
JFP 16 (1): 83–128, 2006. c© 2005 Cambridge University Press

doi:10.1017/S0956796805005691 Printed in the United Kingdom

83

Type-based confinement

TIAN ZHAO

Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee,

PO Box 784, Milwaukee, WI 53201-0784, USA

(e-mail: tzhao@cs.uwm.edu)

JENS PALSBERG

Computer Science Department, UCLA, 4531K Boelter Hall, Los Angeles, CA 90095-1596, USA

(e-mail: palsberg@ucla.edu)

JAN VITEK

Department of Computer Sciences, Purdue University, 250 N. University Street,

West Lafayette, IN 47907-2066, USA

(e-mail: jv@cs.purdue.edu)

Abstract

Confinement properties impose a structure on object graphs which can be used to enforce

encapsulation properties. From a practical point of view, encapsulation is essential for building

secure object-oriented systems as security requires that the interface between trusted and

untrusted components of a system be clearly delineated and restricted to the smallest possible

set of operations and data structures. This paper investigates the notion of package-level

confinement and proposes a type system that enforces this notion for a call-by-value object

calculus as well as a generic extension thereof. We give a proof of soundness of this type

system, and establish links between this work and related research in language-based security.

1 Introduction

While object-oriented languages provide syntactic support for encapsulating fields

of object structures via access and visibility annotations, this form of name-based

encapsulation only protects variables and the values they refer to. The runtime

behavior of programs clearly shows that name-based protection mechanisms are

not sufficient to protect an object’s representation. Reference semantics allows

creating dynamic aliases to an object referred to from a protected variable, which

may lead to unintended side-effects. This has implications for software engineering

and information security. The software engineering drawbacks have been discussed

by Leavens (1991): without strong encapsulation it is difficult to reason about

programs modularly. Information security requires that boundaries between trusted

and untrusted components be established. Strong encapsulation is one way to define

such boundaries and ensure that some parts of a system not be exposed to untrusted

components.

Research on strong encapsulation started in the early 1990’s. The work on

Islands (Hogg, 1991) stands out as one of the first attempts to propose a language

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

84 T. Zhao et al.

abstraction for enforcing strong encapsulation. A good summary of the early research

on aliasing appeared in Hogg et al. (1992). The original flexible alias protection

paper (Noble et al., 1998) proposed an approach that relied on type qualifiers and

generic types to control aliasing. Many researchers extended this work, referred

to as ownership types: Clarke et al. (1998) and Clarke (2001) formalized the type

system, Boyapati et al. (2002; 2003c) extended the expressive power and defined

domain-specific variants. A complete list is given in the related work section.

We view strong encapsulation and aliasing control as a prerequisite for writing

secure systems out of components that are not necessarily trusted. In this paper

we investigate a programming language extension and programming discipline for

enforcing strong encapsulation, or confinement, in languages such as Java and C#.

What sets our work apart from previous results is that rather than aiming for

the most expressive confinement mechanism, we look for the least disruptive one:

an encapsulation mechanism that requires as few changes as possible to the tool

chain (compilers, verifiers, virtual machines, etc.) and the smallest possible changes

to the programming model. Ideally, it should simply codify best practice principles

already familiar to programmers. This paper shows that it is possible to obtain

a useful degree of encapsulation with very few changes to the semantics of an

object-oriented language and retain a natural programming model.

Confined types are a mechanism for strong encapsulation for the Java program-

ming language (Vitek & Bokowski, 2001). They are non-intrusive as they require

few changes to the source language and programming model and only two new

program annotations. Classes that must be encapsulated are marked as confined

and methods that can be safely inherited by confined classes are marked anonymous.

Confined types are a proper restriction of the language as programs written with

confinement annotations are valid Java programs if the annotations are erased. Vitek

and Bokowski (2001) showed that confined types can be checked independently of

other properties by inspection of the bytecode. They require no changes to compiler,

verifier or virtual machine. The encapsulation guarantee afforded by confined types

is the following: an instance of an annotated class can be manipulated only by

objects defined in the same Java package. Java packages are software modules

bundling a number of classes. They have very little role in the language apart from

providing a scoping mechanism for class declarations. Confinement can be viewed

as strengthening visibility rules to ensure that instances of a package-scoped class

do not escape their defining package.

Confined types are type qualifiers in the sense of Foster et al. (1999), though their

work addresses a language without subtyping and inheritance. For confined types

it is necessary to restrict widening of types to prevent a confined type from being

cast to a plain reference. The confine keyword introduced in Foster et al. (1999) is

unrelated to our notion of confinement.

The encapsulation property enforced by confined types is static and coarse grained.

There are a finite number of scopes, bounded by the number of distinct packages

in the program and objects within a package cannot be differentiated. This can be

contrasted with ownership type systems à la Clark (2001), where each object can

define its own scope and different instances of the same class can be protected from

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 85

on another. Extending confined types with generics achieves some of the flexibility

of ownership types, but the number of scopes remains bounded.

A significant drawback of ownership type systems is that they require an overhaul

of the language and force programmers to be aware of object ownership throughout

their design. Without extensive empirical evaluation, it remains to be seen if the

benefits of such language extensions outweigh their costs. Confined types are simpler

in the sense that annotations are only needed for packages that require protection.

The rest of the system can be programmed in plain Java without even knowing

about confinement. Confinement checks are applied only to code of packages that

declared confined types. In related work we developed a whole-program confinement

inference algorithm (Grothoff et al., 2001). Analysis of a large body of Java code

reveals that many classes can be confined without any changes to the source code.

This supports our contention that confinement is a natural property of well-designed

Java programs. Recent work by Potanin et al. (2004b) provides an elegant account

of generic ownership and hints at ways to incorporate a more expressive ownership

system at little cost in simplicity.

The main contributions of the paper are the following:

• We present a straightforward formalization of the rules posited in Vitek

and Bokowski (2001) as a type system for a simple call-by-value object

calculus. Our calculus, ConfinedFJ, is based on the Featherweight Java (FJ)

calculus (Igarashi et al., 2001). FJ is a class-based object calculus designed

to model the Java type system. We believe that the simplicity of the type

rules and the backwards compatibility with Java are encouraging signs for the

prospect of acceptance by practitioners.

• We prove the soundness of the type system, as well as a Confinement

Theorem stating that well-typed programs preserve heap confinement. This

is the first proof of confinement for a class-based calculus with a small-

step operational semantics. Previous results by Foster (2002) did not treat

subtyping. Clarke’s ownership results are for a variant of Cardelli and Abadi’s

imperative object calculus (Abadi & Cardelli, 1996) with a big-step semantics.

Banerjee and Naumann adopted a denotational semantics in Banerjee and

Naumann (2002a). Finally, proving the soundness of the ownership type system

of Boyapati (2004) remains an open problem.

• We extend the original definition of confined types to support generics

in a language modeled on the Featherweight Generic Java. Significantly,

supporting genericity requires adding two rules to the constraints of Vitek

and Bokowski (2001). We show by way of examples that generics significantly

increase the expressive power of confined types. Our proof of the Confinement

Theorem is the first such proof for a generic type system that we are aware of.

ConfinedFJ abstracts Java by omitting features which do not affect the Con-

finement Theorem, these include exceptions, interfaces, downcasts, and state. We

argue that these features can be easily incorporated in the formalization. Checked

exceptions can be modeled by enriching return values. As they appear in the type

signature of the method, the confinement rules for exceptions are exactly the same

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

86 T. Zhao et al.

as for other objects. Unchecked exceptions cannot be confined, as there is no

simple way to determine which unchecked exceptions may be thrown by a method.

Interfaces are dealt with in the same way as with class definition. Downcasts, i.e.

casts from a supertype to a subtype, can introduce runtime failures which complicate

the formal treatment and proofs. As confinement is a downwards-closed property

of the type system, downcasts cannot violate encapsulation. Finally, it may appear

paradoxical that a stateless calculus is used to address issues linked to aliasing.

However, confinement, unlike other ownership type systems, treats all values of the

same type equally. The confinement rules partition the set of types and prevent types

belonging to different partition from being confused with one another.

ConfinedFJ departs from FJ by adopting a call-by-value semantics and by keeping

track of evaluation context in the dynamic semantics. These changes permit us to

precisely determine which objects are accessed during the evaluation of a method.

Another approach is to rely on an extended syntax to keep track of evaluation

contexts. This is in line with the syntactic type abstraction of Grossman et al. (2000)

or the box-π of Sewell and Vitek (2003). In a previous version of the calculus

we tried to follow Grossman et al., but with a lazy semantics, and found that the

dynamic semantics was cumbersome and the proof of the Confinement Theorem

was significantly more challenging.

Paper organization

Section 2 presents a motivating example and illustrates the main idea behind confined

types. Section 3 introduces confinement rules. Section 4 gives a more detailed

presentation of confined types. Section 5 introduces Confined Featherweight Java

and gives it an operational semantics and a static type system. Section 6 presents

our Confined Generic Featherweight Java. Section 7 discusses other work related to

aliasing control.

The notion of confined types was first introduced by Bokowski and Vitek (2001).

The paper introduced a confinement checker for the full Java language and gave an

informal correctness argument. Grothoff et al. (2001) implemented a static analysis

tool for inferring confinement annotations.

This work extends our previously published paper (Zhao et al., 2003). The main

difference with the earlier papers is that the set of confinement and anonymity rules

has been simplified. The OOPSLA’03 version of this work did not include a full

proof of the Confinement Theorem. The present paper also includes an extended

discussion and examples.

2 Motivating example: information security

The original motivation for confined types arose out of a security breach in the SUN

Java Virtual Machine. This section presents a simplified version of the program

discussed in Vitek and Bokowski (2001). The problem resulted from a combination

of two features of Java, namely, dynamic aliasing and side-effects. Figure 1 contains

the definition of class Class which, in Java, holds meta-information about a class

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 87

class Class {
private Identity[] signers;

public Identity[] getSigners() {
return signers;

}
}

Fig. 1. Signatures without confined types. The signers field holds capabilities that are

managed by the security subsystem. By returning the object referenced by signers, the class

expose the array to updates by outside code.

loaded by the virtual machine. Each class has an array of Identity objects that hold

the signatures of principals vouching for the class. This array is use to determine

the access rights of the class. The interface Class includes a method getSigners()

which returns the array of signatures. The array is declared private to ensure

that the field is visible only in the body of Class. Since, getSigners() is public

untrusted code can obtain a dynamic alias to the object referred to by signers and,

since arrays are mutable the code can simply change its permissions.

Interestingly, signers was correctly identified as requiring protection, but the

implementation of the class failed to enforce the designer’s intention. In this

particular example, what seems to be missing from the language is a way to express

that it is the contents of the field and not only its name that should be protected.

This kind of security flaw cannot be easily addressed by the mechanisms provided

by the Java language. There are at least three ways to try to address the problem.

Firstly, one may try to restrict the scope of the Identity class to its defining

package using access modifier. But declaring the class to be package-scoped does

not guarantee that the array will not escape as it can be widened to a public

supertype. A second potential solution is to use stack inspection. This mechanism

checks dynamically whether an operation is permitted by reflectively inspecting the

call stack of the current thread. Execution proceeds past the check if the intersection

of the access rights of all methods on the stack allows it. There are two problems with

that solution: firstly, there is no convenient place to add access checks, security is

violated when the array is updated. Secondly, even if it was possible, the performance

cost of checking all array stores would be prohibitive. Finally, a pragmatic solution

is to copy the array, thus avoiding the sharing that is the root of the problem.

Unfortunately this is ad hoc and error-prone as the programmer must manually

identify all cases where a dynamic alias may reveal a protected object.

2.1 A solution with confined types

Confined types provide a way for programmers to declare that some objects are

restricted to a scope. In the above example, the Identity class can be declared as

confined and an automated confinement checking procedure will validate that the

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

88 T. Zhao et al.

confined class SecureIdentity {
... // original implementation

}

public class Identity {
SecureIdentity target;

Identity(SecureIdentity t) { target = t; }
... // public operations on identities;

}

public class Class {
private SecureIdentity[] signers;

public Identity[] getSigners() {
Identity[] pub = new Identity[signers.length];

for (int i = 0; i < signers.length; i++)

pub[i] = new Identity(signers[i]);

return pub;

}
}

Fig. 2. Signatures with confined types. The Identity class has been renamed SecureIdentity

and declared confined. A new Identity class has been added to allow untrusted code to get

information about the signers of a class without allowing modifications to the internal state.

program does not expose instances of that class. Refactoring the original program

to use confined types is done in several steps. First Identity class is made confined.

This expresses the programmer’s intent that references to Identity instances should

not escape from the implementation of Class. The code that manipulates objects of

this class must belong to the current package. Since identities are exported through

the getSigners() method, the checker will flag the method with a confinement

error. The second step of refactoring, which is needed in order to preserve the

interface of class Class, is to provide a public facade class, Identity, that can

be exported to clients and rename the original Identity class to SecureIdentity.

The getSigner() method is rewritten to create an array of Identity instances. The

resulting code typechecks and is given in Figure 2. The final result of refactoring the

program is not really surprising it follows the guidelines set for Guard Objects (Gong,

1998). The difference is that it comes with a guarantee that the guarded object (the

instance of SecureIdentity) is not revealed by accident.

2.2 Related approaches

It is interesting to contrast confined types with other work in language-based security.

Confined types are related to capability systems if one views object references as

capabilities and the type system as a reference monitor. There is a substantial body of

work on using facade or wrapper objects to interpose between trusted and untrusted

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 89

components (Levy, 1984; Gong, 1998; Hagimont et al., 1996; Wallach et al., 1997;

Vitek & Bryce, 2001). Discretionary access control checking can be added to these

systems by stack introspection (Gong, 1999). Confined types are complementary

to these approaches as they give static guarantee of encapsulation. A type-based

approach to enforcing encapsulation of heap location was presented in Leroy and

Rouaix (1998) in the context of a functional language. The type system considered

there did not have subtyping nor runtime coercions.

