ON THE EXTENSION OF MEASURE BY THE METHOD OF BOREL

L. LeBLANC and G. E. FOX

Introduction. This paper concerns the problem of extending a given measure defined on a Boolean ring to a measure on the generated σ -ring. Two general methods are familiar to the literature, that of Lebesgue (outer measure) and a method proposed by Borel using transfinite induction (4, 49–134; 2, 228–238). The problem of Borel, to extend a finite measure on an algebra of sets to a measure on the generated σ -algebra by way of transfinite induction on appropriate intermediate classes, has been solved by several authors (5; 1). In the present paper we propose to develop the method of Borel in its full generality, that is, to extend, by transfinite induction, an arbitrary measure, not necessarily finite, defined on a Boolean ring of sets, to a measure on the generated σ -ring.

1. Boolean relations. The terminology and notation of Halmos (3) will be used without comment. A sequence of sets $\{E_n\}$ will be called "ascending" (descending) if

$$E_n \leqslant E_{n+1}(E_n \geqslant E_{n+1}), \qquad n = 1, 2, \ldots$$

To indicate that a given sequence of sets $\{E_n\}$ is disjoint, the symbol \sum or + will be used instead of **U**.

1.1 A sequence of sets $\{E_n\}$ is said to converge if

$$\bigcap_{i=1}^{\infty} \bigcup_{i=n}^{\infty} E_i = \bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} E_i,$$

in which case, it converges to the limit

$$\lim E_n = \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} E_i = \bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} E_i.$$

If the sequences $\{E_n\}$, $\{F_n\}$ both converge, then also $\{E_n \cup F_n\}$ converges and

$$\lim (E_n \cup F_n) = \lim E_n \cup \lim F_n;$$

similarly for the intersection, difference and complement.

1.2 Let **C** denote a given class of subsets of the space: \mathbf{C}^- (\mathbf{C}^+) denotes the class of limits of descending (ascending) sequences of sets of **C**; \mathbf{C}^0 denotes the class of limits of convergent sequences of sets of **C**. The letter **R** always denotes a ring of sets. \mathbf{R}^- (\mathbf{R}^+) is a lattice closed under countable intersections (unions), and \mathbf{R}^0 is a ring; we have the following inclusions:

$$\mathbf{R} \leqslant \mathbf{R}^- \leqslant \mathbf{R}^{-+}, \ \mathbf{R} \leqslant \mathbf{R}^+ \leqslant \mathbf{R}^{+-}, \ \mathbf{R}^{_0} \leqslant \mathbf{R}^{-+}, \ \mathbf{R}^{_0} \leqslant \mathbf{R}^{+-}.$$

Received January 5, 1956.

1.3 With a given ring \mathbf{R} is associated a transfinite sequence of rings:

$$\mathbf{R}_0 \leqslant \mathbf{R}_1 \leqslant \mathbf{R}_2 \leqslant \ldots \leqslant \mathbf{R}_{\alpha} \leqslant \ldots,$$

where $\mathbf{R}_0 = \mathbf{R}$, $\mathbf{R}_{\alpha} = \mathbf{R}_{\alpha-1}^0$ if α is an ordinal number of the first kind, and

$$\mathbf{R}_{\alpha} = \bigcup_{\beta < \alpha} \mathbf{R}_{\beta}$$

if α is of the second kind. If ω_1 denotes the first non-countable ordinal, $\mathbf{R}\omega_1 = \mathbf{S}(\mathbf{R})$, the σ -ring generated by \mathbf{R} .

1.4 We say that a set F "covers" the set E if $F \ge E$. The class of sets covered by some set of \mathbf{R}^+ is a σ -ring, consequently every set of $\mathbf{S}(\mathbf{R})$ is covered by some set of \mathbf{R}^+ .

1.5 By a "measure on a lattice" we mean a real function on the sets of the lattice satisfying the defining conditions corresponding to these of a (countably additive) measure on a ring, plus the monotone property: $\mu(E) \leq \mu(F)$ if $E \leq F$. Since a lattice of sets contains the null set (by definition), a measure on a lattice is additive in the finite sense, and subtractive.

2. Induction of the measure. The immediate object is the extension of a measure μ on **R** to a measure μ^0 on **R**⁰. The first step will be to extend μ to a measure μ^+ on the lattice **R**⁺, using the fact that μ is continuous from below on **R**. The second step will be to extend μ^+ to μ^0 on **R**⁰, using the fact that every set of **R**⁰ is covered by a set of **R**⁺.

