conditions, weaker than the usual ones, however. These matters 
are considered in (1, §6). 

3. A kind of product measure. For the remainder of this paper we 
assume that S and T are fixed sets, F0 and Go are non-empty classes of subsets 
of S and T respectively, </> and \[/ are finite-valued functions non-negative on 
F0 and Go, respectively, such that whenever a £ F0, P G F0, a £ Go, and 
0' 6 Go, the following hold: 

(i) [a - 0) e Fo (and hence a H 0 G F0) ; 

0(a) > ^ n « +<p(a- /3); 

(ii) {af - 0') Ç Go (and hence a' C\/3' £ Go) ; 

*(</) > ^ ( a ' n / 3 0 + *(«' - / 3 0 -

We also assume that $ft(F0;.S) ^ 0, 2Jî(Go; T) ^ 0. Since Go and \f/ satisfy 
the same kind of conditions imposed upon F0 and <£ at the end of §2, then the 
class S^ and integrals defined with respect to \p and Go have the same properties 
as St and integrals with respect to <f> and F0 described at the end of §2. 

We define the product space U = S X T and the family 

Ho = {T|T = oi X P for some a £ F0 and some fi £ Go} 

of subsets of U. Clearly 9ft (H0; U) j* 0. We define the function JJL on H0 so 
that n(A X B) = <t>(A)\{/(B) whenever A X B Ç H0. In this section we shall 
define the measure /Z on U in terms of /x and Ho in the same manner as (/> and \p 
were defined in terms of <j> and F0, yp and Go, respectively by the procedure of 
§2. We propose to establish a key relationship between /z, </>, and \p. Since $x 
and Ho do not satisfy relations corresponding to (i) or (ii), we cannot take 
over directly all the results found in (1), but certain similar results emerge 
in due course, as will be seen. 

3.1. LEMMA. / / A Ç F0, B Ç G0, C = A X B, F and G are disjoint finite or 
countably infinite subfamilies of F0 and Go, respectively, such that A = U F , 
B =\JG, 

H = JTIY = a X /3/tfr some a £ F a^J some /3 G G) , 

and f is real-valued, bounded, and non-negative on U, thenf*(C) > S 7 C H / * ( T ) -
i>z particular, n(C) > X^eH M(Y)-

Proof. From (1, Lemma 2.2) it follows that 

(1) * (4 ) > E««F *(«), *(5) > Z^eG *(/*). 

The statement of this lemma is obviously true iî A X B = 0, because of our 
definition of/* in §2. Thus we assume A X B T6- 0, and we obtain from (1): 
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(2) f*(C) = n{A X B) sup/(s) = <t>(A)t(B) supf(z) 
ztC zeC 

> ( E *(«))(£ *(/?)) sup/(s) 

= £ *(«)*(£) sup/(z) = E M (7) sup /(«). 
aX/3«H zcC 7«H zeC 

Now for any set a X £ ^ 0 contained in 4̂ X $ , we have 

M (a X 0) sup /(*) > M(a X 0) sup /(s) = /*(a X 0); 
z e U X B ) 2e(aX/3) 

if a X 0 = 0, then f*(a X P) = 0 by definition. Hence from (2) we see that 

f*(Q > E T « H / * ( Y ) . 

If we take the function / = Kv, the characteristic function of U, we obtain 
the special case n(C) > J2yeH M(T)-

The next lemma expresses some facts that we shall have occasion to use 
repeatedly later on. 

3.2. LEMMA. / / / is a function non-negative on S and H is a finite subfamily 
of Ho, then there exist finite disjoint subfamilies F ' C F0, G' C Go, and H ' C H0 

such that 
(i) H' = W\y' = a! X P'for some a! £ F ' and some p' 6 G'} ; 

(ii) m d member of H is JÂ6 union of a finite subfamily of H' ; wore specifically, 
i / 7 É H awd a an^ )8 are such members of¥0 and Go, respectively, that y = a X £, 
//zen £/^re exist families F 7 " C F', G7" C G', and H7" C H' swc/& /Aa/ a = U F7", 
$ = U G7", and y = VJ H7", wA r̂e 

H 7" = h V = «' X j 8 ' / ^ * ^ «' 6 F 7 " and some 0' G G7"} ; 

(iii) U H = UK', wtere K' = U7ClI H7" C H'; 
(iv) ZTeH/*(Y) > Y,yK>f*(y')', in particular, 

ZTCH M(T) > ET'*K' M(T'); 

(v) if U H C £ G Ho, then the families F ' and G' wa^ fo 50 chosen that 
C — U H is the union of a finite subfamily of H', specifically, H' — K'. 