3 Confined types

In modern object-oriented programming languages, confinement can be achieved

by disciplined use of built-in static access control mechanisms combined with

some simple coding idioms. Confinement enforces the following informal soundness

property:

An object of confined type is encapsulated within its defining scope.

We assume the granularity of confinement to be a Java package to leverage existing

access control mechanisms and minimize the changes to the programming model.

In fact, as we show in section 3.4, many existing Java programs require no changes.

Confined types establish a distinction between public types and, so called, confined

types. The intended programming model is to have systems in which classes defined

in the same packages form two distinct software layers: a package “interface” made

up of public classes and a package “core” consisting of confined classes. We use

the term interface loosely to refer to the classes that are exposed directly to clients

of the package. Confinement ensures that core classes will not be directly accessed

outside of the package by extending the existing Java visibility rules with restrictions

on subtyping and inheritance.

Consider the following simple example. A class Bucket is used to implement

a hash table class, Table. Hash table buckets are an example of internal data

structures which should not escape the context of the enclosing class. In Java, the

first step towards that goal is to declare class Bucket package scoped, thus ensuring

that its visibility is restricted to the class’s defining the package. (Or Bucket can

be a package-scoped inner class but there will be similar problems as described

below.)

package p;

public class Table {
private Bucket[] buckets;

public Object get(Object key) { ...}
}

confined class Bucket {
Bucket next;

Object key, val;

}

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

90 T. Zhao et al.

C1 A confined type must not appear in the type of a public (or protected) field or the

return type of a public (or protected) method.

C2 A confined type must not be public.

C3 Methods invoked on an expression of confined type must either be defined in a confined

class or be anonymous methods.

C4 Subtypes of a confined type must be confined.

C5 Confined types can be widened only to other confined types.

C6 Overriding must preserve anonymity of methods.

Fig. 3. Confinement constraints.

But what if one of Table’s public methods, such as get(), were to return a

bucket or store a reference in one of its public fields? One can view this as an escape

analysis problem: can references to the instances of a package-scoped class escape

the scope of their enclosing package? If not, then the objects of such a class are

encapsulated. Enforcing confinement implies tracking the spread of confined objects

within a package and preventing them from crossing package boundaries. Since

confinement is couched in terms of object types, widening a value from a confined

type to a non-confined type presents a risk and is thus treated as confinement

violation.

Confinement can be enforced (or inferred) using two sets of constraints. The

first set of constraints, confinement rules, applies to the classes defined in the same

package as the confined class. These rules track values of confined types and ensure

that they are neither exposed in public members, nor widened to non-confined types.

The second kind of constraints, anonymity rules, applies to methods inherited

by the confined classes, potentially including library code, and ensures that these

methods do not leak a reference to the distinguished variable this which may refer

to an object of confined type.

3.1 Confinement rules

The confinement rules must in Figure 3 hold for all classes of a package containing

confined types.

Rule C1 prevents exposure of confined types in the public interface of the package

as client code could break confinement by accessing values of confined types through

a type’s public interface. Rule C2 is needed to ensure that client code cannot

instantiate a confined class. It also prevents client code from declaring field or

variables of confined types. The latter restriction is needed so that code in a

confining package will not mistakenly assign objects of confined types to the fields

or variables outside that package. Rule C3 ensures that methods invoked on an

object enforce confinement. In the case of methods defined in the confining package,

this ensues from the other confinement rules. Inherited methods defined in another

package do not have access to any confined fields, since those are package-scoped

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 91

A1 The this reference is used only to select fields and as the receiver in the invocation

of other anonymous methods.

Fig. 4. Anonymity constraint.

(Rule C1). However, an inherited method of confined class may leak the this

reference, which is implicitly widened to the method’s declaring class. To prevent

this, Rule C3 requires these methods to be anonymous (as explained below). Rule

C4 prevents the declaration of a public subclass of a confined type. This prevents

spoofing leaks where a public subtype defined outside of the confined package is used

to access private fields (Clarke et al., 2003), and it also necessary when considering

generic classes in Section 6. Rule C5 prevents code within confining packages from

assigning values of confined types to fields or variables of public types. Finally, Rule

C6 allows us to statically verify the anonymity of the methods that are invoked on

expressions of confined types.

3.2 Anonymity rule

The anonymity rule in Figure 4 applies to inherited methods which may reside in

classes outside of the enclosing package. This rule prevents a method from leaking

the this reference. A method is anonymous if it has the following property.

This prevents an inherited method from storing or returning this as well as

using it as an argument to a call. Selecting a field is always safe, as it cannot break

confinement because only the fields visible in the current class can be accessed.

Method invocation (on this) is restricted to other methods that are anonymous as

well. Note that we check this constraint assuming the static type of this and Rule

C6 ensures that the actual method invoked on this will also be anonymous.

Thus, Rule C6 ensures that the anonymity of a method is independent of the

result of method lookup. However, as explained in Grothoff et al. (2001), Rule C6

is not necessary if we infer the anonymity of a method relative to a specific type (in

which case we need to have Rule C4). We choose to keep Rule C6 because it is also

needed for confined generic class in Section 6.

Rule C6 could be weakened to apply only to methods inherited by confined

classes. For instance, if an anonymous method m of class A is overridden in both

class B and C, and B is extended by a confined class while C is not, then the method

m in B must be anonymous while m of C needs not be. The reason is that the method

m of C will never be invoked on confined objects and thus there is no need for it to

be anonymous.

3.3 Checking confinement

Validation of these rules is modular. Classes can be verified independently. Moreover,

the confinement invariant is backwards compatible in the sense that packages that

do not use confinement or contain classes extended by confined classes can be

checked by the normal Java type checker and do not require further processing.

The confinement rules outlined above place no constraints on clients of a confined

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

92 T. Zhao et al.

package (rule C1 is crucial in this respect). The only constraints that must be enforced

are that all classes within the package of a confined class must be checked and Rule

A1 must be applied to methods inherited by confined classes if these methods

must be anonymous by Rule C3 or C6. As long as all classes in a package are

known, confinement annotations can trivially be checked as part of the source-level

type checking or by bytecode verification. Confined-type inference (as opposed to

type checking) can be performed on a per-package basis, with the exception of

anonymous methods which require analyzing parent classes (Grothoff et al., 2001).

3.4 Empirical evaluation

Grothoff implemented a tool to evaluate the practicality of confined types on real

programs (Grothoff et al., 2001). The tool infers confinement by a whole-program

static analysis. A study of over 100,000 Java classes of varying size, purpose and

origin, gives empirical evidence to support the claim that confinement constraints

are not too restrictive. The analysis focus on package-scoped classes, as public

ones cannot be confined. Approximately 7,000 confined classes were found in the

benchmark suite. Manual inspection of the source code suggests that many other

classes could be confined with minimal effort. In another study, Potanin et al. (2004a)

used dynamic analysis to get an upper bound on the number of objects that are

actually confined during program execution. They report that more than 30% of all

objects within their benchmark suite are effectively confined. Anonymity is also quite

frequent, holding in 40% of the methods in the benchmark suite. The results also

show that the single largest source of confinement violation, approximately 2000

classes, comes from collection classes. This is because all arguments to a collection

type are widened to Object, which violates confinement. We surmise that most

of these violations could be avoided with generic classes and proper extensions of

confinement to handle genericity.

From a practical perspective, confined types can be criticized as they seem to

preclude code reuse. For a class to be confined it must be local to a particular

package and, by definition, inaccessible to all other packages. Thus it is, for instance,

not possible to have the same confined vector class be used in several packages.

This can become unwieldy when dealing with programs that require the same logic

to be available in, and confined to, different packages. Any solution to this problem

should allow the definition of classes in a natural fashion, i.e. without imposing

coding conventions more restrictive than those presented above, and must permit

use of those classes as confined types in certain contexts and non-confined in

other. Previous work failed to provide a satisfactory solution to this problem. The

extension of confinement to generic classes described in section 6 addresses this issue

by allowing generic classes to have confined instantiations.

4 Confined Featherweight Java

Confined Featherweight Java, which we refer to as ConfinedFJ, is a minimal

core calculus for modeling confinement for a Java-like object-oriented language.

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 93

ConfinedFJ extends Featherweight Java (FJ) which was designed by Igarashi, Pierce

and Wadler (2001) to model the Java type system. It is a core calculus as it limits

itself to a subset of the Java language with the following five basic expressions:

object construction, method invocation, field access, casts and local variable access.

This spartan setting has proved appealing to researchers. ConfinedFJ stay true to

the spirit of FJ. The surface differences lie in the presence of class and method level

visibility annotations. In ConfinedFJ, classes can be declared to be either public

or confined, and methods can optionally be declared as anonymous. One further

difference is that ConfinedFJ class names are pairs of identifiers bundling a package

name and a class name just as in Java.

4.1 Syntax

Let metavariable L range over class declarations, C, D, E range over a denumerable set

of class identifiers, K, M range over constructor and method declarations respectively,

and f and x range over field names and variables (including parameters and the

pseudo-variable this) respectively. Let e, d range over expressions and u, v, w range

over values.

We adopt FJ notational idiosyncrasies and use an over-bar to represent a finite

(possibly empty) sequence. We write f to denote the sequence f1, . . . , fn and similarly

for e and v. We write C f to denote C1 f1, . . . Cn fn, C <: D to denote C1 <:

D1, . . . , Cn <: Dn and finally this.f = f to denote this.f1 = f1, . . . , this.fn = fn.

The syntax of ConfinedFJ is given in Figure 5. An expression e can be either

one of a variable x (including this), a field access e.f, a method invocation e.m(e),

a cast (C) e, an object new C(e). Since ConfinedFJ has a call-by-value semantics,

it is expedient to add a special syntactic form for fully evaluated objects, denoted

new C(v).

Class identifiers are pairs p.q such that p and q range over denumerable disjoint

sets of names. For ConfinedFJ class name p.q, p is interpreted as a package name

and q as a class name. In ConfinedFJ, class identifiers are fully qualified. For a class

identifier C, packof (C) denotes the identifier’s package prefix, so, for example, the

value of packof (p.O) is p.

Class declarations are annotated with an optional visibility modifier conf; a public

class is declared by class C � D {. . .} and a confined class is conf class C � D{. . .}.
Methods can be annotated with the optional anon modifier to denote anonymity.

4.2 Dynamic Semantics

The dynamic semantics of ConfinedFJ is given in Figure 7 in terms of a small-step

operational semantics. The main departures from FJ are the choice of a call-by-value

semantics and the addition of an explicit stack, both of which are required for the

proof of the Confinement Theorem of Section 5. Computation rules are of the form

P →P ′, where P is a possibly empty sequence of frames defined by the grammar:

P ::= nil | P . v m e

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

94 T. Zhao et al.

C ::= p.q

L ::= [conf] class C � D { C f; K M }

K ::= C(C f) { super(f); this.f = f; }

M ::= [anon] C m(C x) { return e; }

e ::= x | e.f | e.m(e) | (C) e | new C(e)

v ::= new C(v)

Fig. 5. ConfinedFJ: Syntax.

A frame v m e denotes the invocation of some method m on a receiver object v where

e is the body of the method being evaluated. As usual, →∗ denotes transitive and

reflexive closure of →.

We define, in Figure 7, an evaluation context to be an expression E[◦] with a

hole and E[e] means E with the hole replaced by e. The syntax of method and

constructor contexts E[◦].m(e), v.m(v, E[◦], e), new C(v, E[◦],e) enforce left-to-right

evaluation order and call-by-value semantics. Evaluation context are deterministic.

For any expression e, there is exactly one evaluation context. This formally stated

in Lemma 1, which can be proved by induction on the structure of e.

Lemma 1 (Context determinacy.)

For all closed expression e, exactly one of the following holds:

1. e is a value;

2. e has the form E[v.f] for some E;

3. e has the form E[(C) v] for some E;

4. e has the form E[v.m(v)] for some E.

We now detail the evaluation rules.

• Rules R-Field and R-Cast evaluate field access and type cast expressions.

The rules differ from FJ only in that subexpressions are fully evaluated.

• Rule R-Invk evaluates a method invocation of the form e = v′.m′(v′) in

some context P . v mE[◦]. A new frame is created with v′ as receiver, m′ as

method, and the body of m′ as the expression being evaluated. The resulting

configuration has the form P . v mE[e] . v′ m′ e′. This rule differs from FJ due

to the presence of frames.

• Rule R-Ret describes how the result of a method invocation is returned to its

calling context. If the topmost frame is a value, and the configuration has the

form v mE[e] . v′ m′ v′′, then the top frame is popped off and expression e is

replaced the result v′′. The replacement is unambiguous since, by Lemma 1,

context E[◦] is unique. This rule has no correspondence in FJ.

Figure 6 gives some standard definitions. We assume a class table CT which stores

the definitions of all classes of ConfinedFJ program such that CT (C) is the definition

of class C. Following Igarashi et al. (2001), we leave the class table as an implicit

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 95

Subtyping:

C <: C
C <: D D <: E

C <: E

CT (C) = [conf] class C � D { . . . }
C <: D

Field look-up:

fields(l.Object) = ()

fields(D) = (D g) CT (C) = [conf] class C � D { C f; K M }
fields(C) = (D g, C f)

Method definition lookup:

CT (C) = [conf] class C � D { C f; K M }
methods(C) = M

[anon] B m(B x) { return e; } ∈ methods(C)

mdef (m, C) = C

CT (C) = [conf] class C � D { C f; K M } m is not defined in M

mdef (m, C) = mdef (m, D)

Fig. 6. ConfinedFJ: Types and Lookup.