THEOREM 2.1. A measure μ on a ring **R** admits an extension to a measure μ^+ on the lattice **R**⁺.

Proof. If $\{E_m\}$, $\{F_n\}$ $(E_m, E_n \in \mathbf{R})$ are ascending sequences coverging to $E \in \mathbf{R}^+$ it is easily verified that

$$\lim_{m} \lim_{n} \mu(E_{m} \cap F_{n}) = \lim_{n} \lim_{m} \mu(E_{m} \cap F_{n}).$$

Since μ is continuous from below on **R**,

$$\lim_{m} \mu(E_m) = \lim_{m} \mu(E_m \cap E) = \lim_{m} \mu(\lim_{n} (E_m \cap F_n)) = \lim_{m} \lim_{n} \mu(E_m \cap F_n).$$

Similarly,

$$\lim_{n} \mu(F_n) = \lim_{n} \lim_{m} \mu(E_m \cap F_n),$$

so that

$$\lim_m \mu(E_m) = \lim_n \mu(F_n).$$

We may therefore define, without ambiguity,

$$\mu^+(E) = \lim_m \mu(E_m),$$

where $\{E_m\}$ is any ascending sequence of sets of **R** which converges to E; furthermore μ^+ on **R**⁺ is an extension of the function μ on **R**. Let F, E be sets of **R**⁺ such that $F \leq E$. Let $\{F_n\}$, $\{E_n\}$ be ascending sequences of sets of **R** converging to F, E respectively. $\{E_n \cap F_n\}$ is an ascending sequence of sets of **R** converging to F. Since $\mu(E_n \cap F_n) \leq \mu(E_n)$, we have in the limit, $\mu^+(F) \leq \mu^+(E)$. Suppose that

$$E = \sum_{n=1}^{\infty} E_n (E_n \in \mathbf{R});$$

then $E \in \mathbf{R}^+$, and

$$\mu^{+}(E) = \lim_{n} \mu\left(\sum_{1}^{n} E_{i}\right) = \lim_{n} \sum_{1}^{n} \mu(E_{i}) = \sum_{1}^{\infty} \mu(E_{n}).$$

Suppose that

$$E = \sum_{1}^{\infty} E_n(E_n \in \mathbf{R}^+);$$

then $E \in \mathbf{R}^+$ and the E_n may be decomposed:

$$E_n = \sum_{m=1}^{\infty} E_{nm}(E_{nm} \in \mathbf{R}),$$

so that

$$\mu^+(E) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \mu(E_{nm}) = \sum_{n=1}^{\infty} \mu^+(E_n).$$

Thus μ^+ on \mathbf{R}^+ satisfies the conditions of 1.5. In what follows, μ^+ denotes the extension to R^+ of μ on \mathbf{R} , according to this theorem.

THEOREM 2.2. The measure μ^+ on \mathbf{R}^+ enjoys the following properties:

(1) If $E, F \in \mathbf{R}^+$ have finite measures, $\mu^+(E \cup F) = \mu^+(E) + \mu^+(F) - \mu^+(E \cap F).$ (2) $\mu^+(E \cup F) \leqslant \mu^+(E) + \mu^+(F) \qquad (E, F \in \mathbf{R}^+).$

(3)
$$\mu^+ \left(\bigcup_{n=1}^{\infty} E_n \right) \leqslant \sum_{n=1}^{\infty} \mu^+ (E_n) \qquad (E_n \in \mathbf{R}^+).$$

(4) μ^+ is continuous from above on \mathbf{R}^+ .

Proof. (1): It suffices to consider, in the limit, the same relation for \mathbf{R} . (2) A consequence of (1).

(3) If $E_n \in \mathbf{R} (n = 1, 2, ...)$ then

$$\mu\left(\begin{array}{c} \prod_{i=1}^{n} E_{i}\right) \leqslant \sum_{i=1}^{n} \mu(E_{i}),$$

and therefore

$$\mu^+ \left(\begin{array}{c} \underset{1}{\overset{\infty}{\bigcup}} E_n \right) = \lim_n \mu \left(\begin{array}{c} \underset{1}{\overset{n}{\bigcup}} E_i \right) \leqslant \lim_n \sum_{1}^n \mu(E_i) = \sum_{1}^\infty \mu(E_n).$$

If $E_n \in \mathbf{R}^+$ (n = 1, 2, ...) the E_n may be decomposed

$$E_n = \sum_{m=1}^{\infty} E_{nm}(E_{nm} \in \mathbf{R}),$$

so that $\mu^+(E_n) = \sum \mu(E_{nm})$, and

$$\sum_{1}^{\infty} \mu^{+}(E_{n}) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \mu(E_{nm}) \geqslant \mu^{+} \left(\bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} E_{nm} \right) = \mu^{+} \left(\bigcup_{n=1}^{\infty} E_{n} \right).$$

