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EXISTENCE OF ENTIRE SOLUTIONS
FOR SOME ELLIPTIC SYSTEMS

DING YANHENG AND LI SHUJIE

We establish the existence of solutions for the elliptic systems on R":

-Au =—(z,u,v)

such that u,v 6 W1'2(RN), where H(x,u,v) = -q(x)uv + ~H(x,u,v) with
q(x)—>oo as \x\—>oo and H(x,u,v) being superlinear or sublinear as

1. INTRODUCTION

In this paper we consider the existence of solutions for the following elliptic systems
RN:

{
dH.

- At i= —(x,u,v)

such that u,v E W1'2(RN) where H £ C1(RN x R2) is superunear or sublinear as

(u2+v2)1/2—+oo.
The existence of solutions (u,v) to the elliptic systems like (ES)i on a smooth

bounded domain Q C RN such that u\en = v\an = 0 has been studied earlier by
Benci-Rabinowitz [1], Clement-de Figueiredo-Mitidieri [2], de Figueiredo-Felmer [4] and
Szulkin [8] using a variational approach.

First, we deal with the superlinear case. We are interested in the Hamiltonian of
the type

H(x,u,v) — —q(x)uv + H(x,u,v),
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502 Y. Ding and S. Li [2]

where q(x) satisfies

(Q) q e C(RN) and q(x)—>oo as |x| —»oo.

We denote (u,v) G R2 by z and (u2 + v2)1 by \z\, and suppose that H satisfies

( H i ) there is fi > 2 such that

0<tiH{x,z) ^Hz{x,z)z

for all x G R N and z G K2 \ {0}, where ~Hz(x, z) = yz~H{x, z);
(H 2 ) 0 < 6 = inf W(x,z);

&&N | | l

(H3) |Fz(a;,2:)| = o(|z|) as |z| —>0 uniformly in z G KN;
(H4 ) there are 0 ̂  ax(x) G L1 (R^) n C(RN) and a2 > 0 such that

\Hz(x,z)\q ^a1(x)+a2'Hz(x,z)z, V(X,Z)ERNX R2

where q > 1, /x 4 ?/(g -1) = 7 < F = (2N)/(N - 2) if iV > 2 and
7 < 00 if JV = 1,2.

We point out that, by (H4), there are /3i,02 > 0 such that

(1.1) \Hz{x,z)\^^1+l32\z[l-\ V{x,z)eRNxR2.

Our result reads:

THEOREM 1 . 1 . Under the assumptions (Q) and (H1 j-fH4 ) on H, fESJi has at
least one nontrivial W1 <2(RN,R2) solution.

Next, we deal with the sublinear case. We again consider the Hamiltonian with
the form

H(x,u,v) = — q(x)uv + G(x,u,v).

Suppose that q(x) satisfies

( Q a ) q£ C{RN) and there exists a < 2 such that q(x) \x\a~ —>oo as |x |—»oo,
and G satisfies

(G1) there is 1 < /3 G {{2N)/(2 -a + N),2) such that

0< Gz(x,z)z ^0G(x,z), VxGRN and z G K2 \ {0};

(G2) there are a1,a2 > 0 and v > max{0,(a - 2 + N)/(2 - a + N)} such that

G(x,z)^ai\zf and \Gz(x,z)\ ^ a2 \z\"

for all x G RN and \z\ ^ 1;
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( G 3 ) there are 1 < /? G ((27V)/(2 - a + N),/3], a3 > 0, r > 0 such that

G(x,z) ^ a3 |z |^ , Vz € RN and \z\^f;

(G4) |Gz(z,z)| G £°°(RNx£ii) for any i? > 0, where BR = {z G K2; |z| ^
#} , and

1-zp1 \Gz(x,z)\—>0 as \z\—»oo uniformly in xeRN.

Then we have

THEOREM 1 .2 . Under the assumptions (Qa) and (d )-(Gi ) on H, (ES)! has

at least one nontrivial W1'2(RN,R2) solution.

We remark that the study of (ES)i is equivalent to that of the following systems
on RN :

{
dH, .

-Aw = — {x,w,y)
dw

OH

However, it seems convenient for us to handle (ES) i and (ES) 2 separately. For example,

one can consider (ES)2 for the Hamiltonian being of the type

(1.2) H(x,w,y) = -~qi(x)w2 + -q2(x)y2 +~H{x,w,y)

with different qi and qi. In the sequel we shall show some results for (ES)2 which are
similar to those for (ES)i.