Proof. We arrange the members of H in a finite sequence T with w different 
values and determine corresponding sequences A and B with values in F0 

and Go, respectively, such that Tt = At X B u i = 1, 2, . . . , n. Next we 
consider the totality of sets (at most 2n) obtained from 

(1) Vi n v2 n . . . r\ vn 

by replacing Vi, V2, . . . , Vn, by ^4i or 5 — Ai, A2 or 5 — A2, . . . , An or 
5 — An, respectively. It is clear that the resulting sets are pairwise disjoint 
and comprise a finite family F ' C F0. In similar fashion, replacing Vi, V2,..., Vn 

by B, or T — Bi, B2 or T — B2, . . . , Bn or T — I3W, respectively, we obtain 
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a finite disjoint family G' C Go. It follows easily that (i), (ii), and (iii) are 
true. Also, by virtue of (ii) and Lemma 3.1, we see that for each set y G H, 
f*(y) > Z!T,/eH7"/*(7//)» a n d (iv) follows immediately. 

To prove (v), we write C = A X B, where A G F0 and B G Go, and intersect 
(1) with A in defining F' , then with B in defining G'. This modification yields 
the desired result. 

3.3. LEMMA. If f is a function non-negative on S and H is a countably infinite 
subfamily of H0, then there exists a finite or countably infinite disjoint subfamily 
H' of Ho such that each member of FT is contained in exactly one member of H, 
U H ' = U H , and 

Zy<Hf*M > E T ' . H ' / * ( / ) . 

In particular, 

L76H M(Y) > ET '^H ' M(T')-

Proof. We arrange H in the form of a sequence T and consider the disjoint 
sequence of sets A such that 

A i = Ci, An+i = Cw+i — \C\ KJ . . . \J Cn) 

for each positive integer n. Since for each such n 

cn+l - (Ci \J . . . u Q = cn+1 - ((d n cn+1) w . . . \j (c„ n cB+i)) 

and since Ci Pi Cw+i, . . . , Cn C\ Cn+i comprise a finite subfamily of H0 whose 
union is contained in Ci, we may apply part (v) of Lemma 3.2 to see that 
An+i may be represented as the union of a finite disjoint family HTC+i C H0 

with UH n + i C Cn+i such that/*(Cw+i) > S7eHn+i/*(T)- We let Hi denote the 
family consisting of the set Ci, define H ' = ^ L ^ Hw, and note that H ' satisfies 
the conditions required above. 

3.4. LEMMA. S„ contains the smallest a-algebra that includes H0. 

Proof. We consider an arbitrary function / non-negative on U. It will be 
sufficient to show that the class of /*-measurable sets includes H0, for then it 
must include the smallest (r-algebra containing H0; and so then will SM. 

We take an arbitrary set E C U and an arbitrary set C G H0; there exist 
sets A G Fo and B G G0 such that C = A X B. Next we select an arbitrary 
family H G 3Jî(H0; E); for any member 7 G H, we select sets a G F0, P G Go 
such that y = a: X p. We now let 

7i = ( « n i ) x ( ^ n B ) , 72 = («n A) X OS - 5), 

73 = (a - ^ ) X 03 ^ 5 ) , 74 = (a - 4 ) X (0 - 5 ) . 

Clearly these four sets are disjoint members of H0, 71 = 7 P\ C, and 
72 ^ 73 W 74 = 7 — C. We let Hi, H2, H3, H4 denote, respectively, the 
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families of all sets 71, 72, 73, and 74 thus obtained from all sets 7 G H. From 
our observations, we see that 

Hx G 3K(H0; E r\ C), (H2 U H3 U H4) g 2W(H0; £ - C). 

