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Introduction. This paper concerns the problem of extending a given 
measure defined on a Boolean ring to a measure on the generated a-ring. 
Two general methods are familiar to the literature, that of Lebesgue (outer 
measure) and a method proposed by Borel using transfinite induction (4, 
49-134; 2, 228-238). The problem of Borel, to extend a finite measure on an 
algebra of sets to a measure on the generated c-algebra by way of transfinite 
induction on appropriate intermediate classes, has been solved by several 
authors (5; 1). In the present paper we propose to develop the method of 
Borel in its full generality, that is, to extend, by transfinite induction, an 
arbitrary measure, not necessarily finite, defined on a Boolean ring of sets, 
to a measure on the generated o--ring. 

1. Boolean relations. The terminology and notation of Halmos (3) 
will be used without comment. A sequence of sets {En} will be called "ascend
ing" (descending) if 

En < En+i(En > En+i)} n = 1, 2, . . . . 

To indicate that a given sequence of sets {En} is disjoint, the symbol 2Z 
or + will be used instead of U. 

1.1 A sequence of sets {En} is said to converge if 
OO CO CO CO 

fi L ) £ t = U (\Ei, 
n=l i=n n=l i=n 

in which case, it converges to the limit 
CO CO CO CO 

lim En = fi U E, = U fl Et. 
n=l i=n n=l i=n 

If the sequences {En}, {Fn} both converge, then also {En\JFn} converges and 

lim(En U Fn) = lim En U lim Fn; 

similarly for the intersection, difference and complement. 

1.2 Let C denote a given class of subsets of the space: C~ (C+) denotes the 
class of limits of descending (ascending) sequences of sets of C; C° denotes 
the class of limits of convergent sequences of sets of C. The letter R always 
denotes a ring of sets. R~ (R+) is a lattice closed under countable intersections 
(unions), and R° is a ring; we have the following inclusions: 

R < R - < R-+, R < R+ < R+-, R° < R-+, R° < R+-. 
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1.3 With a given ring R is associated a transfinite sequence of rings: 

R0 < Rl < R2 < • • • < Ra < . . • , 

where R0 = R, R« = R°a-i if OL is an ordinal number of the first kind, and 

R« = UR* 
/3<a 

if a is of the second kind. If coi denotes the first non-countable ordinal, Rcoi = 
S(R), the o--ring generated by R. 

1.4 We say that a set F l 'covers" the set E if F > E. The class of sets covered 
by some set of R + is a cr-ring, consequently every set of S(R) is covered by 
some set of R+. 

1.5 By a "measure on a lattice" we mean a real function on the sets of the 
lattice satisfying the defining conditions corresponding to these of a (countably 
additive) measure on a ring, plus the monotone property: IJL(E) < /x(ft) if 
E < F. Since a lattice of sets contains the null set (by definition), a measure 
on a lattice is additive in the finite sense, and subtractive. 

2. Induction of the measure. The immediate object is the extension 
of a measure ju on R to a measure n° on R°. The first step will be to extend /x 
to a measure /x+ on the lattice R+, using the fact that /x is continuous from 
below on R. The second step will be to extend /*+ to fx° on R°, using the fact that 
every set of R° is covered by a set of R+. 

THEOREM 2.1. A measure y. on a ring R admits an extension to a measure /JL+ 

on the lattice R+. 

Proof. If \Em}, {Fn} (Em, En £ R) are ascending sequences coverging to 
E Ç R+ it is easily verified that 

lim lim fi(Em D Fn) = lim lim n(Em O ^1»). 
m n n m 

Since /JL is continuous from below on R, 

lim fi(Em) = lim fi(Em D E) = lim fx(\im(Em fl Fn)) = lim lim »(Em fl ft). 
m m m n m n 

Similarly, 
lim n(Fn) = lim lim ix(Em C\ Fn), 

n n m 

so that 

limju(Ero) = lim/x(ft). 
m n 

We may therefore define, without ambiguity, 

lx+(E) = lim M (£»,), 
m 
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where {Em} is any ascending sequence of sets of R which converges to E; 
furthermore M+ on R+ is an extension of the function ju on R. Let F, E be sets 
of R + such that F < E. Let {Fn}, {En} be ascending sequences of sets of R 
converging to F, E respectively. {En C\ Fn\ is an ascending sequence of sets 
of R converging to F. Since n(En C\ Fn) < n(En), we have in the limit, tx+(F) < 
/x+(E). Suppose that 

oo 

E =» z2 EH{En Ç R) ; 

then E 6 R+, and 

/ n \ n °° 
M+(£) = Hm J £ £ J = lim'Z^Ei) = E *»(£.)• 

n \ 1 / n 1 1 

Suppose that 

£ = t,En(En € R + ) ; 
i 

then E Ç R + and the Ew may be decomposed: 
oo 

£« = £j Enm(Enm Ç R), 
7 7 i = l 

so that 
oo oo oo 

n+{E) = Z E /*(£») = E M+(£»). 
W = l W = l 1 

Thus n+ on R + satisfies the conditions of 1.5. In what follows, /JL+ denotes the 
extension to R+ of /x on R, according to this theorem. 