The paper is organised as follows. In section 2 we give some preliminary results,
particularly, a compact embedding lemma which enables us to apply standard critical
point theory to handling the problems. In section 3 and section 4 we shall deal with
the superlinear case and the sublinear case respectively.

2. PRELIMINARIES

In order to study (ES) 1 and (ES)2 , we first recall some facts about the Schrodinger

operators.

Suppose q satisfies (Q) and let A denote the self-adjoint extension of — A +q(x)

acting in L2 = L2 (RN). Let \A\ be the absolute value of A, \A\1/2 the square root

of \A\ ,{E(u); —00 < v < 00} the resolution of the identity corresponding to A, and

U = I - E(0) - E(-0). Then U commutes with A, \A\ and \A\1/2, and A = \A\ U
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is the polar decomposition of A (see [5]). Set E = Pf |J4| ' J. E is a Hilbert space

equipped with the inner product

{u,v)o=(\A\1/2u,\A\1/2v) „+{*,*)

and norm

where (•, -)L7 denotes the inner product of L2. Clearly C£°(E.N) is dense in E and E

is continuously embedded in W1>2(RJV) . Moreover we have

LEMMA 2 . 1 . If q satisfies (Q) then E is compactly embedded in Lp for p g

[2,Jf) where ~N = (2N)/{N - 2) if N ^ 3, JV = oo if N = 2, and p £ [2,oo] if

N = 1.

PROOF: It is known that E is compactly embedded in L2, see, for example, [7].
Moreover for N = 1 we refer, for example, to [3]. For N ^ 2 and p > 2 it follows from
the interpolation inequality

where 6 = ((p - 2)N)/(2p) and c is independent of u. D

LEMMA 2 . 2 . Suppose q satisfies (Qa)- Then E is compactly embedded in Lp

for all 1 ̂  p € ((2JV)/(2 - a + JV), 2).

REMARK. Since (Q a ) implies (Q), E is already compactly embedded in Lp for p £
[2,~N) by Lemma2.1. Moreover, since a < 2,(27V)/(2 - a + N) < 2, and if a <2-N

then (2N)/(2 - a + N) < 1.

PROOF: First we assume q(x) ̂  1 for all x £ KN. Let A; = (2 - a)/(2 - p). Then

(2.1) pk > N.
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For any R > 0, one has

\2 — oc i i2

\x\>R
= / -V/

J\x\>R \X\ J\i

= J\x\>R ]xY + J\*\>R q{x) \x\a~2

J\x\>R \x\P P{R)

where (3{R) = inf g(z) Isl""2.

Let K C E be a. bounded set,

||u||0 ^ M Vu G K.

We shall show that, for any e > 0, K has a finite e-net.
Since by (2.1)

r >0 as R >oo

and by ( Q a )

one can take Ro large such that

( 3 )

By the Sobolev compact embedding theorem, there are uj, • • • ,um £ -ff such that for
any u £ K, there is Uj satisfying

(2-4) ll« - u«lllp(B(flo)) < y

where B{R0) = {x£RN; \x\ < Ro}. Now (2.2)-(2.4) shows
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that is, K has a finite e-net in Lp and so is precompact in Lp.

In general, by (Q«), q{x) is bounded from below, q{x) > - a + 1 for some a > 0

and all t G l " . Since E = T>[(A + a) ' ) , we can introduce a norm on E by setting

By the above argument we know that (E, \\-\\a) is compactly embedded in Lv for
1 ^ p £ ((2iV)/(2 - a + N),2). Therefore in order to prove the Lemma it suffices to
show that the norms ||-||o and ||-||0 are equivalent to each other. In fact, for u £ T>(A),

U)L2=(\A\U,U)L2

= (U(A + a)1/2u,(A + a)1/2u) = - a(Uu,u)L2

, +a\\u\\l2,

and on the other hand

\(A + a)1/2u\\ =((A + a)u,u)L2 = {AU,U)L2 + a(u,u)L2

Hence c\ \\u\\a ^ ||w||0 ^ C2 ||u||a for all u £ T>(A), and so for all u £ E since T>(A) is
dense in E and by continuity. The proof is complete. D

By Lemma 2.1 A has a compact resolution, and so <r(A), the spectrum of A,
consists of eigenvalues (repeated according to their multiplicities)

A2 • • • ^ A • 00

with a corresponding system of eigenfunctions (hn), Ahn = Xnhn, which forms an
orthonormal basis in L2 . Let n~ (respectively n°) denote the number of negative
(respectively 0) eigenvalues, and n = n~ + n°. Set