Also, because of Lemma 3.1, we have 

/*(Y) >/*(TI) +/*(T2) +/*(T3) +f*M 
whenever 7 G H. Hence 

E f*M > E /*(7i) + ( E /*(7«) + E /*(7») + E /*(74)) 
yeH 71 «Hi \ 72eH2 73 «H3 74 «H4 / 

>f*(Er\C)+f(E-C). 

From the arbitrary nature of H in this inequality, we infer that 
/*(£) > f ( £ H C) + f*(E — C). The reverse inequality holds since /* is an 
outer measure on U, and so C is /*-measurable. 

3.5. THEOREM. SM consists of all sets of the form D — N where D belongs to the 
smallest a-algebra containing H0 and N is a set such that Jl{N) = 0. 

Proof. This follows exactly the lines of proof of (1, Theorem 4.2), using 
Lemma 3.4 above, and consequently is not given here. 

3.6. THEOREM. If A e FQ and B G G0, then p(A X B) = $(A)$-(B). 

Proof'. Given e > 0, we select such families F G 9ft(F0; A) and G G Wl(G0;B) 
that 

(1) Z«CF «(a) < 4>{A) + 6, E^eG *(0) < HB) + 6, 

let H = {7I7 = a X fi for some a G F and some /3 G G}, note that 
H G SW(H0; ^ X J3), and with the help of (1) observe that 

H(A X £ ) < Z M(T) = E * («)*(/*) 
7 6 H («X/3)eH 

= (Z *w)(Z *(«) < (*oo + o6kB) + o-
From this relation we infer that /z(4 X Î3) < <j&(4) •#(£). 

Since 0 and ^ are completely additive on the c-algebras S0 and S^, respec
tively, then there exists a function % defined and completely additive on a 
o--algebra that includes H0, and satisfies the relation x(a X 0) = $(a)$(!3) 
whenever a G S0 and /3 G S^ (3, pp. 223-234); by virtue of Lemma 3.4, this 
holds in particular whenever a G F0 and /3 G Go. 

Given any number e > 0, we select a family H G 9K(H0; A X B) such that 

(2) ET«HM(T) </Z(4 X 5 ) + €. 

Owing to Lemma 3.3, there is no loss of generality in assuming that H is a 
disjoint family. By intersecting each member of H with A X B, we obtain 
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a family belonging to $D?(H0; A X B), each of whose members is a subset of 
A X B. Since, by virtue of Lemma 3.2, n(a Hi 0) </*(«) holds whenever 
a G Ho and fi G H0, it follows that the inequality corresponding to (1) holds 
for the new family. Thus we may assume without loss of generality that the 
members of H are all subsets of A X B, so that A X B = U H . 

From (2) and the countable additivity of %> w e now see that 

~4>(A^(B) = X(A XB) = £ X(T) = £ *(«)*(0) < £ *(«)*(£) 
7«H «X/SeH «X/3eH 

= Z M(T) < /z(4 X B) + e. 
7*H 

Hence <j>(A) $(B) K &(A X B) and the proof is complete. 

4. Some properties of a general kind of continuity. In this section 
we shall consider classes of functions defined on the spaces S> T, and U that 
have properties analogous to functions that are continuous almost everywhere 
on an interval on the real line. Some properties of these functions were estab
lished in (1, §5). We shall give a definition of this kind of continuity in terms 
of a space V and a function v that may be thought of as representing 5, T, or U 
and </>, \[/, or /z, respectively. If D C V, we shall write 50? CD) to stand for 
9JUF0; D), 2)?(Go; D), or 9K(H0; D>), according to whether V stands for 5, T, 
or C7, respectively. 

We shall be considering functions / defined on U, integrals of such functions 
over portions of U, and also iterated integrals of these functions. To keep 
matters straight, we shall introduce dummy variables and write, for example, 
Jcfixi J) dfi(x, y) to denote the integral of / with respect to \x over a set 
CCU. Iterated integrals over a set C = A X B C U will be expressed by 

J A ( J B / ( ^ > y)d<t>{x))d^/(y) or a similar expression with variables reversed. Also, 
when we have occasion to consider the function obtained from / by holding 
y fixed in T, we shall denote it by / ( ,y)\ its value at a point x G S will be 
f(x, y). Similarly,/(x, ) will denote the function obtained from/when x is held 
fixed in S. 