Evaluation:

e = new C(v).fi fields(C) = (D f)

P . v m E[e] → P . v m E[vi]
(R-Field)

e = (C′) new C(v) C <: C′

P . v m E[e] → P . v m E[new C(v)]
(R-Cast)

e = v′.m′(v) v′ = new C(u) mbody(m′, C) = (x, e0)

P . v m E[e] → P . v m E[e] . v′ m′ [v/x, v
′
/this]e0

(R-Invk)

e = v′.m′(v)

P . v m E[e] . v′ m′ v′′ → P . v m E[v′′]
(R-Ret)

Evaluation contexts:

E[◦] ::= ◦ | (C) E[◦] | E[◦].fi | E[◦].m(e) | v.m(v, E[◦], e) | new C(v, E[◦], e)

Fig. 7. ConfinedFJ: Dynamic semantics.

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

96 T. Zhao et al.

parameter to the semantics. The subtyping relation C <: D denotes that class C is

a subtype of class D. Every class is a subtype of l.Object. The function fields(C)

return the list of all fields of the class C including inherited ones; methods(C) returns

the list of all methods in the class C; mdef (m) returns the identifier of defining class

for the method m.

4.3 Static semantics

Figure 8 defines relations used in the static semantics. The predicate conf (C) holds

if the class table maps C to a class declared as confined. Functions mtype(m, C) and

mbody(m, C) yield, respectively, the type signature and body of a method. Predicate

override(m, C, D) holds if a m is a valid, anonymity preserving, redefinition of an

inherited method or if this is the method’s original definition. Class visibility, written

visible(C, D), states that a class C is visible from D if, either, C is public, or if both

classes are in the same package.

The safe subtyping relation, written C � D, is a confinement preserving restriction

of the subtyping relation <:. A class C is a safe subtype of D if C is a subtype of D,

and either C is public or D is confined. This relation is used in the typing rules to

prevent widening a confined type to a public type; confinement-preserving widening

requires safe subtyping to hold. The type system further constrains subtyping by

enforcing that all subclasses of a confined class must belong to the same package

(see the T-Class rule and the definition of visibility). This relation is also transitive.

To see that, suppose that C � C′ and C′ � C′′. Then, by definition, C <: C′, C′ <: C′′,

and if C is confined, then so is C′, and in which case C′′ must be confined as well.

Since subtyping relation is transitive, we have C <: C′′. Thus, C � C′′.

Figure 9 defines constraints imposed on anonymous methods. A method m is

anonymous in class C, written anon(m, C), if its declaration is annotated with the

anon modifier. The following syntactic restrictions are imposed on the body of an

anonymous method. An expression e is anonymous in class C, written anon(e, C), if

the pseudo-variable this is used solely for field selection and anonymous method

invocation. (C) e is anonymous if e is anonymous. new C(e) and e.m(e) are anonymous

if e �= this and e, e are anonymous. With the exception of this all variables are

anonymous. this.f is always anonymous, and this.m(e) is anonymous in C if m

is anonymous in C and e is anonymous. We write anon(e, C) to denote that all

expressions in e are anonymous.

4.3.1 Expression typing rules

The typing rules for ConfinedFJ are given in Figure 10, where type judgments have

the form Γ 	 e : C, in which Γ is an environment that maps variables to their types.

The main difference with FJ is that these rules disallow unsafe widening of types.

This is captured by conditions of the form C � D which enforce safe subtyping.

• Rules T-Var and T-Field are standard.

• Rule T-New prevents instantiating an object if any of the object’s fields with

a public type is given a confined argument. That is, for fields with declared

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 97

Confined types, type visibility, and safe subtyping:

CT (C) = conf class C � D {. . .}
conf (C)

¬conf (C)

visible(C, D)

packof (C) = packof (D)

visible(C, D)

C <: D conf (C) ⇒ conf (D)

C � D

Method type lookup:

mdef (m, C) = D [anon] B m(B x) { return e; } ∈ methods(D)

mtype(m, C) = B → B

Method body look-up:

mdef (m, C) = D [anon] B m(B x) { return e; } ∈ methods(D)

mbody(m, C) = (x, e)

Valid method overriding:

either m is not defined in D or any of its parents, or

mtype(m, C) = C → C0 mtype(m, D) = C → C0 (anon(m, D) ⇒ anon(m, C))

override(m, C, D)

Fig. 8. ConfinedFJ: Auxiliary definitions.

Anonymous method:

mdef (m, C0) = C′
0 anon C m (C x) {. . .} ∈ methods(C′

0)

anon(m, C0)

Anonymity constraints:

anon(e, C)

anon((C′) e, C)

anon(e, C)

anon(new C′(e), C)

x �= this

anon(x, C)

anon(e, C)

anon(e.f, C)

anon(e, C) anon(e, C)

anon(e.m(e), C)

anon(this.f, C)

anon(m, C) anon(e, C)

anon(this.m(e), C)

Fig. 9. ConfinedFJ: Syntactic Anonymity Constraints.

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

98 T. Zhao et al.

Expression typing:

Γ 	 x : Γ(x) (T-Var)

Γ 	 e : C fields(C) = (C f)

Γ 	 e.fi : Ci
(T-Field)

Γ 	 e : C0 Γ 	 e : C mtype(m, C0) = D → C C � D

mdef (m, C0) = D0 (C0 � D0 ∨ anon(m, D0))

Γ 	 e.m(e) : C
(T-Invk)

fields(C) = (D f) Γ 	 e : C C � D

Γ 	 new C(e) : C
(T-New)

Γ 	 e : D D � C

Γ 	 (C) e : C
(T-UCast)

Method typing:

x : C, this : C0 	 e : D D � C override(m, C0, D0)

x : C, this : C0 	 visible(e, C0) (anon(m, C0) ⇒ anon(e, C0))

[anon] C m(C x) { return e; } OK IN C0 � D0

(T-Method)

Class typing:

fields(D) = (D g) K = C(D g, C f) {super(g); this.f = f; }
visible(D, C) (conf (D) ⇒ conf (C)) M OK IN C � D

[conf] class C � D { C f; K M } OK (T-Class)

Static expression visibility:

visible(Γ(x), C)

Γ 	 visible(x, C)

Γ 	 e.fi : C′ visible(C′, C) Γ 	 visible(e, C)

Γ 	 visible(e.fi, C)

visible(C′, C) Γ 	 visible(e, C)

Γ 	 visible((C′) e, C)

visible(C′, C) ∀i, Γ 	 visible(ei, C)

Γ 	 visible(new C′(e), C)

Γ 	 e.m(e) : C′ visible(C′, C) Γ 	 visible(e, C) ∀i, Γ 	 visible(ei, C)

Γ 	 visible(e.m(e), C)

Fig. 10. ConfinedFJ: Typing rules.

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 99

types D and argument types C, relation C � D must hold. By definition of

Ci � Di, if Ci is confined then Di is confined as well.

• Rule T-Invk prevents widening of confined arguments to public parameters by

enforcing safe subtyping of argument types with respect to parameter types.

In order to prevent implicit widening of the receiver, we consider two cases.

Assume that the receiver has type C0 and the method m is defined in D0, then

it must either be the case that C0 is a safe subtype of D0 or that m has been

declared anonymous in D0.

• Rule T-UCast prevents casting a confined type to a public type by enforcing

safe subtyping. The rule needs only cover upcasts as ConfinedFJ does not

allow downcasts. Downcasts are not relevant as they preserve confinement,

this comes the fact that by Rule T-Class a confined class cannot have a public

subclass. Casting an object of public class to confined type will thus result in

runtime exception.

4.3.2 Typing rules for methods and classes

Figure 10 also gives rules for typing methods and classes.

• Rule T-Method places the following constraints on a method m defined in

class C0 with body e. The type D of e must be a safe subtype of the method’s

declared type C. The method must preserves anonymity declarations. If m

is declared anonymous, e must comply with the corresponding restrictions.

The most interesting constraint is the visibility enforced on the body by

Γ 	 visible(e, C0), which is defined recursively over the structure of terms. It

ensures that the types of all subexpressions of e are visible from the defining

class C0. In particular, the method parameters used in the method body e must

have types visible in C0.

• Rule T-Class requires that if class C extends D then D be visible in C and if D

is confined, then so is C. Rule T-Class allows the fields of a class C to have

types not visible in C, but the constraint of Γ 	 visible(e, C) in Rule T-Method

prohibits the method of C from accessing such fields.

The class table CT is well-typed if all classes in CT are well-typed. For the rest

of this paper, we assume CT to be well-typed.

4.3.3 Relation to the informal rules

We now relate the rules given in section 3 with the ConfinedFJ type system. The

effect of Rule C1, which limit the visibility of fields if their type is confined, is

obtained as a side effect of the visibility constraint as it prevents code defined

in another package from accessing a confined field. ConfinedFJ could be extended

with field and method access modifier without significantly changing the type system.

The expression typing rules enforce confinement rules C3 and C5 by ensuring that

methods invoked on an object of confined type are either anonymous or defined in

a confined class, and that widening is confinement preserving. Rule C2 uses access

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

100 T. Zhao et al.

modifiers to limit the use of confined types; and the same effect is achieved by

the visibility constraint Γ 	 visible(e, C) on expression part of T-Method. Rule C4,

which states that subclassing is confinement preserving, is enforced by T-Class. Rule

C6, which states that overriding is anonymity preserving, is enforced by T-Method.

Finally the anonymity constraint of Rule A1 is obtained by the anon predicate in

the antecedent of T-Method.

4.4 Two ConfinedFJ examples

Consider the following stripped down version of a hash table class written in

ConfinedFJ. The hash table is represented by a class p.Table defined in some

package p that holds a single bucket of class p.Buck. The bucket can be obtained

by calling the method get() on a table, the bucket’s data can then be obtained by

calling getData(). In this example, buckets are confined but they extend a public

class p.Cell. The interface of p.Table.get() specifies that the method’s return type

is p.Cell, this is valid as that class is public. In this example a factory class, named

p.Factory, is needed to create instances of p.Table because the table’s constructor

expects a bucket and since buckets are confined, they cannot be instantiated outside

of their defining package.

This program does not preserve confinement as the body of the p.Table.get()

method returns an instance of a confined class in violation of the widening rule.

The breach can be exhibited by constructing a class o.Breach in package o which

creates a new table and retrieves its bucket.

class o.Breach � l.Object {

l.Object main () { return new p.Factory().table().get(); }
}

The expression new o.Breach().main() thus evaluates in three reduction steps

to new p.Buck() exposing the confined class to code defined in another pack-

age. This example is not typable in the ConfinedFJ type system. The expression

p.Table.get() does not type-check because Rule T-Method requires the type of

class p.Table � l.Object {

p.Buck buck;

Table(p.Buck buck) { super(); this.buck = buck; }

p.Cell get() { return this.buck; }
}

class p.Cell � l.Object {
l.Object data;

l.Object getData() { return this.data; }
}

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 101

conf class p.Buck � p.Cell {
p.Buck() { super(); }

}

class p.Factory � l.Object {
p.Factory() { super(); } }
p.Table table() { return new p.Table(new p.Buck()); }

}

the expression returned by the method to be a safe subtype of the method’s declared

return type. The expression has the confined type p.Buck while the declared return

type is the public type p.Cell.

In another prototypical breach of confinement, consider the following situation

in which the confined class p.Self extends a o.Broken parent class that resides in

package o. Assume further that the class inherits its parent’s code for the reveal()

method.

conf class p.Self � o.Broken {
p.Self() { super(); }

}

class p.Main � l.Object {
p.Main() { super(); }
l.Object get() { return new p.Self().reveal(); }

}

Inspection of this code does not reveal any breach of confinement. But if we widen

the scope of our analysis to the o.Broken class, we may see:

class o.Broken � l.Object {
o.Broken() { super(); }
l.Object reveal() { return this; }

}

Invoking reveal() on an instance of p.Self will return a reference to the object

itself. This does not type-check because the invocation of reveal() in p.Main.get()

violates the Rule T-Invk (due to that the non-anonymous method reveal(),

inherited from a public class o.broken, is invoked on an object of a confined

type p.Self). The method reveal() cannot be declared anonymous as the method

returns this directly.

5 Confinement properties

In this section, we describe properties of ConfinedFJ and prove the Confinement

Theorem. During the execution of a well-typed program, a confined object can be

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

102 T. Zhao et al.

∅ 	 e.fi : C′ visible(C′, C) (e = new C0(u) ∨ visibleC0 (e, C))

visibleC0 (e.fi, C)

visible(C′, C) visibleC0 (e, C)

visibleC0 ((C
′) e, C)

visible(C′, C) ∀i, visibleC0 (ei, C)

visibleC0 (new C′(v e), C)

∅ 	 e.m(e) : C′ visible(C′, C) (e = new C0(u) ∨ visibleC0 (e, C)) ∀i, ∅ 	 visible(ei, C)

visibleC0 (e.m(e), C)

Fig. 11. ConfinedFJ: Runtime expression visibility.

accessed only by the methods that it “trusts”. The trusted methods of an object of

the type C include the methods defined in the package of C and the anonymous

methods inherited by C. Thus, to satisfy the confinement properties, the evaluation

of a call to any method m may only contain accesses to either objects of public types,

objects of confined types defined in the package containing m, or the receiver object

of the call in case m is anonymous and the receiver object is confined. In ConfinedFJ,

we define access to an object to mean field selection and method invocation.

5.1 Runtime expression visibility

We check whether an expression satisfies the confinement properties using the

recursive predicate visibleC0(e, C) defined in Figure 11. Consider an expression e

reduced from a method call v.m(v), where v is the receiver that has type C0 and m is

defined in the class C, we say that if visibleC0 (e, C) is true, then e satisfies confinement.

We write v e to denote a sequence of values followed by expressions.