E~ = s p a n { / n , ••• ,hn-}

E° =span{An-+1,--- ,h

E+ = (E~ ® E°) ±E = C
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where CIES is the closure of 5 in E. Then, clearly

E = E~ @ E° © E+

is a natural orthogonal decomposition. Based on this decomposition, we introduce the
following inner product in E

and norm

IMI2 = («,«>

for all u = u~ + u° + u+ and v = v~ + v° + v+ £ E~ @ E° @ E+ . It is easy to see that
for any u £ E

(2.5) W 2
L 2 <AH 2

where A = max{l,l/(|An- |),1/(A5+1)} and

(2.6) | | u K | | u | | 0 ^ ( l + A)1/2| |U||,

that is, || || and ||-||0 are equivalent.
Let

a(u,v)=(\A\1/2Uu,\A\1/2v)L2

be the quadratic form associated with A. Then for u £ T>(A) and v £ E

(2.7) a{u,v) = (Au,v)L, = f {yu S7 v + q{x)uv)

and so for all u,v £ E by continuity. Clearly E~,E° and E+ are orthogonal to each
other with respect to a(-,-) and moreover,

a(u, v) = ((p+ — p~)u, v)

a(u,u) = ||ii+|| — | | u ~ | |

where p ± : ̂ —*E± are the orthogonal projectors.
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3. T H E SUPERLINEAR CASE

In this section we give the proof of Theorem 1.1. Suppose that the assumptions
are satisfied. Let (E, \\-\\) be as in the previous section. Define the product space
E = E x E = (E)2 with the inner product

and norm

||(U)<,)||2 = H 2 + H 2 .

Consider the quadratic form defined on E x E:

Q({u,v), {<P,i>)) = a(u,tp) + a{v,ip)

= / v w V V1 + q{x)uij} + s/v v v + q(x)v<p.

By (2.8)

Hence the self-adjoint bounded operator L, reduced by Q, is given by

L : E—+E, («,t;)—»((p+ - p~)v, (p+ - p-)u).

Consider the eigenvalue problem
Lz — Xz

where z = (u,v). It is easy to see that

(p+ ~ P~)v = ^u) (p+ ~~ P~)u — ^v-

Therefore A = ±1,0, and we can define

E° = E° x E",

E~ = {(u~ + u+,u~ - u+) ; u~ + u+ € E~ @ E+},

E+ = {(u~ +u+,-u~ +u+); u~ +u+ EE~

Then

(3.2) E = E~ © E° ffi E+
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is an orthogonal decomposition of E. For any z = (u,v) £ E, let

- ! / - - + + - - + +\z = -\u + v +u^—v,u +v —u^+v^),

Z — -[U V U , V U V ) .

Then we have the unique decomposition

z = (u,v) = (u~ + u+,v~ + w+) + (u°,v°) = z~ + z° + z+

with z± G E* and z° £ E° . It is easy to check that

(3.3) Q{z) = Q((u,v),{u,v)) = \\z+\\2 - \\z~\\2

for any z £ E.

Let

J(z) = I ~H(x, z) dx Vz £ E.

By a standard argument it is easy to show that J £ C1(E, R),

(3.4) sjJ(z)y= I Hz(x,z)ydx Vz,y£E.

Here V-^ represents the gradient of J . Moreover J is weakly continuous and
compact. For the reader's convenience, we show that J(z) is weakly continuous. By
(H4) (see (1.1)) we have

(3.5) \Hl(x,z)\^/31+f32\z\'y-1 \/(x,z)eRNxR2,

and by (H3), (3.5) we have

(3.6) \3(x,z)\ ^ Cl | 2 | 2 + c2 |*r V(x,z)£RNxR2,

(Here and after, the Cj stand for positive constants.) Let zn—>z weakly in E.

y Lemma 2.1, one can assume that z
N))2. Note that, by (3.6), for any R > 0,

By Lemma 2.1, one can assume that zn—>z strongly in ( £ 2 ( R ^ J and

(3.7)
\xfeR I*I»H

f
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For any e > 0, by (3.7), one can take Ro large such that

(3.8) (H(x,zn)-H(x,z))

for all n 6 N. On the other hand, it is well-known that

(x,zn)-^ f H(x,z)

as n—»oo. Therefore, there is no G N such that

(3.9) (H(x,zn)-H(x,z)) n0.