4.1. Definition. If / is a function real-valued on a set ft, then we define the 
oscillation off on fi, written fl(/, /3), by 

Q(/, 0) = supz^/OO - mfxefif(x) if p J* 0; 

Q(f,P) = 0 if /3 = 0. 

4.2. Definition. Il D C V, then we agree to denote by C(Z>) the class of all 
functions / real-valued and bounded on D with the following property: for 
each e > 0, there exists a family K Ç %Jl(D) with a finite subfamily Kr such 
that (i) Û(jf, Z> H 0) < € whenever 0 6 Kr; (ii) E ^ ( K - K ' ) K/5) < c 

Owing to (1, Lemma 2.2), Lemma 3.2 of this paper, and the fact that the 
oscillation of a function on a given set is never less than its oscillation on a 
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subset, it follows that the family K occurring in Definition 4.2 may always be 
taken as disjoint. Also, if D belongs to F0, Go, or H0 as the case may be, the 
members of K may be taken as subsets of D, since each member of K can be 
intersected with D to obtain a family of the required kind. We shall frequently 
use these facts. 

4.3. LEMMA. If A G F0, g is a real-valued function bounded on A, and g G C (A), 
then there exists e > 0 such that if F is any finite subfamily of F0 with U F C i 
and 12 (g, a) < e whenever a G F, then 4>{A — \J¥) > e. 

Proof. Since g (£ C(^4), it follows that there exists e > 0 such that whenever 
K G 3Jl(A) and K' is a finite subfamily of K for which 12(g, a) < e whenever 
a G K', then 

(1) E *(«)>*. 
a€(K-K') 

We take an arbitrary family F satisfying our hypotheses and let K = U F , 
pick an arbitrary family G £ %R(A — K), define K = G U F , note that 
K G 2ÏÏG4), observe with the help of (1) that 

E *(«) > E *(«) > «, 
aeG ae(K-F) 

and so conclude that 4>{A — K) > e, as required. 

4.4. THEOREM. 7/ 4 G F0, B <E G0, C = A X 5 , and / G C(C), then 
(0 / ( >30 G C ( i ) /or \p-almost all y d B and f(x, ) G C(B) for 4>-almost all 

x G A ' 
(ii) )Af(x, )d<t>{x) G C(B) andJBf( 9y)d^(y) G C(4) . 

Proof, (i) We shall prove only the first part of (i), since the second part will 
then be obvious. 

We let E = {y\y G B and / ( ,y) G C(^4)}, and for each positive integer n 
we let Dn be the set of points y G E such that if F is any finite subfamily of 
Fo with KJF CA and fl(/( ,y),a) < 1/n for each a G F, then 4>{A - UF) 
> l / w . In the light of Lemma 4.3 we see that E = \J™=lDn. We shall show 
that \p(Dn) = 0 for each positive integer n and therefore ip(E) = 0. To this 
end we take an arbitrary positive integer n and e > 0. We may and do assume 
€ < 1. 

Since/ G C(C), there exists a family L G 2ft(C) with a finite subfamily H 
such that 
(1) Œ(f, Y) < e/w whenever 7 G H; E M(T) < e/w. 

7€(L-H) 

In accordance with the observations following Definition 4.2, we may assume 
that L is disjoint and that all its members are contained in C; i.e., C = U L 

We let Q = C - U H , note that Q = U ( L - H) so that (L - H) G 2B((?)f 

and use the second relation in (1) to infer that 

(2) p(Q) < e/n. 
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We next determine disjoint families F ' C F0, G' C Go, H' C H0, and 
K' C H' satisfying the conditions (i)-(v) inclusive of Lemma 3.2. We see that 
A = U F ' , B = U G ' , C = U H ' , U H = UK' , and Q = U ( H ' - K'). Every 
member y' of K' is a subset of some set y G H; hence, by (1), 

(3) 0 ( / , y ) < Q ( f , 7 ) < 0 * < 1/» 

for each such set y'. 
We now define Kp to be the union of those sets a G F ' for which P G G' and 

a X /3 C (?. We let G" be the subset of G' for which p G G" if and only if 
4>{Kp) < /In. Since \JpeG> Kp C Q, then, with the help of (2), we have 