For visibleC0(e, C) to be true, the type of e has to be visible in C. In addition, if

e has the form (C′) e′, then visibleC0 (e
′, C) must also hold; if e has the form e′.f or

e′.m(e), then either visibleC0(e
′, C) or e′ has the form new C0(u) for some u. The latter

is relevant for anonymous methods because if an anonymous method is called on

an object v of confined type C0 while the method is defined in a class C outside the

package of C0, then the variable this in the method body is substituted by v but

the type of v is not visible in C. The constraints allow this case as long as v is only

used as the receiver of method calls and for field selects.

We also observe that for a fully evaluated object, e = new C′(v), visibleC0(e, C) only

require C′ to be visible in C. This should be contrasted with the situation where

e = new C′(e), in which case we must also have ∀i, visibleC0 (ei, C). The intuition is

that the syntax of the calculus does not differentiate between constructed objects and

the expressions that construct them. Confinement must be checked only before an

object is constructed. Thus before a new expression of the form new C′(e) is reduced

to a fully-evaluated object, we need to check e for any violations of confinement

properties within the context of the method that contains the new expression. Since

we have a by-value semantics, such a new expression may not be transfered to

another method before it is fully evaluated. However, a fully-evaluated object of the

form new C′(v) could sent to a method of a class C outside the package of C′ if C′

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 103

is public. In this case, the objects in the fields of C′ may not be visible in C. Thus,

we only require that C′ be visible in C. This requirement is sufficient for preserving

confinement properties since the confined objects in the fields of C′ are not accessible

in C because these fields are package-scoped.

5.2 Well-typed program and confinement

Recall that we model a program’s execution with a stack. Each frame in P consists

of a tuple v m e, that corresponds to an invocation of method m on the object v

and e is the expression reduced from the method call. Also recall that each method

invocation will create a new frame. We say that a program P is well-typed if the

expression e in each frame of P is well-typed and the type of e is a safe subtype of

the type of the expression e′, where E[e′] is in the previous frame.

Definition 1 (Well-typed)

A program P is well-typed iff 	 P as defined below.

∅ 	 e : C

	 nil . v m e

	 P . v m E[e] ∅ 	 e : C ∅ 	 e′ : C′ C′ � C

	 P . v m E[e] . v′ m′ e′

We say that a program satisfies confinement if each frame v m e in the program

satisfies the runtime expression visibility constraint. That is, if the method m invoked

on v of type C is defined in the class C′, then the predicate visibleC(e, C′) is true.

Definition 2 (Confinement Satisfaction)

A program P = v1 m1 e1 . . . vn mn en satisfies confinement iff for all i ∈ [1, n] we

have visibleC(ei, C′), where vi = new C(v), mdef (mi, C) = C′.

We prove the properties of confined objects in Theorem 2. We show that if a well-

typed program initially satisfies confinement, then it will always satisfy confinement

during execution. We also prove the subject reduction lemmas for expressions and

programs, and state the progress lemma for programs. For the subject reduction

lemma, we show that an expression of non-confined type will not be reduced to an

expression of confined type. Theorem 1 states that a well-typed program will not

get stuck.

5.3 Subject reduction

Recall that, we assume the class table CT to be well-typed, which means that all

classes in CT are well-typed.

Lemma 2

If mtype(m, C0) = C → C, mbody(m, C0) = (x, e), and mdef (m, C0) = C′
0, then there

exists some C′ � C such that x : C, this : C′
0 	 e : C′.

The following two lemmas prove term substitution preserves typing for expressions

in non-anonymous and anonymous methods.

Lemma 3

If x : B 	 e : C, ∅ 	 v : A, A � B, then ∅ 	 [v/x]e : C′ for some C′ � C.

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

104 T. Zhao et al.

Proof

If e = xi, then ∅ 	 e : C, C = Bi, [v/x]e = vi, and ∅ 	 [v/x]e : Ai, Ai = C′. By

assumption, we have Ai � Bi. For other cases where e is of the forms e0.m(e),

(C′) e0, e0.f, or new C(e), we can show that ∅ 	 [v/x]e : C by applying the induction

hypothesis to the immediate subterms of e. �

Lemma 4

If x : B, this : D0 	 e : C, ∅ 	 v : A, A � B, ∅ 	 new C0(u) : C0, C0 <: D0, and

anon(e, D0), then ∅ 	 [v/x,
new C0(u)/this]e : C′ for some C′ � C.

Proof

From anon(e, D0), we have e �= this and if e is a variable, then e ∈ x and the proof

is similar to Lemma 3. If e = this.m(e), then from anon(e, D0) we have anon(e, D0)

and anon(m, D0). From Rule T-Invk and applying induction hypothesis to e, we can

show that if x : B, this : D0 	 e : D then ∅ 	 [v/x,
new C0(u)/this]e : C and C � D. Since

method-overriding preserves the anonymity of methods (from override(m, C0, D0) in

Rule T-Method) and from C0 <: D0, we have that anon(m, D0) implies anon(m, C0).

Thus, we can conclude from Rule T-Invk that ∅ 	 [v/x,
new C0(u)/this]e : C. For other

cases, we can show ∅ 	 [v/x,
new C0(u)/this]e : C by simple induction on e. �

Lemma 5 (Subject reduction)

If P is well-typed and P → P ′ then P ′ is well-typed.

Proof

If P ′ = P ′′ . v m E[e] . v′ m′ e′′, then to prove P ′ is well-typed, we need to show that

P ′′ . v m E[e] is well-typed, e′′ is well-typed and its type is a safe subtype of the

type of e. In particular, if P = P ′′ . v m E[e] . v′ m′ e′ then it is sufficient to show

that ∅ 	 e′′ : C′′ and C′′ � C′ where C′ is the type of e′. The reason is that if C is the

type of e, then from the assumption that P well-typed, we have C′ � C, and thus

C′′ � C′ would imply C′′ � C.

If P ′ = nil . v′ m′ e′′, then we only need to show that e′′ is well-typed.

There are four cases depending on the reduction rule used.

(1) If the reduction from P to P ′ is by Rule R-Field, then P has the form of

P ′′ . v m E[e], where e = new C0(v).fi, and P ′ = P ′′ . v m E[e′], where e′ = vi. Since

P is well-typed, if ∅ 	 e : Ci, then from Rule T-Field, new C0(v) is well-typed and if

∅ 	 vi : C′
i, then C′

i � Ci by Rule T-New. By induction on the type derivation of

E[e], we can show that if ∅ 	 E[e] : C, then ∃C′ such that ∅ 	 E[e′] : C′ and C′ � C.

Therefore, P ′ is well-typed.

(2) If the reduction is by Rule R-Cast, then P has the form P ′′ . v m E[e], where

e = (C) new C′(v), and P ′ = P ′′ . v m E[e′], where e′ = new C′(u), and from Rule

T-Ucast, ∅ 	 e′ : C′ and C′ � C. Thus, similar to the previous case we can show

that P ′ is well-typed.

(3) If the reduction is by Rule R-Invk, then P has the form P ′′ . v m E[e], where

e = v′.m′(v′), v′ = new C0(u), mbody(m, C0) = (x, e0), and P ′ = P ′′ . v m E[e] . v′ m′ e′,

where e′ = [v/x,
v′
/this]e0. If mtype(m, C0) = C → C, mdef (m, C0) = C′

0, x : C, this :

C′
0 	 e0 : C′, and ∅ 	 v : C′, then C′ � C, C′ � C, and either C0 � C′

0 or anon(m, C′
0).

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 105

From Lemma 2, 3, and 4, and Rule R-Invk, ∃C′′ such that ∅ 	 e′ : C′′ and C′′ � C′.

Thus, C′′ � C and P ′ is well-typed.

(4) If the reduction is by Rule R-Ret, then P has the form of P ′′ . v m E[e] . v′ m′ v′′

and P ′ = P ′′ . v m E[v′′]. Since P is well-typed, if ∅ 	 e : D and ∅ 	 v′′ : D′, then

D′ � D. By Lemma 6, if ∅ 	 E[e] : C, then ∅ 	 E[v′′] : C′ and C′ � C. Therefore, P ′

is well-typed. �

Lemma 6

If ∅ 	 E[e] : C, ∅ 	 e : D, and ∅ 	 e′ : D′, where D′ � D, then ∃C′ such that

∅ 	 E[e′] : C′ and C′ � C.

The proof is by induction on the structure of E[e].

5.4 Progress

A terminating computation reduces to the form of nil . v m v′. An irreducible

program P is deemed stuck if it is not of the form nil . v m v′. We show that

well-typed programs do not get stuck.

Lemma 7

If P is well-typed and not in the form of nil . v m v′, then there exist P ′ such that

P → P ′.

Theorem 1 (Soundness)

A well-typed program will not get stuck.

Proof

Immediate from Lemma 5 and 7. �

5.5 Confinement Theorem

The following lemma shows that the reduction of a well-typed program preserves

confinement.

Lemma 8

If P is well-typed and satisfies confinement, and P →P ′, then P ′ satisfies confine-

ment.

Proof

(1) Suppose the reduction from P to P ′ is by Rule R-Field or R-Cast. If P =

P ′′ . v m E[e], e �= v′.m′(u), and P ′ = P ′′ . v m E[e′], then by the assumption that P

is well-typed, ∃C such that ∅ 	 e : C, and visibleC0(e, C
′
0), where v = new C0(u′) and

mdef (m, C0) = C′
0. From Lemma 5, P ′ is well-typed and ∃C′ such that ∅ 	 e′ : C′

where C′ � C. From visibleC0 (e, C
′
0), we have visible(C, C′

0). Since C′ � C, if C′ is

confined, then so is C. From C′ <: C and Rule T-Class, we have visible(C, C′), which

implies that if C is confined then packof (C) = packof (C′). From visible(C, C′
0), if C

is confined, then packof (C) = packof (C′
0). Thus, if C′ is confined, then packof (C′) =

packof (C) = packof (C′
0). Therefore, we have visible(C′, C′

0)

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

106 T. Zhao et al.

If the reduction from P to P ′ is by Rule R-Field, then e has the form of

new D(u).fi and e′ = ui. Thus, visibleC0 (ui, C
′
0). If the reduction is by Rule R-Cast,

then e in the form of (C) u and e′ = u. Thus, visibleC0 (u, C
′
0). Therefore, we conclude

that visibleC0(e
′, C′

0). Since P is well-typed, we have visibleC0(E [e], C′
0). By simple

induction, we can show that visibleC0(E [e′], C′
0). Thus, P ′ satisfies confinement.

(2) Suppose the reduction is by Rule R-Invk. If P has the form P ′′ . v m E[e], e =

v′.m′(v), v′ = new C0(u), mbody(m′, C0) = (x, e0), then P ′ = P ′′ . v m E[e] . v′ m′ e′,

where e′ = [v/x,
v′
/this]e0.

Suppose mtype(m′, C0) = C → C, mdef (m′, C0) = C′
0, and ∅ 	 v : C′. From Rule

T-Method, we have Γ 	 visible(e0, C′
0) and Γ 	 e0 : C where Γ = x : C, this : C′

0 and

C′ � C.

If C0 � C′
0, then from Lemma 3, we have that for each immediate subterm

e′
0 of e0, if Γ 	 e′

0 : D, then ∅ 	 [v/x,
v′
/this]e′

0 : D′, D′ � D, and visible(D, C′
0)

implies visible(D′, C′
0). Thus, from Γ 	 visible(e0, C′

0), we can show by induction that

visibleC0(e
′, C′

0) is true.

If C0 �� C′
0, then from Rule T-Invk, we have anon(m′, C′

0), which implies that

the variable this can occur only in the subterms of e0 in the form of this.f or

this.m′(e) (where ei �= this, ∀i). Thus, the object v′ can be only in the subterms of

e′ in the forms of v′.f or v′.m′(e) (where ei is not of the form new C0(u), ∀i). From

Lemma 4 and Γ 	 visible(e0, C′
0), we can prove visibleC0 (e

′, C′
0) by simple induction.

Thus, P ′ satisfies confinement.

(3) If the reduction is by Rule R-Ret, then P has the form of P ′′ . v m E[e] . v′ m′ v′′

and P ′ = P ′′ . v m E[v′′]. From Lemma 5, P ′ is well-typed. Thus, if ∅ 	 e : C and

∅ 	 v′′ : C′, then C′ � C. Suppose v = new C0(v) and mdef (m, C0) = C′
0. Since

P satisfies confinement, we have visibleC0 (E [e], C′
0), which implies visibleC0(e, C

′
0)

and visible(C, C′
0). Hence, we have visible(C′, C′

0) and visibleC0(v
′′, C′

0). It is clear that

visibleC0(E [v′′], C′
0) is true; thus, P ′ satisfies confinement. �

Theorem 2 (Confinement)

If P is well-typed and satisfies confinement, and P →∗ P ′ then P ′ satisfies confine-

ment.

Proof

Immediate from Lemma 5 and Lemma 8. �

The Confinement Theorem states that a well-typed program that initially satisfies

confinement preserves confinement. Intuitively, this means that that during the

execution of a well-typed program, all the objects that are accessed within the body

of a method are visible from the method’s defining package. The only exception is

for anonymous methods, as they may have access to this which can evaluate to an

instance of a class confined in another package, and if this occurs the use of this

is restricted to the receiver position.

6 Generics and confinement

The lack of support for collections and reusable confined classes was identified early

on as a significant issue for practical adoption of confined types (Vitek & Bokowski,

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 107

C7 A generic type or type variable cannot be widened to a type containing a different set of

type variables.

C8 A method invoked on an expression of type T must either be defined in a type with the

same set of type variables as that in T or be an anonymous method.

Fig. 12. Genericity confinement constraint.