Combining (3.8) and (3.9) yields

\J(zn)-J(z)\ = f (H(x,zn)~H(x,z)) < e Vn ̂  no.

We have proved that J is weakly continuous. Now an abstract theorem [6] implies

immediately that V^ ^s compact.

Define

(3.10) f{z)=\Q(z)-J(z) = \

for z = (u,v) e E. Then

(u,v}, (ysV1)) = / ( V V ^ "̂" q(x)utj}
JRN

'OH, v a F

H(x, z)

(3.11)

Clearly, any critical point of / corresponds to a W1'2 (KW,K2) solution of (ES)i.

Let ei, e2, • • • be an orthonormal basis for E+ , gi,g2, • • • be an orthonormal ba-
sis for E~ ©E°. Denote E+ = Span{ei,--- ,en}, E"-0 = Span{ffl, g2, • • • ,gn} and
Wn = E+ © E--° . Let /„ = /IE,, . We say that / satisfies the (PS)* condition if any
sequence (zn) in E, zn £ £„, /n(^n) ^ c < +oo, S7fn{zn)—»0 possesses a conver-
gent subsequence. The following Proposition is a slight variant version of a theorem of
Benci-Rabinowitz [1, Theorem 0.1].
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P R O P O S I T I O N 3 . 1 . Suppose

( t i ) f e C^E , R) and satisfies (PS)*;
(f 2 ) there are constants p, 6 > 0 such that

f(u)>6 VueSp,

where Sp = {z 6 E+ ; ||z|| = p};
(f3 ) there are constants r > p, M > 0, e € Ef \\e\\ — 1 such that

/ |e Q < 0 and f\Q ^ M

where Q = (B(0,r) n E~ © E°) 0 {se; O^s ^r}.

Then f has a critical point z with f(z) ^ 6.

PROOF: By applying the Benci-Rabinowitz Theorem to / „ , one gets a sequence
(zn) C E s u c h t h a t zn € En,\/fn(zn) = 0,6^ f n { z n ) ^ M. B y ( P S ) * , zn p o s s e s s e s
a convergent subsequence. The proof is complete. U

In the three lemmas below we shall show that / (given by (3.10)) satisfies the
hypotheses of Proposition 3.1.

LEMMA 3 . 2 . f satisfies (PS)* .

PROOF: Suppose (zn) is a sequence in E such that | / ( z n ) | < c, en = | | v / ( 2 n ) | |
—>0. From (Hi )
(3.12)

/(*«) - \s7f{*n)zn = I (l-Hz{x,zn)zn-H{x,zn)\ > (f - l) / H(x,zn)

$-l) f H{x,zn).

Let
^ _ f zn if \zn{x)\ < 1 ^ _ f 0 if \zn{x)\ < 1

Z" ~ \ 0 if | z B ( s ) | ^ 1, Zn~[zn if | 2 n ( x ) | ^ 1.

T h e n

(3.13) /(*„) - i

From (Hi ) and (H4) there exists 6 > 0 such that

(3.14) W{x,z)^b\zf if
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and from ( H i ) and (H2 )

(3.15) ~H{x,z) ^ 6 | z | " if \z\>\.

Then for n large

(3.16)

We denote by c various positive constants independent of n. From (Hi) (H4) for n
large

c+\\zn\\> f(zn)--S7f(zn)zn> ( - - - ) ~Hz{x,zn)zn
(3.17) 2 \ 2 /V JmN

>c\\Hz(x,zn)\\
q
Lq-c.

Then

114II -
(3.18)

^ \\zn\\ + | | 2n | | ( c + cll2:n|| ) (by Lemma 2.1 and (3.17)).

Namely,

(3-19) | | 4 H 2 ^ C | | Z T I

Similarly,

(3.20) ||*n||2<<:|l*..

Since dimE0 < oo, for any Jf > 0 > 2, 1//3 + 1//3' = 1 and 1///'

By Lemma 2.1,

I tip

and by (3.16),

NtllrM^+IM17"-
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We get

(3.2i) K I L ^

By combining (3.19), (3.20) and (3.21) we see that (zn) is bounded in E.

Since y j is compact we conclude immediately that (zn) has a convergent subse-
quence. D

LEMMA 3 . 3 . / satisfies (f2).

P R O O F : For z e E+

(3.22) f(*) = h\z\\2- I H{x,z).

From (H3) and (H4), for any e > 0 there exists cc > 0 such that

(3.23) H(x,z)^e\z\2+ce\z\i.