(4) It must be shown that if $\{E_n\}$ $(E_n \in \mathbf{R}^+)$ is a descending sequence of sets of finite measure (μ^+) converging to $E \in \mathbf{R}^+$, then

$$\lim_{n} \mu^+(E_n) = \mu^+(E).$$

We first prove the theorem for the case E = 0. Let $\epsilon > 0$ be arbitrary. Each E_n covers a set $F_n \in \mathbf{R}$ such that

$$\mu^+(E_n - F_n) = \mu^+(E_n) - \mu^+(F_n) < 2^{-n}\epsilon.$$

(Since $F_n \in \mathbf{R}$, $E_n - F_n \in \mathbf{R}^+$, and μ^+ is subtractive on \mathbf{R}^+ .) Set

$$G_n = \bigcap_{1}^{n} F_i;$$

then $G_n \in \mathbf{R}$ and $G_n \leq E_n$, so that $\lim G_n = 0$. Consequently, $\lim \mu(G_n) = 0$. Since

$$\mu^{+}(E_{n}-G_{n}) = \mu^{+} \left(\bigcup_{i=1}^{n} (E_{n}-F_{i}) \right) \leqslant \mu^{+} \left(\bigcup_{i=1}^{n} (E_{i}-F_{i}) \right) \leqslant \sum_{i=1}^{n} \mu^{+}(E_{i}-F_{i}) < \epsilon,$$

we have

$$\mu^+(E_n) - \mu(G_n) < \epsilon, \lim_n \mu^+(E_n) \leq \epsilon.$$

Since ϵ is arbitrary, $\lim \mu^+(E_n) = 0$. In the general case, $E = \lim E_n$ is any set of finite measure (μ^+) . There exists an ascending sequence $\{F_n\}$ $(F_n \in \mathbf{R})$ converging to E. $\{E_n - F_n\}$ is a descending sequence $(E_n - F_n \in \mathbf{R}^+)$ converging to 0; therefore

$$\lim_{n} \mu^{+}(E_{n}) - \lim_{n} \mu^{+}(F_{n}) = \lim_{n} \mu^{+}(E_{n} - F_{n}) = 0,$$
$$\lim_{n} \mu^{+}(E_{n}) = \lim_{n} \mu(F_{n}) = \mu^{+}(E).$$

THEOREM 2.3. If μ is a measure on the ring **R** there exists a measure μ^0 on \mathbf{R}^0 which is an extension of μ .

Proof. Let E be any set of \mathbb{R}^0 : if every $E^+ \in \mathbb{R}^+$ which covers E is of infinite measure (μ^+) , we set $\mu^0(E) = \infty$. Suppose now that there exists a set of \mathbb{R}^+ of finite measure (μ^+) covering E; then there exists a descending sequence $\{E_n\}$ of sets of \mathbb{R}^+ , all of finite measure (μ^+) , converging to E. If $\{F_n\}$ is a second sequence, with the properties of $\{E_n\}$, converging to E, then it is easily verified, as in the proof of 2.1, using the fact that μ^+ is continuous from above

on \mathbb{R}^+ , that $\lim \mu^+(E_n) = \lim \mu^+(F_n)$. Hence we may define, without ambiguity, $\mu^0(E) = \lim \mu^+(E_n)$. If $E, F \in \mathbb{R}^0$ and $E \leq F$, then $\mu^0(E) \leq \mu^0(F)$. For it suffices to consider the case $\mu^0(E) < \infty$, $\mu^0(F) < \infty$, and then the proof is analogous to the case treated in the proof of 2.1. To prove that $\mu^0(E + F) =$ $\mu^0(E) + \mu^0(F)$, it suffices to consider the case $\mu^0(E) < \infty$, $\mu^0(F) < \infty$. Let $\{E_n\}, \{F_n\}$ be descending sequences of sets of \mathbb{R}^+ , all of finite measure (μ^+) , converging to E, F respectively. We have

$$\mu^{+}(E_{n} \cup F_{n}) = \mu^{+}(E_{n}) + \mu^{+}(F_{n}) - \mu^{+}(E_{n} \cap F_{n}),$$

and since $\lim (E_n \cap F_n) = 0$ by (2.2 (4)), $\lim \mu^+(E_n \cap F_n) = 0$. In the limit we have the required equation.