(4) E H(KpXP)< H(Q) < e/n. 
/3e(G'-G") 

Also, in the light of Theorem 3.6 and the complete additivity of /x, we have, 
for each p G (G' - G"), /z(i^ X /3) = $(Kp)$(p) > #(£)/«; and hence from 
(4), we conclude that 

(5) *(U(G'-G")) = E Hft)<*. 
0 e ( G ' - G " ) 

Next, we let G'n denote the subfamily of G' for which 0 G G'w if and only if 
P C\ Dn ^ 0. For each such £ there exists yp £ P (^ Dn. We let F ^ denote those 
members a! of F ' for which 0(f( ,yp),a) > l /« . Since clearly tt(f,(a X £) 
>Q( / ( ,^)i«0 whenever a7 £ F^ , it follows from (3) that a X 0 g K', whence 
a' X /3 G (H' - K') and a' X P C Kp for each such a', and so U F ^ C Kp. 
Since 3^ G Pw and 12(/( ,3/0), a') < 1/w whenever a' G (F' — F / ) , it follows 
from our definition of Z>n that 4>{Kp) > 0 ( U F / ) > 1/n, whence p G (G' - G"), 
G'n C (G' - G"); hence $(Dn) < f ( U G / ) < e because of (5), and finally 
\p(Dn) = 0. This completes the proof of part (i). 

(ii). We let M > 0 denote an upper bound for the values taken by |/| on C. 
According to our definition of integration given in §2, we must assume that / 
is defined throughout U, but it also follows, since C G H0, that the values 
taken by / outside C have no effect upon the values of either fcf(x, y)djJL(x, y), 
JAKX, y)d<t>(x) for y G B, or JBf(x, y)d\f/(y) for x G A. We shall prove only the 
first part of (ii), since the second part is entirely analogous. For convenience 
we define F on B so that F(y) = fAf(x, y)d<t>(x) for each y G B. We also choose 
a positive integer n such that 1/n < e/(2M + $(A)). 

Recalling the notation introduced in (i), we take an arbitrary set p G G" 
and any point y' G P. For a G F ' we define 

ma = inf f(x,y)y Ma = sup f(x,y) 
(x, y)e(aXP) (x, y)e(aXP) 

if a X P J£ 0; ma = Ma = 0 if a X P = 0. Then ma < f(x, y') < Ma holds for 
each x G «, and so by (1, Lemma 5.1), 

wa 0(a) < Jaf(x, y;)d<j>(x) < Ma $(a) 
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for each such set a. Setting v = X ^ F ' ma<j>{a) and V = £a€F' Ma<t>(a), it 
follows that 

(6) v < D /«/(*, /)d*(*) = F(y') < F. 
aeF' 

Since 3/ is an arbitrary point of /3 and v and F do not depend upon y', then 
v and F are a lower and an upper bound, respectively, for the values taken 
by F on 0. 

Now, in the sums making up the values v and V, the terms corresponding 
to sets a for which a O K$ = 0 clearly satisfy the relationship a X 0 G K', 
so that by (3) 0 < Ma — ma < e/n; for the remaining sets a occurring in 
these sums, whose union is K$y we have 0 < Ma — ma < 2M. Therefore 

V - v < - £ $(a) + 2Mi(K0) < - 4>{A) + — < e 
n aeF' n n 

because of our choice of n. Hence 

(7) Q(F,0)<€ 

whenever £ G G". Letting £ ' = U ( G ' - G"), we see from (5) t ha t# (£ ' ) < e; 
hence there exists a family G'" G 2)?CB') such that 

(8) E *(0)< «• 
|SeG"' 

By virtue of the relations (7) and (8) it follows that the family (G" \J G'") 
G 2K(2?) satisfies the conditions that make F a member of C(B). This com
pletes our proof. 

4.5. LEMMA. Iff is real-valued on 5, A G F0, and f G C(A), then fA fd<f> = 
jAfdf, where the right-hand integral may be interpreted as the usual Lebesgue 
integral of f with respect to <£. Analogous statements are valid if f is real-valued 
on T and A G Go, or if f is real-valued on U and A G H0. 