2001). In this section, we extend the confinement property to generic types to

allow writing generic classes which are, in and of themselves, not confined, but

become confined if instantiated with confined arguments. ConfinedFJ is extended

with support for generic types, following FGJ (Igarashi et al., 2001), and renamed

ConfinedFGJ. The main departure from ConfinedFJ is that a generic type with

confined type parameters is also treated as confined. We not only need to prevent

unsafe reference widening for confined types but also for generic types with variable

type parameters. Therefore, besides the first six confinement rules already presented,

we require the following:

Rules C5 and C7 (Figure 12) combined enforces a subtyping relation that prevents

unsafe reference widening. Recall that C5 prevents widening for non-generic confined

types. Since a generic class can be instantiated with confined type parameters,

unsafe reference widening can happen after generic type instantiation. For example

consider a class Vector<X> and a method that assigns a Vector to a variable of

l.Object type. If the class Vector<X> is ever instantiated with a confined type,

C, then the assignment of a Vector<C> to an l.Object variable leads to unsafe

reference widening. Rule C7 prevents such unsafe widenings. For instance, widening

a reference from Vector<X> to Map<X> is safe if the class is defined as Vector<X> �

Map<X>.

Rule C8 (Figure 12) supplements C3 so that method calls on a receiver object of

a generic type with confined type parameters will not leak references to the receiver

object to untrusted code.

To see the advantage of confined generic classes, consider a generic linked list

class. If we desire to use the class to hold both confined and non-confined objects,

it should be defined as follows.

class p.List<X � l.Object> � l.Object {
X val;

p.List<X> next;

p.List(X val, p.List<X> next) {
super(); this.val=val; this.next=next;

}
}

With this definition, lists can be used in several contexts. For instance, it is possible

to use the same list class twice within the same package, once with a confined type,

thus turning that instantiation of the list type into a confined type, and once with a

non-confined type. The following example illustrates this. Classes A and B reside in

package q, the latter is confined. Class A further defines two variables: show holds

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

108 T. Zhao et al.

a list of A objects and hide holds a list of B objects. Since B is confined the type

List will be confined as well.

class q.A � l.Object {
p.List<A> show;

p.List hide;

...

}

conf class q.B � l.Object {
q.B() { super(); }

}

If a class needs to be reused across different packages and confined in each of these

packages one may simply give the class a dummy type variable. This type variable

need not be used in the body of the class, it will merely serve as a marker. Reuse

is thus obtained by instantiating the class in each of the packages with a confined

class as argument.

Consider the following scenario, a class Key is meant to provide functionality that

can be used in different confined settings.

class a.Key<X � l.Object> � l.Object {
...

}

The type variable X is not used by the implementation of a.Key, and the class can

be confined in any package as long as it is instantiated with a confined type, e.g. new

a.Key<q.B>(). Type parameters allow reusing several related classes at the same

time. For example, suppose the classes a.PublicKey<X> and a.PrivateKey<X> both

extend the class a.Key<X>. Then, we may instantiate the three classes with a confined

type such as q.B and make them confined in a single package. Also, the widening

of references from the type a.PublicKey<X> or a.PrivateKey<X> to a.Key<X> is

safe as it will not allow references to leak. This use of type variables is very close to

approaches based on ownership types.

The semantics of generic confined types is surprisingly simple. Any type variable

will be treated as a confined type by the type system in the sense that unsafe reference

widening will be forbidden for expressions of this type. Even though a generic type

(a type that contains type variables) may not be confined in any package, unsafe

reference widening should not be allowed for expressions of the type either. For

example, consider a generic container class.

class p.Container<X � l.Object> � l.Object {
X val;

p.Container(X val) { this.val = val }
l.Object get() { return this.val; }
l.Object get2() { return this; }

}

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 109

The Container class has a method get() that returns the value of field val and a

method get2() that returns the variable this. Both methods violate the confinement

properties because the types of the return expressions in get() and get2() are

widened from X and Container〈X〉 to l.Object respectively. The following example

illustrates the case where X is replaced by confined types when Container is

instantiated.

class q.A � l.Object {
p.Container<q.B> f = new p.Container<q.B>(new q.B());

l.Object reveal() { return f.get(); }
}

The class q.A is allowed to access q.B, but at runtime the method reveal() calls

get() and thus the type of the expression new q.B() is widened to l.Object.

Motivation for Rule C4. In a generic class, the fields of variable type and the methods

of variable return types should not be package-scoped, because otherwise, these fields

and methods would not be accessible to other code if this class is instantiated outside

its package, which would limit its reuse. If this class is instantiated with confined type

parameters, then its public methods may return confined values and its public fields

may reference confined values. However, this does not result in any confinement

violation because a generic type N with confined type parameters is treated as a

confined type and objects of this type are not accessible to code outside the its

defining package. Moreover, by Rule C4, the subtypes of N must also be confined so

that outside code cannot access these public methods through inheritance either.

For example, if the generic class Vector<X> has a public method get that returns

elements of the type X stored in the Vector. However, if we instantiate the vector class

with a confined type p.C, then the object of the type Vector<p.C> is confined in p.

By Rule C4, any class p.D that extends Vector<p.C> must be confined. Therefore,

even if the method get is public and returns values of a confined type, the code

outside of p is not able to take advantage of this, since the objects of the type

Vector<p.C> and its subtypes are not accessible to code outside of p except maybe

to methods inherited by Vector<X>.

Even the methods inherited by Vector<X> cannot exploit the method get. If the

inherited methods are defined in a class such as l.Object then it cannot access

get. The method get cannot override any methods in l.Object since method

overriding rule requires that overriding and overridden methods to have the same

type signatures while the return type of get is a variable type X not found in

l.Object. If Vector<X> inherits a class such as Map<X>, then the method in Map<X>

may have access to the get method of Vector<X>. This is safe however, since there

is not unsafe reference widening of the variable this to call a method of Map<X>

on an object of the type Vector<X> (likewise, it is safe to call methods of Map<C>

on objects of the type Vector<C>).

Motivation for Rule C6. While the rule that ensures that method overriding

preserves anonymity is not strictly necessary for ConfinedFJ as anonymity can

be inferred (Grothoff et al., 2001), it is however needed for ConfinedFGJ.

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

110 T. Zhao et al.

To illustrate the need, consider the following example, where the generic class

q.Naive has a type variable X with upper bound q.A, a field f of the type X, and a

method reveal() that calls method m() on f. Because m() in q.A is anonymous,

the method body this.f.m() in reveal() is typable even though the receiver

expression this.f is implicitly widened to the public type q.A in m(). In other

words, it does not violate Rule C8 to call m on a receiver expression this.f of type

X with upper bound q.A because the method m in q.A is anonymous.

class q.Naive<X � q.A> � l.Object {
X f;

q.Naive (X f) { this.f = f; }
l.Object reveal() { return this.f.m(); }

}

class q.A � l.Object {
anon l.Object m() { return new l.Object(); }

}

class q.B � q.A {
l.Object m() { return this; }

}

conf class q.C � q.B { ... }

Suppose that overriding does not preserve the anonymity of methods. The method

m() in the class q.B overrides m() of q.A but the former is not anonymous since it

returns the self-reference this and widens it to l.Object type. Now consider the

expression new q.Naive<q.C>(new q.C()).reveal() which instantiates the class

q.Naive with the confined type q.C and calls its reveal() method. The expression

is typable and its type is l.Object. However, the reduction steps of the expression

show that it reduces to an object of the type C.

new q.Naive<q.C>(new q.C()).reveal()

→ new q.Naive<q.C>(new q.C()).f.m()

→ new q.C().m() → new q.C()

What went wrong is that while evaluating the call to reveal() on the object

new q.Naive<q.C>(new q.C()), the method m() of q.B is called on the confined

object new q.C(). The method is not anonymous and it widens the reference to the

confined object new q.C() to the public type l.Object. In ConfinedFJ, we could

infer the anonymity of a method when it is invoked on a confined type. Here, the

anonymity of a method sometimes has to be decided on type variables with concrete

upper bounds. Without Rule C6, the fact that the method m is anonymous relative

to q.A does not implies it is anonymous relative to X which can be replaced by

the subtypes of q.A such as q.B or q.C, Therefore, Rule C6 is needed to ensure

the anonymity of methods that are called on confined or generic types even if the

methods are overridden in subclasses.

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 111

N ::= C〈T〉

T ::= X | N

L ::= [conf] class C〈X � N〉 � N { T f; K M }

K ::= C(T f) { super(f); this.f = f; }

M ::= [anon] T m(T x) { return e; }

e ::= x | e.f | e.m(e) | (N) e | new N(e)

v ::= new N(v)

Fig. 13. ConfinedFGJ: Syntax.

In ConfinedFJ, Rule C6 only needs to be applied to methods inherited by confined

types, in ConfinedFGJ, we also apply the rule to the methods inherited by the generic

types since generic types could become confined after instantiation.

6.1 Syntax

The syntax for ConfinedFGJ is shown in Figure 13. For simplicity, we omit generic

methods, thus only classes can have type parameters. Metavariables X, Y range over

type variables, N, W range over concrete types, and S, T range over both concrete

types and type variables. In a class definition [conf] class C〈X � N〉 � N { . . . }, the

upper bounds for the type variables X are N, which are always non-variable types.

The type variable X appearing in a generic class declaration can be instantiated with

either public or confined type.

6.2 Dynamic Semantics

The dynamic semantics of ConfinedFGJ in Figure 14 is mostly identical to the

ConfinedFJ rules presented in Figure 7.

6.3 Static semantics

The structure of the ConfinedFGJ static semantics is similar to that of the

ConfinedFJ static semantics. Figure 15 gives subtyping rules, definitions for well-

formed types, and other miscellaneous definitions. The subtyping rules are the same

as those in Generic FJ. A generic type may contain type parameters that are confined

in different packages. The set confPack (C〈T〉) contains the set of packages that C

and T are confined in. The set Var(T) contains the set of type variables in T.

The partial order � on types represents the restricted subtyping relation that

does not allow unsafe reference widening. As in FGJ, ∆ denotes a type environment

that maps type variables to their concrete type upper bounds. To have ∆ 	 S � T,

we must have ∆ 	 S <: T and that confPack (S) is a subset of confPack (T); also, S,

T must contain the same set of type variables. With the last restriction, the partial

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

112 T. Zhao et al.

e = new N(v).fi fields(N) = (T f)

P . v m E[e] → P . v m E[vi]
(GR-Field)

e = (N′) new N(v) ∅ 	 N <: N′

P . v m E[e] → P . v m E[new N(v)]
(GR-Cast)

e = e′.m′(v) e′ = new N(u) mbody(m′, N) = (x, e0)

P . v m E[e] → P . v m E[e] . new N(u) m′ [v/x, e
′
/this]e0

(GR-Invk)

e = v′.m′(v)

P . v m E[e] . v′ m′ v′′ → P . v m E[v′′]
(GR-Ret)

Fig. 14. ConfinedFGJ: Dynamic semantics.

order on S, T still holds even if type variables in S, T are instantiated by confined

types. For example, if ∆ 	 X � N then it must be the case that N = C〈T〉 with X

being the only type variable in T. In this case, if D is confined and N′ = [D/X]N, then

∆ 	 D � N′.

A type T is visible in the class C〈T〉 if for any package p that T is confined in,

either C is defined in p or one of T is confined in p. If T is a concrete type that has

the form C′〈T′〉, then this definition implies that C′ is visible in C and the confined

types in T′ must be visible in C or come from T. Note that this definition gives the

appearance that a type variable is visible in any class, however since a type variable

is not accessible outside its defining class, visible(X, N) does not apply unless X is

defined in N.

Figure 16 contains the helper functions used in the typing rules and they are similar

to those in Generic FJ. Anonymous methods of a generic class C〈X〉 stay anonymous

even if the type parameters X in class C are instantiated by type arguments. In

the rest of the paper, anon(m, C〈T〉) is equivalent to anon(m, C) and anon(e, C〈T〉) is

equivalent to anon(e, C).

6.3.1 Typing rules

Figure 17 contains typing rules for expressions, methods, and classes, and also

visibility rules for expressions. The expression typing rules are similar to those in

Generic FJ with some additional constraints to prevent unsafe reference widening.

• Rules GT-Var, GT-New, and GT-UCast are similar to those in ConfinedFJ.

• By Rule GT-Field, an expression e.fi is well-typed given the environments

∆,Γ only if fi is a field declared in the type bound∆(T), where T is the type of

e and bound∆(T) refers to the type upper bound of T in ∆ if it is a variable or

T itself if it is a non-variable type.

• By Rule (GT-method), if a method call e.m(e) is well-typed, then the types of

the arguments e are safe subtypes of the corresponding parameter types of the

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 113

Subtyping:

∆ 	 T <: T ∆ 	 X <: ∆(X)

∆ 	 S <: T ∆ 	 T <: U

∆ 	 S <: U

CT (C) = [conf] class C〈X � N〉 � N { . . . }
∆ 	 C〈T〉 <: [T/X]N

Well-formed types:

∆ 	 l.Object

X ∈ dom(∆)

∆ 	 X

CT (C) = [conf] class C〈X � N〉 � N { . . . }
∆ 	 T ∆ 	 T <: [T/X]N

∆ 	 C〈T〉

Type variables in type:

Var(X) = {X} Var(C〈T〉) =
⋃

∀T∈T

Var(T)

Confining packages:

confPack (X) = ∅

confPack (C) =

{
{packof (C)} if conf (C)

∅ otherwise

confPack (C〈T〉) = confPack (C) ∪
⋃

∀T∈T confPack (T)

Safe subtyping:

∆ 	 S <: T confPack (S) ⊆ confPack (T) Var(S) = Var(T)

∆ 	 S � T

Visibility of types:

confPack (T) ⊆ {packof (C)} ∪
⋃

∀T∈T confPack (T)

visible(T, C〈T〉)

Fig. 15. ConfinedFGJ: Subtyping rules, well-formed types, and miscellaneous definitions.

method m in order to prevent unsafe reference widening through parameter

passing; and moreover, either m is defined in a type N so that the type of e is a

safe subtype of N or m is an anonymous method. The latter requirement, which

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

114 T. Zhao et al.

Bound of type:

bound∆(X) = ∆(X) bound∆(N) = N

Field look-up:

fields(l.Object) = ()

CT (C) = [conf] class C〈X � N〉 � N { S f; K M } fields([T/X]N) = (U g)

fields(C〈T〉) = (U g, [T/X]S f)

Method Definition Lookup:

CT (C) = [conf] class C〈X � N〉 � N { S f; K M }
methods(C) = M

[anon] U m(U x) { return e; } ∈ methods(C)

mdef (m, C〈T〉) = C〈T〉

CT (C) = [conf] class C〈X � N〉 � N { S f; K M } m is not defined in M

mdef (m, C〈T〉) = mdef (m, [T/X]N)

Method Type Lookup:

mdef (m, N) = C〈T〉 CT (C) = [conf] class C〈X � N〉 . . .