THEOREM 2.2. The measure fx+ on R + enjoys the following properties: 

(1) If E, F £ R + have finite measures, 

!x+(E \J F) = M+(£) + M+(F) - M+(E H 70. 

(2) M
+ (£ U F)< M+(£) + M+(^) (E, F e R+). 

/ CO \ CO 

(3) M+(^ U £reJ < E M + ( £ J (£» € R + ) . 

(4) fi+ is continuous from above on R+ . 

Proof. (1): It suffices to consider, in the limit, the same relation for R. 
(2) A consequence of (1). 
(3) If En £ R(w = 1,2, . . .) then 

M( y E) 
\ i / i 

and therefore 
/ oo \ / n \ n co 

M+( U £ J = lim J U Et) < l i m E M(£*) = E /«(-E,). 
\ 1 / n \ 1 / n \ 1 
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If En G R+(w = 1, 2, . . .) the EH may be decomposed 
CD 

m=l 

so that /*+(£„) = X) /*(-E»m), and 

£M+(£„)= £ £M£nm)>Ah û E J = M+( u E ) . 
1 re-=l ra=l \ re=l w=l / \ re=l ' 

(4) It must be shown that if {En} (En 6 R+) is a descending sequence of sets 
of finite measure (ju+) converging to E Ç R+, then 

lim/i+(£.) = M+(£). 
re 

We first prove the theorem for the case E = 0. Let € > 0 be arbitrary. 
Each En covers a set Fn Ç R such that 

M
+ (£re - ^re) = M + (£ w ) - M+ (^n) < 2"W€. 

(Since Fn g R, En — 7%> Ç R+, and /z+ is subtractive on R+.) Set 

1 

then Gn £ R and G» < £n , so that lim Gn = 0. Consequently, lim n(Gn) = 0. 
Since 

n+{En - Gn) = M+( Û (E, - Ft))<A Û (E( - Ft))< £„+(£, - F4)<«, 

we have 

fJL+(En) - fJi(Gn) < €, l i m / i + ( £ n ) < €. 
re 

Since e is arbitrary, lim/x+(Ew) = 0. In the general case, E = lim En 

is any set of finite measure (/*+). There exists an ascending sequence {Fn} 
(Fn Ç R) converging to E. {En — Fn] is a descending sequence (En —Fn Ç R+) 
converging to 0; therefore 

lim fx+(En) - lim n+(Fn) = lim n+(En - Fn) = 0, 

lim M
+(£re) = Hm n{Fn) = n+(E). 

re re 

THEOREM 2.3. If n is a measure on the ring R //^re exists a measure M0 0» R° 
which is an extension of JJL. 

Proof. Let E be any set of R° : if every E+ Ç R + which covers E is of infinite 
measure (ju+), we set pi0 (E) = <». Suppose now that there exists a set of R4* 
of finite measure (M+) covering E; then there exists a descending sequence 
{Ew} of sets of R+, all of finite measure (/x+)» converging to E. If {Fn} is a 
second sequence, with the properties of {En}, converging to E, then it is easily 
verified, as in the proof of 2.1, using the fact that /x+ is continuous from above 
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on R+, that lim n+(En) = lim n+(Fn). Hence we may define, without ambiguity, 
M°CE) = Hm M+(£») . If E, F G R° and E < F, then M°(£) < fx°(F). For it 
suffices to consider the case n°(E) < » , fi°(F) < oo, and then the proof is 
analogous to the case treated in the proof of 2.1. To prove that fi°(E + F) = 
li° (E) + M°(^ ) , it suffices to consider the case n°(E) < <*>, ^(F) < °°. Let 
{En}, {Fn\ be descending sequences of sets of R+ , all of finite measure (M+)> 
converging to E, F respectively. We have 

»+(En U Fn) = »+(En) + ^(Fn) - ^(En H /%,), 

and since lim (En H Fn) = 0 by (2.2 (4)), lim M+(£n H F») = 0. In the limit 
we have the required equation. 

Suppose that 
oo 

£ = E £ „ É R°(£n € R°). 
1 

It follows from the monotone property that 

M ° ( £ ) > ZM°(£ M ) . 
1 

It remains to prove the inverse inequality for the case n°(En) < o° (n = 1, 
2, . . .). Let € > 0 be arbitrary. For each index n there exists Fn G R+ , covering 
£„, such that M + < X ) - »°(En) < 2~ne. We have, by 2.2 (3), 

/ oo \ / oo \ oo oo 

M\Ç S.) < / ( y Fn) < ç ^+(F„) < E M°(£n) + «, 
so that 

M°(£.E.)< £/(£n), 

and the proof is complete. 