By Lemma 2.1
, / x -. 1 11 112 || M2 || n7

J\z) s> „ \\z\\ — £ • c \\z\\ — c • cc \\z\\ .

The lemma then follows. D

LEMMA 3 . 4 . / satisfies (f3 ) .

PROOF: Let Q = (.5(0,r) n E ~ © E°) © {aei;0 ^ 5 ^ r}. From (Hi) and (H3),
for any e > 0 there exists cc > 0 such that

(3.24) W(x,z)>ce\z\»-e\z\2.

Therefore, for z = z~ + z° + se, we have

y5ll||
(3.25) ^ 2

Since by the Holder inequality and dim E° < 00,

| | 2 ° + , e i | |
2

L 3 = (z°+seuz)L2 < H^ + aexH^ \\z\\Lll

^c\\z° +se1\\L3 \\z\\Lp,

we see that
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or

(3.26) \\z°\

Combining (3.25) and (3.26) shows

The lemma then follows by taking e small enough and noting that // > 2. U

Now we can give the following

P R O O F OF T H E O R E M 1.1: Lemmas 3.2, 3.3 and 3.4 show that the / satisfies all
the hypotheses of Proposition 3.1. Hence / has a nontrivial critical point which gives
rise to a W1'2 solution for (ES)i . D

Next we deal with the system (ES)2 in a similar way. Suppose H has the form

of (1.2) with the 91 and q2 satisfying (Q). Let Ai = - A +qi[x) (i = 1,2) be the

Schrodinger operators acting in L2, and let Ei = T>(\Ai\ ' j . Along the lines of

Section 2, we introduce on Ei inner products and norms denoted by (-,)i and \\-\\f

respectively, such that the Ei become Hilbert spaces. In addition, we denote by ai(-, •)

the quadratic forms associated with Ai. Set E = E\ x E2 equipped with the inner

product

and norm

and consider the quadratic form on E

Moreover, let

E° = E\ x E°2,

E" = £f x Ef,

E+ =E+ xE~.

Clearly E = E~ © E° © E + is an orthogonal decomposition of E, and for any 2 =
{u,v) e l , z = z~ + z° + z+ where z° = (u°,v°),z- - (u~,v+) and z+ = (u+,v~).
It is easy to check that
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for any z = z~ + z° + z+ g E. Define

f{z)=\Q{z)- I H(x,z)

for z G E. Then critical points of / are solutions of (ES) 2 • Now repeating the procedure
of the proof of Theorem 1.1, one can get

THEOREM 3 . 5 . Suppose that H has the form of (1.2) such that qi and 92 satisfy

(Q) and H satisfies (Hx )-(Ht). Then (ES)2 has at least one nontrivial W1'2 solution.

4. T H E SUBLINEAR CASE

In this section we consider the sublinear case. Let the assumptions of Theorem
1.2 be satisfied. Below, the symbols E, E~, E°, E + , z~, z°,z+, En, / „ still have the
same meaning as in Section 3. The following propsition is a slightly variant version of
Benci-Rabinowtz [1, Theorem 1.33].

P R O P O S I T I O N 4 . 1 . Suppose

(f 1) / e C^E, R) and satisfies (PS)*;
({2) (Aere are constants p > 0, a > 0 and a v G Ef and v 6 Q = Bp fl E+

such that

f ^ <J for all z E S

where 5 = E~ 0 E° +v;

(f3 ) there is a M > 0 such that

/ ^ 0 for all zGdQ

f ^ M for all zeQ.

Then f has a critical point z with f(z) ^ a.

The proof is very easy and we omit the details.

We shall apply proposition 4.1 to the functional

f(z) = J(z)-±\\z+\\2+1-\\z-\\2 for * £ E

w h e r e J{z) — JRN G(x,z)dx.

PROOF OF THEOREM 1.2: The proof will be accomplished in several steps.

STEP 1. Assumptions (Gi)-(G 4) imply that there are positive constants a; ^ E{ (i — 1,2)
such that

(4.1) ai\zf ^ G ( x , 2 ) ^ a 1 | 2 | 1 + " V z e R N and |z| < 1,

(4.2) a2\zf ^G(x,z)^a2\zf \/x€RN and \z\^l.
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Clearly (4.1) implies 1 + v ^ /?. Note also that 1 + v > {2N)/(2 - a + N) by (G2).
Hence by Lemma 2.2, J is well-defined and J £ Cl(K,R),

Gz(x,z)<pdx, Vz,tp£E.