[anon] U m(U x) { return e; } ∈ methods(C)

mtype(m, N) = [T/X]U → [T/X]U

Method body look-up:

mdef (m, N) = C〈T〉 CT (C) = [conf] class C〈X � N〉 . . .

[anon] U m(U x) { return e; } ∈ methods(C)

mbody(m, N) = (x, [T/X]e)

Valid method overriding:

either m is not defined in N′
0 or any of its parents, or

mtype(m, N0) = T → T mtype(m, N′
0) = T → T anon(m, N′

0) ⇒ anon(m, N0)

override(m, N0, N
′
0)

Fig. 16. ConfinedFGJ: Auxiliary functions.

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 115

Expression typing:

∆; Γ 	 x : Γ(x)
(GT-Var)

∆; Γ 	 e : T fields(bound∆(T)) = (T f)

∆; Γ 	 e.fi : Ti
(GT-Field)

∆; Γ 	 e : T ∆; Γ 	 e : V

mdef (m, bound∆(T)) = N mtype(m, N) = U → U

∆ 	 V � U (∆ 	 T � N) ∨ anon(m, N)

∆; Γ 	 e.m(e) : U
(GT-Invk)

∆ 	 N fields(N) = (T f) ∆; Γ 	 e : S ∆ 	 S � T

∆; Γ 	 new N(e) : N
(GT-New)

∆; Γ 	 e : T ∆ 	 N T � N

∆; Γ 	 (N) e : N
(GT-UCast)

Method typing:

∆ = X <: N Γ = x : T, this : C〈X〉 ∆ 	 T, T

∆; Γ 	 e : S ∆ 	 S � T ∆; Γ 	 visible(e, C〈X〉)
override(m, C〈X〉, N) (anon(m, C) ⇒ anon(e, C))

[anon] T m(T x) { return e; } OK IN C〈X � N〉 � N (GT-Method)

Class typing:

X <: N 	 N, N, T M OK IN C〈X � N〉 � N fields(N) = (U g)

K = C(U g, T f) {super(g); this.f = f;}
visible(N, C〈X〉) (packof (C) ∈ confPack (N)) implies conf (C)

[conf] class C〈X � N〉 � N { T f; K M } OK (GT-Class)

Expression visibility:

visible(Γ(x), N)

∆; Γ 	 visible(x, N)

∆; Γ 	 e.fi : N′ visible(N′, N) ∆; Γ 	 visible(e, N)

∆; Γ 	 visible(e.fi, N)

visible(N′, N) ∆; Γ 	 visible(e, N)

∆; Γ 	 visible((N′) e, N)

visible(N′, N) ∀i, ∆; Γ 	 visible(ei, N)

∆; Γ 	 visible(new N′(e), N)

∆; Γ 	 e.m(e) : N′ visible(N′, N) ∆; Γ 	 visible(e, N) ∀i, ∆; Γ 	 visible(ei, N)

∆; Γ 	 visible(e.m(e), N)

Fig. 17. ConfinedFGJ: Typing rules.

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

116 T. Zhao et al.

corresponds to Rules C3 and C8, prevents a receiver object of confined type

from being stored in fields or variables of non-confined types. The defining

type of m is determined by searching the inheritance hierarchy upward from

the type bound∆(T), where T is the type of e.

In the method typing rule, we require that the return expression of a method in

class C be visible in C. The visibility rules of expressions in a generic class are similar

to those of non-generic classes. As in the case of ConfinedFJ, the visibility constraints

on method bodies model confinement rules C2 and C1. That is, a confined type

cannot be used in the classes outside the package of the confined type, and fields of

confined types and methods that return values of confined types are not accessible

outside the defining packages of the confined types. The class typing rule GT-Class

is similar to the one in ConfinedFJ and it models Rule C4 so that if a class C extends

a confined type N, then C must be confined as well.

6.4 Properties

In this section, we prove some results similar to those for ConfinedFJ. In Confined

FGJ, a program without free type variables should have the same confinement

properties as a program in ConfinedFJ. Theorem 3 shows that the execution of a

well-typed generic program always preserves confinement.

The definition of well-typed programs states that all frames be well-typed under

the assumption that return values have the proper type. Confinement satisfaction is

defined to mean that every the expression being evaluated must be visible from the

enclosing method’s class.

Definition 3 (Well-typed)

A program P is well-typed iff 	 P as defined below.

∅; ∅ 	 e : N

	 nil . v m e

	 P . v m E[e] ∅; ∅ 	 e : N ∅; ∅ 	 e′ : N′ N′ � N

	 P . v m E[e] . v′ m′ e′

Definition 4 (Confinement Satisfaction)

A program P = v1 m1 e1 . . . vn mn en satisfies confinement iff for all i ∈ [1, n], we

have visibleNi (ei, N
′
i), where vi = new Ni(u) and mdef (mi, Ni) = N′

i.

The definition of visibleN0(e, N) in Figure 18 is similar to that of visibleC0(e, C). The

difference is that if the type of e is N′, then visibleN0(e, N) implies visible(N′, N). The

latter means that if N′ is a type confined in the package p, and N = C〈N〉, then either

C is defined in P or there exists N′′ ∈ N such that N′′ is confined in p.

Next, we prove some helper lemmas used in proving that subject reduction

preserves typing (Lemma 18) and confinement (Lemma 20).

In particular, the proof of Lemma 18 depends on Lemma 15, which shows that the

body of a method invoked on a well-formed type is well-typed. To prove Lemma 15,

we need to show that type variable substitution preserves safe subtyping, well-formed

types, and expression typing, Also, the proof of Lemma 20 depends on Lemma 14,

which shows that type variable substitution preserves static expression visibility. To

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 117

∅; ∅ 	 e.fi : N′ visible(N′, N) (e = new N0(u) ∨ visibleN0 (e, N))

visibleN0 (e.fi, N)

visible(N′, N) visibleN0 (e, N)

visibleN0 ((N
′) e, N)

visible(N′, N) ∀i, visibleN0 (ei, N)

visibleN0 (new N′(v e), N)

∅; ∅ 	 e.m(e) : N′ visible(N′, N) (e = new N0(u) ∨ visibleN0 (e, N)) ∀i, visibleN0 (ei, N)

visibleN0 (e.m(e), N)

Fig. 18. ConfinedFGJ: Runtime expression visibility.

prove Lemma 14, we need to show that type variable substitution preserves type

visibility and expression typing.

Suppose CT (C) = . . . class C〈X � N′〉 . . ., ∅ 	 C〈N〉, and ∆ = X <: N′. We show that

the substitution of type variables X by N preserves subtyping.

Lemma 9

If ∆ 	 S <: T, then ∅ 	 [N/X]S <: [N/X]T.

Proof

The proof follows that of FGJ (Igarashi et al., 2001). �

The lemma below is related to Rule C7, which imposes additional restriction on

safe subtyping for generic types so that safe-subtyping still holds when there is

type-variable substitution.

Suppose CT (C) = . . . class C〈X � N′〉 . . . , ∅ 	 C〈N〉, and ∆ = X <: N′. We show that

the substitution of type variables X by N preserves safe subtyping.

Lemma 10

If ∆ 	 S, T and ∆ 	 S � T, then ∅ 	 [N/X]S � [N/X]T.

Proof

From ∆ 	 S � T, we have ∆ 	 S <: T, Var(S) = Var(T), and confPack (S) ⊆
confPack (T). By Lemma 9, we have ∅ 	 [N/X]S <: [N/X]T. From ∆ 	 S, T and

dom(∆) = X, all type variables in S, T are replaced by types in the substitution [N/X],

which implies Var([N/X]S) = Var([N/X]T) = ∅. Since Var(S) = Var(T), the same set of

types replace variables in S and T. Thus, confPack ([N/X]S) ⊆ confPack ([N/X]T). �

Suppose CT (C) = . . . class C〈X � N′〉 . . . , ∅ 	 C〈N〉, and ∆ = X <: N′. We show that

the substitution of type variables X by N preserves well-formed types.

Lemma 11

If ∆ 	 T, then ∅ 	 [N/X]T.

Proof

The proof follows that of FGJ (Igarashi et al., 2001). �

Suppose CT (C) = . . . class C〈X � N′〉 . . . , ∅ 	 C〈N〉, and ∆ = X <: N′. We show that

the substitution of type variables X by N preserves expression typing.

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

118 T. Zhao et al.

Lemma 12

If ∆; Γ 	 e : T then ∅; [N/X]Γ 	 [N/X]e : [N/X]T.

Proof

We prove by induction on the derivation of ∆; Γ 	 e : T. There are five cases

depending on the last rule used in the type derivation.

1. Suppose e = x. In this case, ∆; Γ 	 x : Γ(x) and ∅; [N/X]Γ 	 x : [N/X]Γ(x).

2. Suppose e = e0.fi. In this case, if ∆; Γ 	 e0 : T0 and fields(bound∆(T0)) = (T f),

then ∆; Γ 	 e0.fi : Ti. By induction hypothesis, we have that ∅; [N/X]Γ 	
[N/X]e0 : [N/X]T0; and by the definition of fields , ∃S g such that fields ([N/X]T0) =

(S g, [N/X]T f). Therefore, by Rule GT-Field, we have ∅; [N/X]Γ 	 [N/X](e0.fi) :

[N/X]Ti.

3. Suppose e = e0.m(e), In this case, ∆; Γ 	 e : U if ∆; Γ 	 e0 : T0, ∆; Γ 	 e : V,

mdef (m, bound∆(T0)) = N0, mtype(m, N0) = U → U, ∆ 	 V � U, and ∆ 	 T0 �
N0 ∨ anon(m, N0). By induction hypothesis, we have ∅; [N/X]Γ 	 [N/X]e0 :

[N/X]T0, ∅; [N/X]Γ 	 [N/X]e : [N/X]V, and by Lemma 10, we have ∅ 	 [N/X]V �
[N/X]U. From ∅ 	 [N/X]T0 <: [N/X](bound∆(T0)), and by induction on the

recursive definition of mdef , it can be shown that mdef (m, [N/X]T0) = N′
0, where

∅ 	 N′
0 <: [N/X]N0, and mtype(m, [N/X]N0) = [N/X]U → [N/X]U. In particular, if

T0 is a non-variable type, then N′
0 = [N/X]N0 (from the definition of mdef).

If T0 is a variable, then [N/X]T0 <: ∆(T0) and by the definition of mdef , m

has to be defined in [N/X]N0 or a subclass of [N/X]N0. If ∆ 	 T0 � N0, then

from Lemma 10, we have ∅ 	 [N/X]T0 � [N/X]N0. Since Var([N/X]T0) = ∅, we

have confPack ([N/X]T0) ⊆ confPack ([N/X]N0). From ∅ 	 N′
0 <: [N/X]N0 and Rule

GT-Class, we have confPack (N′
0) ⊆ confPack ([N/X]N0). Thus, ∅ 	 [N/X]T0 � N′

0.

By definition, anon(m, N0) implies anon(m, [N/X]N0). By Rule GT-Method and

∅ 	 N′
0 <: [N/X]N0, we have that anon(m, [N/X]N0) implies anon(m, N′

0). Thus, we

have ∅ 	 [N/X]T0 � N′
0 ∨ anon(m, N′

0). From Rule GT-Invk, we conclude that

∅; [N/X]Γ 	 [N/X](e0.m(e)) : [N/X]U.

4. Suppose e = new N(e). In this case, if ∆ 	 N, fields(N) = (T f), ∆; Γ 	 e : S,

and ∆ 	 S � T, then ∆; Γ 	 e : N. By Lemma 11, we have ∅ 	 [N/X]N. It can

be shown that fields([N/X]N) = ([N/X]T f). By induction hypothesis, we have

∅; [N/X]Γ 	 [N/X]e : [N/X]S. By Lemma 10, we have ∅ 	 [N/X]S � [N/X]T. Thus,

by Rule GT-New, we have ∅; [N/X]Γ 	 [N/X](new N(e)) : [N/X]N.

5. Suppose e = (N) e′. In this case, ∆; Γ 	 e : N, if ∆; Γ 	 e′ : T, ∆ 	 N, and

∆ 	 T � N. By Lemma 11, we have ∅ 	 [N/X]N. By induction hypothesis, we

have ∅; [N/X]Γ 	 [N/X]e : [N/X]T. By Lemma 10, we have ∅ 	 [N/X]T � [N/X]N.

Therefore, by Rule GT-Cast, we have ∅; [N/X]Γ 	 [N/X]((N) e
′) : [N/X]N.

�

Suppose CT (C) = . . . class C〈X � N′〉 . . . , ∅ 	 C〈N〉, and ∆ = X <: N′. We show that

the substitution of type variables X by N preserves type visibility.

Lemma 13

If ∆ 	 T, visible(T, C〈X〉) then visible([N/X]T, C〈N〉).