The measure JJL° on R° is an extension of fi+ on R+ , which in turn is an exten
sion of fi on R. In what follows, /x° denotes the extension to R° of /x on R 
according to Theorem 2.3. Consider the transfinite sequence of rings (1.3): 

R = R0 < Ri < R2 < . . . < R« < . . . < Rcoi; 

an extension of /i on R to a measure \xa on Ra is called a ''normal extension" 
if for every ordinal 0 of the first kind (0 < 0 < a), 

We see directly that the normal extension fxa, if it exists, is unique. The 
following theorem will serve as a lemma for the transfinite induction. 

THEOREM 2.4. Suppose that the normal extension na exists for a given ordinal 
a. Let e > 0 be arbitrary; for every E G R« of finite measure (fxa), there exists 
E+ G Ro+ = R+ , covering E, such that fia(E

+) — na(E) < e. 
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Proof. It suffices to prove the theorem for a of the first kind, assuming 
the theorem for a — 1. Let E £ Ra be of finite measure (/*«), and suppose 
in the first place that E 6 R«-i+. We may express £ as a union 

CO 

E = U En(En Ç R«-i), 
i 

and by the induction hypothesis there exists En
+ £ R0

+, covering En, such 
that 

ValEÏ) - »a(En) < 2~ne. 

The set 

Eo = U En Ç Ro 
l 

covers E} and 

/^(Ef) - ti*(E) = M « K - E) = M«( U (Et - EYJ 

< /x«( Û (£j - £,)) < Ë M«(£n - £,) < e. 

The theorem is proved for R«_i+, then it is evidently also true for Ra, and the 
proof is complete. 

We now prove the fundamental theorem of the paper: 

THEOREM 2.5. If y is a measure on a ring R there exists a measure jû on the 
generated a-ring S(R), which is the normal extension of ju. 

Proof. Let a be any ordinal such that 0 < a < c o i . It suffices to prove the 
existence of the normal extension ju«, assuming the existence of all the normal 
extensions ju/3 for £ < a. If a is of the first kind we set na = juV-i- Suppose 
that a is of the second kind. Let E be any set of R«, then there exists /3 < a 
such that E Ç Rp, and we set /x«(E) = vp(E). Then jia is defined, without 
ambiguity, as an additive, monotone function on Ra, which is an extension of 
Up for every ft < a. It remains to prove the countable additivity of /*«. Suppose 
that 

E= £ £„ e Ra(En e R«). 
i 

It will be sufficient to show that 

Ha(E) < £ Ha(En) 
1 

for the case that fxa(En) < ° ° , (w = 1, 2, . . .) and a is of the second kind. 
For each index n there exists an ordinal f$(n) < a such that En £ R&{n). Since 
JU/3(W) is normal there exists En

+ £ R0
+ covering En such that 

»a{Et) - /!«(£„) < 2~\ 
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€ being an arbitrary positive number, (2.4). Since U En
+ € R0

+, 

Ha{E) < U U E+) < Ë *.(#) < Ê /«.(£.) + e, 
\ 1 / 1 1 

so that 

oo 

1 

and this completes the proof. 

Henceforth /Z will denote the (unique) normal extension to S(R) of the 
measure n on the ring R. It follows from Theorems 2.4 and 2.5 that, e > 0 
being arbitrary, for every E 6 S(R) of finite measure (/l), there exists a set 
E+ 6 R+^covering E, such that &(E+) — fl(E) < e. We prove next the dual of 
Theorem 2.4. 

THEOREM 2.6. Let e > 0 be arbitrary. For every E Ç S(R) of finite measure 
(p) there exists E~ 6 R~, covered by E, such that Ji(E) — Jx{Er) < e. 

Proof. It suffices to prove the theorem for Ra, a of the first kind, under the 
supposition that the theorem is true for Ra_i. Then the theorem is evident 
for Ra_i+ . Let E be any set of R« of finite measure (/l) : there exists a descending 
sequence \En) {En Ç R a-i+) of sets of finite measure (/z) converging to E. 
For each n there exists Fn~ Ç R~ covered by En such that 

Ufa) - H(F-) < 2~n~1e. 

Set 

Hn= f\ FJ 
i 

so that {Hn} is a descending sequence (Hn € R~), whose limit 

H= f\Hn 
i 

belongs to R_, such that Hn < En, H < E. 

p(En - Hn) = /z( b (Ett - FT)) < p( Ux (Et - FT)) 

< É P(Et - FT) < 2~\. 
1 

Therefore jl(En) - p(Hn) < 2~l e, and in the limit, jx(E) - p(H) < e. 
The dual of the above method — passing by R~ instead of by R + —does not 

work in the general case. To see why, it suffices to consider the case of a set 
E Ç R~ — R such that for every ascending sequence \En) (En Ç R) converg
ing to E from below, lim n(En) < °°, and for every descending sequence 
{Fn} (Fn Ç R) converging to E from above, fi.(Fn) = °o (n = 1, 2, . . .). For 
the same reason, the direct induction from R to R° by the formula 
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lim n{En) = / (£) (Ea € R, lim Eu = E € R°) 
n n 

is not applicable to the general case. However, if \i is finite and bounded on 
R, it can be shown that each of these alternative methods is applicable. 
Then, each must give the normal extension, since, in this case, the extension 
from R to S(R) is unique. 
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