Moreover J is weakly continuous and y J is compact. We only show that J is weakly
continuous. Let zn £ E be such that zn—>z weakly in E. By definition

\J(zn)-J(z)\= (G(x,Zn)-G(x,z))

Note that, by (G2) and (G4)

(4.3) \G(x,z)\^a2\z\1+v + c\z\2.

For any R > 0, it follows from (4.3) and the Holder inequality that

{G(x,zn)-G(x,z))
t

By Lemma 2.2, for any e > 0 one can take RQ large such that

(4.4)

It is known that the functional

(G(x,zn)-G(x,z))

J G(x,z)£C1{W1'2{BRo,R
2),R),

and it is weakly continuous. Therefore there exists no such that

(G(x,zn)-G(x,z)) < - Vn ^ n0

which, together with (4.4), yields

\J(zn) - J(z)\ < e Vn

Hence J is weakly continuous and y J is compact.
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STEP 2. By step 1, / £ C1(E, R). Similarly to the previous section, one can easily

check that any nontrivial critical point z of / on E is an entire solution of (ES) i with

z 6 W1'2, since E C W1'2. We shall verify that / satisfies the all assumptions of

Proposition 4.1.

STEP 3. / satisfies the condition(PS)*. Let (zn) C E with zn € E,, be such that

(4.5) f(zn) ^ const, en = | |v/»(*»)| | —»0.

Then by (G i )

fn(zn) - ^S7fn{

(4.6)

For any z £ E, we write

j z(x) if | * ( z ) | < l / 0 i f N ( x ) | < l
z (x) = < z (x) — <

\ 0 if \z{x)\>l, \z(x) X\z(x)\>l.

Then (4.1), (4.2), (4.5), (4.6) imply

(4-7) ' (1 + I M ) ^ | 4 | & + | | 4 | | J M Vn.

Note that since dim E° < oo, by the Holder inequality,

(4.8) \\z°n\\l = ( 4 , 4 ) t J +

which, together with (4.7), shows

(4-9) | | ^ N

Let b be the constant such that

IMIi»<*IMI2 v*£E

by Lemma 2.2. Let 6 = 1/(26). By (G 2 ) and (G 4 ) ,

(4.10) |G 2 (a : , z ) | ^* | z | + c |z^~ 1 Vx £ RN and
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Now by ( G 2 ) and (4.10)

G z(x,z1
n)z+ + f G,(x,4)4+£ n | |

+ KH51] Kll + \ Kll Kl
Clearly, there exists a similar estimate for {z~). Therefore, by (4.7)

Combining (4.9) and (4.11), we have

(4.12) | |2n | | <

Therefore | |2n | | is bounded, and by Lemma2.2, without loss of generality we can suppose
that zn >2 weakly in E. Since S?J is compact, dim E° < oo, and for any n,m £ N

one sees that (2 n) has a Cauchy subsequence. This proves that / satisfies (PS)*.

STEP 4. / satisfies (f2). Choose e £ E+ with ||e|| = 1 and X = E~ ® E° ®Re. For
z = z~ + z° + se £ X,

(4.13) f(z)= f G{x,z)-\s* + \\\z-f.

Similarly to (4.8), we have

Hence by (4.1) and (4.2), there is 6 > 0 such that

(i) b(\\zQf + sA^fG(x,z) if IKI

(ii) 6(||*°f + S0)^JRNG(x,z) if H Î
Therefore

I*-|N if W

^ ) if (ii)

and so one can take SQ > 0 small, such that

/ (z ) ^ o- > 0 for all z £ S,

where 5 = E" © E + 5oe = E" ® E° + w.
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STEP 5. For any z E E+ , by (4.1) and (4.2)

/ ( * ) = / G{x,z)-\\\z2\\
J®N *

j\zf - \ c(\\z\f - \\z\\2)—» - oo(\\z\f - \\z\\2)

as \\z\\ —>oo since /3 < 2. One can take p > so such that

f\eQ < 0 for all z £ dQ,

f ^M for all z e Q

where Q = Bp D E + .

STEP 6. From Proposition 4.1 we immediately get Theorem 1.2. U

REMARK. Concerning (ES)2, it is easy to see that if gi and 92 satisfy ( Q a ) and
G satisfies (G i ) - (G 4 ) , then (ES)2 possesses at least one nontrivial ^ ^ ( R ^ R 2 )
solution.
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