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 119

Proof

Since confPack (T) ⊆ {packof (C)}, we have confPack ([N/X]T) ⊆ confPack (C〈N〉). Thus,

visible([N/X]T, C〈N〉). �

Suppose CT (C) = . . . class C〈X � N′〉 . . . , ∅ 	 C〈N〉, and ∆ = X <: N′. We show that

the substitution of type variables X by N preserves static expression visibility.

Lemma 14

If ∆; Γ 	 visible(e, C〈X〉), then ∅; Γ 	 visible([N/X]e, C〈N〉).

Proof

The proof is straightforward by induction on the derivation of ∆; Γ 	 visible(e, C)

and by Lemma 12 and 13. �

We now show that the return expression of a well-typed method is well-typed

after type variable substitution.

Lemma 15

If ∅ 	 N0, mtype(m, N0) = N′ → N′, mbody(m, N0) = (x, e), and mdef (m, N0) = N′
0, then

∃N such that ∅; x : N′, this : N′
0 	 e : N and ∅ 	 N � N′.

Proof

Since ∅ 	 N0, from the definition of mdef (m, N0) = N′
0, Rule T-Class, and Lemma 11,

we can show by induction ∅ 	 N′
0.

If N′
0 = C〈N〉, CT (C) = . . . class C〈X � W〉 . . . , mtype(m, C〈X〉) = U → U, and

mbody(m, C〈X〉) = (x, e0), then there exists U′ such that ∆; x : U, this : C〈X〉 	 e0 : U′

and ∆ 	 U′ � U, where ∆ = X <: W.

By Lemma 12 and ∅ 	 N′
0, we have ∅; x : [N/X]U, this : [N/X]C〈X〉 	 [N/X]e0 : [N/X]U

′.

By Lemma 10 and ∅ 	 N′
0, we have ∅ 	 [N/X]U

′ � [N/X]U.

Since mtype(m, N0) = N′ → N′, we have N′ = [N/X]U, N′ = [N/X]U. Also, since

mbody(m, N0) = (x, e) we have e = [N/X]e0. Since N′
0 = C〈N〉 = [N/X]C〈X〉, we have

∅; x : N′, this : N′
0 	 e : [N/X]U

′ and ∅ 	 [N/X]U
′ � N′. Let N = [N/X]U

′. Then, we have

∅; x : N′, this : N′
0 	 e : N and ∅ 	 N � N′. �

Lemmas 16 and 17 show that term substitution preserves typing and the latter

applies to the bodies of anonymous methods.

Lemma 16 (Term Substitution)

If ∅; x : N′ 	 e : N′, ∅ 	 v : N, and ∅ 	 N � N′, then ∅ 	 [v/x]e : N where ∅ 	 N � N′.

Proof

The proof is similar to that of Lemma 3. �

Lemma 17 (Substitution)

If ∅; x : N′, this : N′
0 	 e : N′, ∅; ∅ 	 v : N, ∅ 	 N � N′, ∅; ∅ 	 new N0(u) : N0,

∅ 	 N0 <: N′
0, and anon(e, N′

0), then ∅; ∅ 	 [v/x,
new N0(u)/this]e : N where ∅ 	 N � N′.

Proof

The proof is similar to that of Lemma 4. �

We now show that subject reduction preserves typing and well-typed program can

make progress.

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

120 T. Zhao et al.

Lemma 18 (Subject reduction)

If P is well-typed and P → P ′, then P ′ is well-typed.

Proof

Similar to Lemma 5, we prove by a case analysis of the reduction rule used.

If P ′ = P ′′ . v m E[e] . v′ m′ e′′, then to prove P ′ is well-typed, we need to show

that P ′′ . v m E[e] is well-typed, e′′ is well-typed and its type is a safe subtype of the

type of e. In particular, if P = P ′′ . v m E[e] . v′ m′ e′ then it is sufficient to show

that ∅; ∅ 	 e′′ : N′′ and ∅ 	 N′′ � N′, where N′ is the type of e′.

1. If the reduction from P to P ′ is by Rule GR-Field, then P has the form

P ′′ . v m E[e], where e= new N0(v).fi, and P ′ =P ′′ . v m E[e′], where e′ = vi.

Since P is well-typed, if ∅; ∅ 	 e : Ni, then from Rule GT-Field, new N0(v) is

well-typed and if ∅; ∅ 	 vi : C′
i, then N′

i � Ni by Rule GT-New. By induction

on the type derivation of E[e], we can show that if ∅; ∅ 	 E[e] : N, then ∃N′

such that ∅; ∅ 	 E[e′] : N′ and ∅ 	 N′ � N. Therefore, P ′ is well-typed.

2. If the reduction is by Rule GR-Cast, then P has the form P ′′ . v m E[e], where

e= (N) new N′(v), and P ′ = P ′′ . v m E[e′], where e′ = new N′(u), and from Rule

GT-Ucast, ∅; ∅ 	 e′ : N′ and ∅ 	 N′ � N. Thus, similar to the previous case we

can show that P ′ is well-typed.

3. If the reduction is by Rule R-Invk, then P has the form P ′′ . v m E[e], where e=

v′.m′(v′), v′ = new N0(u), mbody(m, N0) = (x, e0), and P ′ =P ′′ . v m E[e] . v′ m′ e′,

where e′ = [v/x,
v′
/this]e0. If mtype(m, N0) = N → N, mdef (m, N0) = N′

0, ∅; x :

N, this : N′
0 	 e0 : N′, and ∅; ∅ 	 v : N′, then ∅ 	 N′ � N, ∅ 	 N′ � N, and either

∅ 	 N0 � N′
0 or anon(m, N0). From Lemma 15, 16, and 17, and Rule R-Invk,

∃N′′ such that ∅; ∅ 	 e′ : N′′ and ∅ 	 N′′ � N′. Thus, ∅ 	 N′′ � N and P ′ is

well-typed.

4. If the reduction is by Rule GR-Ret, then P is of the form P ′′ . v m E[e] . v′ m′ v′′

and P ′ = P ′′ . v m E[v′′]. Since P is well-typed, if ∅; ∅ 	 e : W and ∅ 	 v′′ : W′,

then ∅ 	 W′ � W. We can show by induction that if ∅; ∅ 	 E[e] : N, then

∅ 	 E[v′′] : N′ and ∅ 	 N′ � N. Therefore, P ′ is well-typed.

�

Lemma 19 (Progress)

If P is well-typed and not in the form of nil . v m v′ then ∃P ′ such that P → P ′.

6.4.1 Confinement property

The following lemma shows that subject reduction of a well-typed program preserves

confinement.

Lemma 20

If P is well-typed, satisfies confinement, and P → P ′, then P ′ satisfies confinement.

Proof

If the reduction from P to P ′ is by Rule GR-Field, GR-Cast, or GR-Ret, the proof

is similar to the that of Lemma 8.

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 121

If the reduction is by Rule GR-Invk, P = P ′′ . v m E[e], e = v′.m′(v), and

v′ = new N0(u). mbody(m′, N0) = (x, e0), then P ′ = P ′′ . v m E[e] . v′ m′ e′, where

e′ = [v/x,
v′
/this]e0.

Suppose mtype(m′, N0) = N → N, mdef (m′, N0) = N′
0, and ∅ 	 v : N′. From Rule

GT-Method and Lemma 14, we have ∅; Γ 	 visible(e0, N′
0) and from Lemma 15, we

have ∅; Γ 	 e0 : N′ where Γ = x : N, this : N′
0 and ∅ 	 N′ � N. Since P is well-typed,

by Rule GT-Invk we have ∅ 	 N′ � N.

If ∅ 	 N0 � N′
0, then from Lemma 16, we have that for each subterm e′

0 of

e0, if ∅; Γ 	 e′
0 : W, then ∅; ∅ 	 [v/x,

v′
/this]e′

0 : W′, ∅ 	 W′ � W, and consequently

visible(W, N′
0) implies visible(W′, N′

0). Thus, from ∅; Γ 	 visible(e0, N′
0), we can show

visibleN0(e
′, N′

0) by induction.

If ∅ 	 N0 �� N′
0, then by Rule GT-Invk, anon(m′, N0), which means that the variable

this can occur only in the subterms of e0 in the form of this.f or this.m′(e)

(where ei �= this, ∀i). Thus, the object v′ can be only in the subterms of e′ in the

form of v′.f or v′.m′(e) (where ei is not of the form new N0(u), ∀i). From Lemma 17

and ∅; Γ 	 visible(e0, N′
0), we can prove visibleN0(e

′, N′
0) by simple induction. Thus, P ′

satisfies confinement. �

Lastly, we show that the execution of a well-typed generic program always

preserves confinement.

Theorem 3 (Confinement)

If P = v m e is well-typed, satisfies confinement, and P →∗ P ′, then P ′ satisfies

confinement.

Proof

Immediate from Lemma 18 and 20. �

6.5 Example: public-key cryptography

We demonstrate the use of generic confined types with an example (Figure 19

and 20) adapted from Vitek and Bokowski (2001). The implementation of a public-

key cryptography package needs to ensure that the random number object used in

the generation of key pairs cannot be accessed by clients of the package. Also, the

references to the private key object generated for a client of the RSA implementation

should not escape the client package. The following examples are written in pseudo-

ConfinedFGJ using access modifiers for fields, assignment, default initializers, and a

type void.

In this example, the implementation of public-key cryptography is divided into two

parts: a package rsa containing reusable classes and a package secure containing

code for one particular client of the rsa package. The class rsa.ConfinedRandom is

used to hold the random number generator confined in the package rsa. The private

key object instantiated from the class secure.PrivKey is confined in the package

secure. The class rsa.Key implements public-private key pairs. The confined class

PrivKey extends the class Key. Since the methods crypt() and setValues() in

Key are anonymous, they can be reused in the confined subclass. KeyFactory is a

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

122 T. Zhao et al.

class rsa.Key � l.Object {
l.BigDecimal mod;

l.BigDecimal exp;

anon l.String crypt(l.String msg) {...}
anon void setValues(l.BigDecimal m, l.BigDecimal e) {

mod = m; exp = e;

}
}

conf class rsa.ConfinedRandom � l.Random { }

class rsa.KeyFactory <X � rsa.Key> � l.Object {
void genKeyPair(rsa.Key pub, X priv) {. . .}

}

Fig. 19. Package containing RSA algorithm.

conf class secure.PrivKey � rsa.Key { }

class secure.Main � l.Object {
private secure.PrivKey privk = new secure.PrivKey();

rsa.Key pubk = new rsa.Key();

void main() {
(new rsa.KeyFactory<secure.PrivKey>()).genKeyPair(pubk, privk);

...

}
}

Fig. 20. Confining a type in a different package.

generic class that generates public-private key pairs using a ConfinedRandom object.

The type parameter X with type upper bound rsa.Key can be instantiated with

type secure.PrivKey. Class secure.Main calls the genKeyPair() method of the

object new rsa.KeyFactory<secure.PrivKey>() to get a public-private key pair.

The PrivKey object can be passed to the method genKeyPair() because the object

new rsa.KeyFactory<secure.PrivKey>() is confined in the package secure and

the argument privk now has type PrivKey.

In comparison to the original example in Vitek and Bokowski (2001), generic

classes allow more reuse and avoid code redundancy. Without generic class, the

KeyFactory class cannot be used directly in the package secure since there is

no way for KeyFactory to access the private key objects confined in the package

secure.

The level of object confinement in Figure 19 and 20 can be improved even further.

For example, the fields mod and exp of rsa.Key refer to objects of public type which

may be accessible to outside code. Even though direct access to the exp and mod

fields of a PrivKey object requires a reference to the object, outside code may still

obtain references to the values indirectly. For instance, exp and mod are generated by

rsa.KeyFactory, which may pass the references to these objects to code outside the

package secure. Also, the classes in the package secure may inadvertently copy the

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 123

class rsa.Num<X � l.Object> � l.BigDecimal { }

class secure.Key<X � l.Object> � l.Object {
rsa.Num<X> mod, exp;

anon void setValues(rsa.Num<X> m, rsa.Num<X> e) {
this.mod = m; this.exp = e;

}
}

class rsa.KeyFactory<X � l.Object> � l.Object {
void genKeyPair(rsa.Key<l.Object> pub, rsa.Key<X> priv) { ...} }

conf class secure.C � l.Object { }

class secure.Main � l.Object {
private rsa.Key<secure.C> privk = new rsa.Key<secure.C>();

rsa.Key<l.Object> pubk = new rsa.Key<l.Object>();

void main() {
(new rsa.KeyFactory<secure.C>()).genKeyPair(pubk, privk);

...

}
}

Fig. 21. Confining the internal values of the private key object.

internal values of secure.PrivKey objects to outside code. To solve this problem,

we can define a generic class rsa.Num<X> to hold mod and exp. Key is redefined as a

generic class rsa.Key<X> where the type variable X is used to instantiate the type of

the fields. We also define a dummy confined class secure.C solely for the purpose

of instantiating generic classes so that their instances are confined within secure.

The modified code is shown in Figure 21.

Since public key objects can come from anywhere, they are instances of the type

Key<l.Object>. Private key objects of the secure package are instantiated from

Key<secure.C> class so that they are confined in the package. Correspondingly, mod

and exp of the private key objects are instances of the type rsa.Num<secure.C>

which are confined within secure as well.

Using generic confined types, we can create objects confined in the package secure

by calling the method genKeyPair of the class KeyFactory located in the package

rsa. Thus, both the private key object and its internal values can be confined. This

would be otherwise difficult to do since the class KeyFactory must be located in

rsa in order to access a random number object of the type ConfinedRandom.