Proof. It is easily seen that the restriction of / to A is ^-measurable on A, 
and that we need prove our assertion only for a function/ non-negative on A. 
Accordingly, we assume / > 0 on A. We let M denote a positive upper bound 
for f on A and assume t > 0. We select a family F G 3)1 (A) with a finite 
subfamily F ' such that 

(1) &(/,<*) < € whenever a G F ' ; ]T] <£(«) < e. 
ae(F-F') 

As usual, we may assume F to be disjoint and that its members are all subsets 
of A; i.e., A = U F . 

Weletm a = inîX€af(x), Ma = supxeaf(x) whenever 0 =̂  a G F;w a = M~a = 0 
if a = 0. Then, by (1, Lemma 5.1) and the properties of ordinary Lebesgue 
integrals, we have, for each a G F', 

(2) ma $(a) < fafd(f> < Ma $(a) ; ma $(a) < JAfdf < Ma 4>(a). 
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From (1) and (2), we see that 

(3) \fafd4> - fafd$\ < (Ma - ma)4>(a) 

for each such a. In case a Ç (F — F'), it is obvious that 

(4) \jafdcf> - jafdf\ <M$(a). 

From (1), it follows that /z(U(F - F')) < e'. Putting (3) and (4) together 
and using the additivity of the integrals concerned, we obtain 

\jAfd<t> - jAfd$\ < £ \Jafdct> - jafd$\ 
acF 

< 60(UF') + M/z(U(F - F')) < *$(A) + eM, 

whence it follows that jAfd<j> = J A / ^ 0 . 

4.6. COROLLARY. Under the hypotheses of Lemma 4.5, if A Z) A' G S^, then 
\A> fd<$> — fA> fd<j>. Corresponding results hold in the spaces T and U. 

Proof. As shown in (1, Theorem 4.2), it is possible to write A' in the form 
A' = D — N, where D is the intersection of a decreasing sequence E of sets, 
each term in the sequence being the union of a countable disjoint subfamily 
of Fo whose union is contained in A, and N is a set for which $(N) — 0. From 
the measure-theoretic properties of the integrals concerned and the fact that 
§xfd<f) — §Nfd<f> = 0 (1, Corollary 3.2), the desired conclusion follows. 

4.7. THEOREM. If A 6 F0, B G G0, C = A X B, andf 6 C(C), then 

Jcf(x, y)dn(x, y) = JA(fBf(x, yW(y))d<p(x) 

= ïB(JAf(xjy)d<t>(x)W(y). 

Proof. I t is clearly necessary to prove only the first relation above. As 
always, we require that functions being integrated be defined throughout the 
space in question, but inasmuch as C 6 H0, it makes no difference to the 
validity of our theorem what the values of / outside of C may be; thus we may 
assume/(x, y) = 0 for all (x,y) 6 (U — C). 

We apply Lemma 4.5 to see that Jcfdn = Jcfdjl, where the right-hand 
integral is the Lebesgue integral of the /l-measurable function / , and from 
Theorem 3.6, we see that well-known Fubini theorems on product measures 
may be applied to infer that 

(1) Scfdn = fcfdfi = IA<JBKX, yW(y))d$(?c). 

We define F and G so that 

F(x) = JBf(xty)d^(y) and G(x) = fBf(x, y)d$(y) 

for each x G S for which the appearing Lebesgue integral is defined, i.e., for 
^-almost all x G S; elsewhere in 5 we may define G(x) = 0. 
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According to Theorem 4.4(i),/(x, ) 6 C(^4) for ^-almost all x <E A ; hence, 
by Lemma 4.5, F(x) = G(x) for 0-almost all x £ A. 

Our weak hypotheses on F0 do not permit us to infer, in general, that the 
0-almost everywhere equality of two functions ensures the equality of their 
integrals with respect to <£, which is supposed defined only on F0. However, 
because of the properties of ordinary Lebesgue integrals, we can say that 
J A F(x)d$(x) = JA G(x)d<j>(x); combining this with (1), we obtain 

(2) Jcf(x, y)d»(x, y) = j c F(x)d$(x). 