Suppose that

$$E = \sum_{1}^{\infty} E_n \in \mathbf{R}^0(E_n \in \mathbf{R}^0).$$

It follows from the monotone property that

$$\mu^{0}(E) \geqslant \sum_{1}^{\infty} \mu^{0}(E_{n}).$$

It remains to prove the inverse inequality for the case $\mu^0(E_n) < \infty$ (n = 1, 2, ...). Let $\epsilon > 0$ be arbitrary. For each index *n* there exists $F_n \in \mathbf{R}^+$, covering E_n , such that $\mu^+(F_n) - \mu^0(E_n) < 2^{-n}\epsilon$. We have, by 2.2 (3),

$$\mu^{0}\left(\sum_{1}^{\infty}E_{n}\right) \leqslant \mu^{+}\left(\bigcup_{1}^{\infty}F_{n}\right) \leqslant \sum_{1}^{\infty}\mu^{+}(F_{n}) < \sum_{1}^{\infty}\mu^{0}(E_{n}) + \epsilon,$$

so that

$$\mu^{0}\left(\sum_{1}^{\infty} E_{n}\right) \leqslant \sum_{1}^{\infty} \mu^{0}(E_{n}),$$

and the proof is complete.

The measure μ^0 on \mathbf{R}^0 is an extension of μ^+ on \mathbf{R}^+ , which in turn is an extension of μ on \mathbf{R} . In what follows, μ^0 denotes the extension to \mathbf{R}^0 of μ on \mathbf{R} according to Theorem 2.3. Consider the transfinite sequence of rings (1.3):

$$\mathbf{R} = \mathbf{R}_0 \leqslant \mathbf{R}_1 \leqslant \mathbf{R}_2 \leqslant \ldots \leqslant \mathbf{R}_{\alpha} \leqslant \ldots \leqslant \mathbf{R}_{\omega_1};$$

an extension of μ on **R** to a measure μ_{α} on \mathbf{R}_{α} is called a "normal extension" if for every ordinal β of the first kind $(0 \leq \beta \leq \alpha)$,

$$\mu_{\beta} = \mu_{\beta-1}^{\circ}.$$

We see directly that the normal extension μ_{α} , if it exists, is unique. The following theorem will serve as a lemma for the transfinite induction.

THEOREM 2.4. Suppose that the normal extension μ_{α} exists for a given ordinal α . Let $\epsilon > 0$ be arbitrary; for every $E \in \mathbf{R}_{\alpha}$ of finite measure (μ_{α}) , there exists $E^+ \in \mathbf{R}_0^+ = \mathbf{R}^+$, covering E, such that $\mu_{\alpha}(E^+) - \mu_{\alpha}(E) < \epsilon$.

Proof. It suffices to prove the theorem for α of the first kind, assuming the theorem for $\alpha - 1$. Let $E \in \mathbf{R}_{\alpha}$ be of finite measure (μ_{α}) , and suppose in the first place that $E \in \mathbf{R}_{\alpha-1}^+$. We may express E as a union

$$E = \bigcup_{1}^{\infty} E_n(E_n \in \mathbf{R}_{\alpha-1}),$$

and by the induction hypothesis there exists $E_n^+ \in \mathbf{R}_{0^+}$, covering E_n , such that

$$\mu_{\alpha}(E_n^+) - \mu_{\alpha}(E_n) < 2^{-n} \epsilon.$$

The set

$$E_0^+ = \bigcup_{1}^{\infty} E_n^+ \in \mathbf{R}_0^+$$

covers E, and

$$\mu_{\alpha}(E_{0}^{+}) - \mu_{\alpha}(E) = \mu_{\alpha}(E_{0}^{+} - E) = \mu_{\alpha} \left(\bigcup_{1}^{\omega} (E_{n}^{+} - E) \right)$$
$$\leqslant \mu_{\alpha} \left(\bigcup_{1}^{\omega} (E_{n}^{+} - E_{n}) \right) \leqslant \sum_{1}^{\omega} \mu_{\alpha}(E_{n}^{+} - E_{n}) < \epsilon.$$

The theorem is proved for $\mathbf{R}_{\alpha-1}^+$, then it is evidently also true for \mathbf{R}_{α} , and the proof is complete.

We now prove the fundamental theorem of the paper:

THEOREM 2.5. If μ is a measure on a ring **R** there exists a measure $\overline{\mu}$ on the generated σ -ring **S**(**R**), which is the normal extension of μ .