7 Related work

Reference semantics permeate object-oriented programming languages, and the issue

of controlling aliasing has been the focus of numerous papers in recent years (Hogg,

1991; Hogg et al., 1992; Kent & Maung, 1995; Detlefs et al., 1998; Almeida, 1997;

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

124 T. Zhao et al.

Noble et al., 1998; Genius et al., 1998; Clarke et al., 1998; Müller & Poetzsch-

Heffter, 1999; Clarke et al., 2001; Aldrich et al., 2002; Banerjee & Naumann,

2002a; Clarke & Drossopoulou, 2002; Boyapati et al., 2003b). Noble et al. (1998)

proposed flexible alias protection to control potential aliasing amongst components

of an aggregate object (or owner). Aliasing mode declarations specify constraints on

sharing of references. The mode rep protects representation objects from exposure.

In essence, rep objects belong to a single owner object and the model guarantees

that all paths that lead to a representation object go through that object’s owner.

The mode arg marks argument objects which do not belong to the current

owner, and therefore may be aliased from the outside. Argument objects can have

different roles, and the model guarantees that an owner cannot introduce aliasing

between roles. Clarke et al. (1998) first proposed ownership types for representation

containment and investigated the properties of object graphs based on dominator

trees. Their ownership model enforces strict object encapsulation with arguably

limited expressiveness. Later the same authors (Clarke et al., 2001) formalized

the ownership model with a simple object calculus and fixed ownership context.

Clarke and Drossopoulou (2002) extended the ownership model with dynamic

aliases to allow temporary access to the representation objects. They also extended

the ownership types with computational effects to support reasoning about object-

oriented programs.

Hogg’s Islands and Almeida’s Balloons have similar aims (Hogg, 1991; Almeida,

1997). An Island or Balloon is an owner object that protects its internal repres-

entation from aliasing. The main difference from Noble et al. (1998) is that both

proposals strive for full encapsulation, that is, all objects reachable from an owner are

protected from aliasing. Boyland et al. (2001) introduced capabilities as a uniform

system to describe restrictions imposed on references.

The universe types (Müller & Poetzsch-Heffter, 1999) uses read-only types to

handle temporary access to the representation objects of an abstraction. Later,

Muelleri and Poetzsch-Heffter (2000a; 2000b) extend the universe model with an

notion of type universe such that all objects of the types declared in one module can

own a common representation. The objects in a universe are fully contained and to

transfer objects between universes requires cloning operations.

Boyapati et al. (2003b) use ownership types for object encapsulation and local

reasoning about program correctness. They use inner classes to represent interface

object that shares the representation of an owner. Each inner class instance is owned

by its outer class instance and thus they can be reasoned together as a module.

They also applied ownership types to detect race conditions (Boyapati et al., 2002;

Boyapati & Rinard, 2001), to scoped memory in the Real-time Specification for

Java (Boyapati et al., 2003c), and to lazy modular upgrades in object-oriented

database (Boyapati et al., 2003a).

Banerjee and Naumann (2002a) demonstrated the use of object confinement to

achieve representation independence. Their notation of confinement is instance-based

and it can be used to prove equivalence of class implementations such that if an

implementation is confined, then it may be replaced by semantically equivalent ones

without affecting the behavior of the whole program. Their work has significance in

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 125

proving the equivalence of programs and the correctness of static analysis such as

secure information flow (Banerjee & Naumann, 2002b).

Clarke et al. (2003) define a clever variant of confined types for the purpose of

ensuring the integrity of components in the Enterprise JavaBeans framework. There

are several interesting aspects to their work. They allow confinement to be specified

in so called deployment descriptors. Thus the same set classes can be confined in one

application and public in another. This is related to our use of generics for confining

classes, with the difference that with generics the same class can be confined in several

packages within the same application. On the other hand, their approach does not

require additional syntax or changes to the existing code provided it already meets

confinement invariants. Another interesting aspect of the work is that the unit of

confinement is different. Rather than confining types within a package, the authors

confine them within a Bean using the following rules (CB1-6): CB1 declares which

types are confined (C2 in our case), CB2 prevents confined types from appearing at

the Bean boundary or in static variables (roughly equivalent to C1), CB3 prevents

widening of confined types (identical to C2), CB4 prevents unconfined types to be

cast to confined types, CB5 prevents confined code from accessing unconfined classes

which have confined types in their signature, and finally CB6 states that confined

classes may extend only one another or Object (a stronger version of C4). Rule

CB6 precludes confined classes from inheriting code from non-confined classes and

thus sidesteps the issue of anonymous methods. The drawback is that a confined

class may not inherit from an unconfined one. The paper observes that this has not

been a problem in practice. The systems also differ in rules CB2 and CB5 which

conspire to prevent the use of static variables to communicate across beans. Rule

CB4 is essential as it prevents a form of spoofing in which an unconfined public

subclass is used to leak reference to confined fields of the parent.

Type annotations have applications other than restricting object aliases. The

work of Foster et al. (2002) extends standard type system with flow-sensitive type-

qualifiers, which can be used for verifying a class of flow-sensitive properties. They

implemented an efficient type-inference algorithm with practical applications such

as analyzing locking behavior in the Linux kernel.

8 Conclusion

This paper has formalized the notion of confined type (Vitek & Bokowski, 2001)

in the context of a minimal object calculus modeled on Featherweight Java. We

also illustrated the application of confined types to security. A static type system

that mirrors the informal rules of confinement was proposed and proven sound.

The confinement invariant was shown to hold for well-typed programs. In the

second part of the paper, definition of confined types was extended to confined

instantiation of generic classes. This allows for confined collection types in Java

and for classes that can be confined post hoc. Confinement type rules are given for

Generic Featherweight Java, and proven sound. A generic confinement invariant is

established and proven for well-typed programs.

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

126 T. Zhao et al.

References

Abadi, M. and Cardelli, L. (1996) A Theory of Objects. Springer-Verlag.

Aldrich, J., Kostadinov, V. and Chambers, C. (2002) Alias annotations for program

understanding. Proceedings of the ACM Conference on Object-Oriented Programming,

Systems, Languages, and Appplications (OOPSLA).

Almeida, P. S. (1997) Balloon types: Controlling sharing of state in data types. Proceedings

of the European Conference on Object-Oriented Programming (ECOOP).

Banerjee, A. and Naumann, D. A. (2002a) Representation independence, confinement and

access control. Proceedings of the ACM Symposium on Principles of Programming Languages

(POPL).

Banerjee, A. and Naumann, D. A. (2002b) Secure information flow and pointer confinement

in a Java-like language. Proceedings of the IEEE Computer Security Foundations Workshop.

Boyapati, C. (2004) SafeJava: A Unified Type System for Safe Programming. PhD thesis, MIT.

Boyapati, C. and Rinard, M. (2001) A parameterized type system for race-free Java programs.

Proceedings of the ACM Conference on Object-Oriented Programming, Systems, Languages,

and Appplications (OOPSLA).

Boyapati, C., Lee, R. and Rinard, M. (2002) Ownership types for safe programming:

Preventing data races and deadlocks. Proceedings of the ACM Conference on Object-Oriented

Programming, Systems, Languages, and Appplications (OOPSLA).

Boyapati, C., Liskov, B., Shrira, L., Moh, C.-H. and Richman, S. (2003a) Lazy modular

upgrades in persistent object store. Proceedings of the ACM Conference on Object-Oriented

Programming, Systems, Languages, and Appplications (OOPSLA).

Boyapati, C., Liskov, B. and Shrira, L. (2003b) Ownership types for object encapsulation.

Proceedings of the ACM Symposium on Principles of Programming Languages (POPL).

Boyapati, C., Salcianu, A., Beebee, W. and Rinard, M. (2003c) Ownership types for safe

region-based memory management in real-time Java. Proceedings of the ACM Conference

on Programming Language Design and Implementation.

Boyland, J., Noble, J. and Retert, W. (2001) Capabilities for aliasing: A generalisation

of uniqueness and read-only. Proceedings of the European Conference on Object-Oriented

Programming (ECOOP).

Clarke, D., Richmond, M. and Noble, J. (2003) Saving the world from bad Beans:

Deployment-time confinement checking. Proceedings of the ACM Conference on Object-

Oriented Programming, Systems, Languages, and Appplications (OOPSLA).

Clarke, D. (2001) Object ownership and containment. PhD thesis, School of Computer Science

and Engineering, University of New South Wales, Sydney, Australia.

Clarke, D. and Drossopoulou, S. (2002) Ownership, encapsulation and the disjointness of type

and effect. Proceedings of the ACM Conference on Object-Oriented Programming, Systems,

Languages, and Appplications (OOPSLA).

Clarke, D., Potter, J. and Noble, J. (1998) Ownership types for flexible alias protection.

Proceedings of the ACM Conference on Object-Oriented Programming, Systems, Languages,

and Appplications (OOPSLA).

Clarke, D., Noble, J. and Potter, J. M. (2001) Simple ownership types for object containment.

Proceedings of the European Conference on Object-Oriented Programming (ECOOP).

Detlefs, D. L., Leino, K., Rustan M. and Nelson, G. (1998) Wrestling with rep exposure.

Technical report SRC-RR-156. Digital Equipment Corporation Systems Research Center.

Foster, J. S., Fähndrich, M. and Aiken, A. (1999) A theory of type qualifiers. Proceedings of

the ACM Conference on Programming Language Design and Implementation.

Foster, J. S., Terauchi, T. and Aiken, A. (2002) Flow-sensitive type qualifiers. Proceedings of

the ACM Conference on Programming Language Design and Implementation.

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

Type-based confinement 127

Foster, J. S. (2002) Type Qualifiers: Lightweight Specifications to Improve Software Quality.

PhD thesis, University of California, Berkeley.

Genius, D., Trapp, M. and Zimmermann, W. (1998) An approach to improve locality using

Sandwich Types. Proceedings of the 2nd Types in Compilation Workshop.

Gong, L. (1998) Guarding objects. In: Vigna, G. (editor), Mobile Agents and Security. LNCS,

vol. 576, pp. 1–23. Springer-Verlag.

Gong, L. (1999) Inside Java 2 Platform Security: Architecture, API Design, and Implementation.

Addison-Wesley.

Grossman, D., Morrisett, G. and Zdancewic, S. (2000) Syntactic type abstraction. ACM Trans.

Program. Lang. & Syst. 22(6), 1037–1080.

Grothoff, C., Palsberg, J. and Vitek, J. (2001) Encapsulating objects with confined types.

Proceedings of the ACM Conference on Object-Oriented Programming, Systems, Languages,

and Appplications (OOPSLA).

Hagimont, D., Mossière, J., de Pina, X. R. and Saunier, F. (1996) Hidden software capabilities.

Proceedings of the 16th International Conference on Distributed Computing System.

Hogg, J. (1991) Islands: Aliasing protection in object-oriented languages. Proceedings of the

ACM Conference on Object-Oriented Programming, Systems, Languages, and Appplications

(OOPSLA).

Hogg, J., Lea, D., Wills, A., de Champeaux, D. and Holt, R. (1992) The Geneva convention

on the treatment of object aliasing. OOPS Messenger, 3(2).

Igarashi, A., Pierce, B. C. and Wadler, P. (2001) Featherweight Java: a minimal core calculus

for Java and GJ. ACM Trans. Program. Lang. & Syst. 23(3), 396–450.

Kent, S. J. H. and Maung, I. (1995) Encapsulation and Aggregation. Proceedings of TOOLS

Pacific 1995 – Technology of Object-Oriented Languages and Systems. Prentice Hall.

Leavens, G. (1991) Modular specification and verification of object-oriented programs. IEEE

Software, November, 72–80.

Leroy, X. and Rouaix, F. (1998) Security properties of typed applets. Proceedings of the ACM

Symposium on Principles of Programming Languages (POPL).

Levy, H. (editor) (1984) Capability Based Computer Systems. Digital Press.

Müller, P. and Poetzsch-Heffter, A. (1999) Universes: A type system for controlling

representation exposure. In: Poetzsch-Heffter, A. and Meyer, J. (editors), Programming

Languages and Fundamentals of Programming. Fernuniversität Hagen.

Müller, P. and Poetzsch-Heffter, A. (2000a) Modular specification and verification techniques

for object-oriented software components. Foundations of Component-Based Systems, 137–

159.

Müller, P. and Poetzsch-Heffter, A. (2000b) A type system for controlling representation

exposure in Java. In: Drossopoulou, S., Eisenbach, S., Jacobs, B., Leavens, G. T., Müller, P.

and Poetzsch-Heffter, A. (editors), Formal Techniques for Java Programs.

Noble, J., Vitek, J. and Potter, J. (1998) Flexible alias protection. Proceedings of the European

Conference on Object-Oriented Programming (ECOOP).

Potanin, A., Noble, J. and Biddle, R. (2004a) Checking ownership and confinement.

Concurrency & Computation: Practice & Experience, 16(7), 671–687.

Potanin, A., Noble, J., Clarke, D. and Biddle, R. (2004b) Featherweight generic confinement.

International Workshop on Foundations of Object-oriented Languages (FOOL).

Sewell, P. and Vitek, J. (2003) Secure composition of untrusted code: Box π, wrappers, and

causality types. J. Comput. Secur. 11(2), 135–187.

Vitek, Ja. and Bokowski, B. (2001) Confined types in Java. Software–Practice & Exper. 31(6),

507–532.

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

128 T. Zhao et al.

Vitek, J. and Bryce, C. (2001) The JavaSeal mobile agent kernel. Autonomous Agents &

Multi-Agent Systems, 4.

Wallach, D., Balfanz, D., Dean, D. and Felton, E. (1997) Extensible Security Architectures for

Java. Proceedings of the 16th Symposium on Operating System Principles.

Zhao, T., Palsberg, J. and Vitek, J. (2003) Lightweight confinement for Java. Proceedings of the

ACM Conference on Object-Oriented Programming, Systems, Languages, and Appplications

(OOPSLA).

https://doi.org/10.1017/S0956796805005691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005691