Since F Ç C(^4) in accordance with Theorem 4.4 (ii), we may use Lemma 4.5 
again to infer that 

(3) JA F(x)dct>(x) = JA F(x)df(x). 

Combining (2) and (3) yields the desired result. 

4.8. COROLLARY. If A G F0, B £ Go, C = A X B,f 6 C(C), and g G C(C), 

then 

JBIJA (f(x, y) + g(x, y))d<t>(x)]d\P(y) = j c {fix, y) + g(x, y))dfx(x, y) 

= .fcf(x, y)dn(x, y) + fcf(x, y)dn(x, y) 

= )B (JAfix, y)dd>(x))drp(y) + j B (jAf(x} y)d4>(x)W(y) 

= JB [jAf (x, y)d<f>(x) + j A g(x, y)d(t>(x)W(y). 

Similar results, obtained by reversing the order of integration, are valid. 

The results obtained thus far in §4 show that when our definition of inte
gration is applied to functions of the class C(C), where C 6 H0, the resulting 
integrals have many of the same properties as ordinary Riemann integrals. 
The analogy is carried a step farther in the following theorem. 

4.9. THEOREM. If A 6 F0, B 6 G0, C = A X B, and u is a sequence of 
functions such that un Ç C(C) for each positive integer n, and u converges uni
formly on C to a function f, then f Ç C(C) and 

JB (JAf(x, y)d<j>(x))d^(y) = lim j B (JA un(x, y)d(j>(x))d\P(y) 
n 

= lim j c un(x, y)dlx{x, y) = fcf(x, y)dfi(x, y). 
n 

Similar results with the order of integration reversed also hold. 

Proof. We shall establish only the equations expressed above; the correspond
ing ones with the variables reversed may be proved similarly. As usual, we 
must assume that un and / are defined throughout U for n = 1, 2, . . . ; but 
since C G H0, it makes no difference what values these functions have outside 
of C. We may assume they are all identically zero whenever (x, y) G (U — C). 

T h a t / G C(C) follows from Definition 5.2, the fact that fi(/, 7) < U(un, 7) 
+ fl(/ — un, 7) whenever 7 Ç H0 and n is a positive integer, and the uniform 
convergence of the sequence u to / . 
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We define the sequence U and the function F by 

Uniy) = J A un(x, y)d<j*{x), F(y) = SAJ(X, y)d(j>{x) 

for each y G T. If e is an arbitrary positive number, then it follows from the 
uniform convergence of the sequence u to / , and (1, Lemmas 5.13 and 5.1) 
that 

\Un(y) ~ F(y)\ < 2fA\un(x,y) - f(x, y)\d<l>(x) < 2*$(A) 

for all sufficiently large values of n and all y £ B. Therefore, the sequence {/ 
converges uniformly on B to F. Now, applying (1, Corollary 5.14) and Corol
lary 4.7 above, we obtain 

JBF(y)d^(y) = \imjB Un(y)d^(y) = Urn JB (jA un(x, y)d(j>(x))d\P(y) 
n n 

= \imfcun(x,y)dn(x,y) = fcf(x,y)dn(x,y). 
n 

We conclude with a few observations. If A Ç F0, B € G0, D = i X 5 Ç H0, 
£ Ç H0, and g = KDDEJ then it is easily checked that g 6 C(Z>). Hence, by 
virtue of (1, Corollary 5.10) and Corollary 4.8 above, it follows that if n is a 
positive integer, st is a real number, and Cf Ç H0 for i = 1, 2, . . . , n, and 

/C*,?) = X) s*#e7i(*, y) 

for each (x, y) Ç U, then / 6 C(£>) and 

X) Si/*(C* Pi D) = fDf(x, y)dfx(x, y) = j B (JAf(x, y)d<t>(x))d^(y) 

= JA(JBf(xfy)dt(y))d<t>(x). 

In particular, if 5̂  = 1 for i = 1, 2, . . . , n, E = L/*=i Cu and the sequence 
of sets C is pairwise disjoint, then 

M ( £ H D ) = /D i ^ ( x , yHuOc, y) = / B (/A KE(x, y)d<p(x))dxp(y) 

= /A ( /B £*(* , y)dt{y))d<p(x). 
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