Proof. Let α be any ordinal such that $0 < \alpha \leq \omega_1$. It suffices to prove the existence of the normal extension μ_{α} , assuming the existence of all the normal extensions μ_{β} for $\beta < \alpha$. If α is of the first kind we set $\mu_{\alpha} = \mu_{\alpha-1}^0$. Suppose that α is of the second kind. Let E be any set of \mathbf{R}_{α} , then there exists $\beta < \alpha$ such that $E \in \mathbf{R}_{\beta}$, and we set $\mu_{\alpha}(E) = \mu_{\beta}(E)$. Then μ_{α} is defined, without ambiguity, as an additive, monotone function on \mathbf{R}_{α} , which is an extension of μ_{β} for every $\beta < \alpha$. It remains to prove the countable additivity of μ_{α} . Suppose that

$$E = \sum_{1}^{\infty} E_n \in \mathbf{R}_{\alpha}(E_n \in \mathbf{R}_{\alpha}).$$

It will be sufficient to show that

$$\mu_{\alpha}(E) \leqslant \sum_{1}^{\infty} \mu_{\alpha}(E_n)$$

for the case that $\mu_{\alpha}(E_n) < \infty$, (n = 1, 2, ...) and α is of the second kind. For each index *n* there exists an ordinal $\beta(n) < \alpha$ such that $E_n \in R_{\beta(n)}$. Since $\mu_{\beta(n)}$ is normal there exists $E_n^+ \in \mathbf{R}_0^+$ covering E_n such that

$$\mu_{\alpha}(E_n^+) - \mu_{\alpha}(E_n) < 2^{-n} \epsilon,$$

 ϵ being an arbitrary positive number, (2.4). Since $\bigcup E_n^+ \in \mathbf{R}_{0^+}$,

$$\mu_{\alpha}(E) \leqslant \mu_{\alpha} \left(\bigcup_{1}^{\omega} E_{n}^{+} \right) \leqslant \sum_{1}^{\infty} \mu_{\alpha}(E_{n}^{+}) < \sum_{1}^{\infty} \mu_{\alpha}(E_{n}) + \epsilon,$$

so that

$$\mu_{\alpha}(E) \leqslant \sum_{1}^{\infty} \mu_{\alpha}(E_n),$$

and this completes the proof.

Henceforth $\bar{\mu}$ will denote the (unique) normal extension to $\mathbf{S}(\mathbf{R})$ of the measure μ on the ring \mathbf{R} . It follows from Theorems 2.4 and 2.5 that, $\epsilon > 0$ being arbitrary, for every $E \in \mathbf{S}(\mathbf{R})$ of finite measure ($\bar{\mu}$), there exists a set $E^+ \in \mathbf{R}^+$, covering E, such that $\bar{\mu}(E^+) - \bar{\mu}(E) < \epsilon$. We prove next the dual of Theorem 2.4.

THEOREM 2.6. Let $\epsilon > 0$ be arbitrary. For every $E \in \mathbf{S}(\mathbf{R})$ of finite measure $(\bar{\mu})$ there exists $E^- \in \mathbf{R}^-$, covered by E, such that $\bar{\mu}(E) - \bar{\mu}(E^-) < \epsilon$.

Proof. It suffices to prove the theorem for \mathbf{R}_{α} , α of the first kind, under the supposition that the theorem is true for $\mathbf{R}_{\alpha-1}$. Then the theorem is evident for $\mathbf{R}_{\alpha-1}^+$. Let E be any set of \mathbf{R}_{α} of finite measure $(\bar{\mu})$: there exists a descending sequence $\{E_n\}$ $(E_n \in \mathbf{R}_{\alpha-1}^+)$ of sets of finite measure $(\bar{\mu})$ converging to E. For each n there exists $F_n^- \in \mathbf{R}^-$ covered by E_n such that

$$\bar{\mu}(E_n) - \bar{\mu}(F_n^-) < 2^{-n-1}\epsilon.$$

Set

$$H_n = \bigcap_{1}^n F_i^-$$

so that $\{H_n\}$ is a descending sequence $(H_n \in \mathbf{R}^-)$, whose limit

$$H = \bigcap_{1}^{\infty} H_n$$

belongs to \mathbf{R}^{-} , such that $H_n \leq E_n$, $H \leq E$.

$$\bar{\mu}(E_n - H_n) = \bar{\mu} \left(\bigcup_{i=1}^n (E_n - F_i^-) \right) \leqslant \bar{\mu} \left(\bigcup_{i=1}^n (E_i - F_i^-) \right)$$
$$\leqslant \sum_{i=1}^n \bar{\mu}(E_i - F_i^-) < 2^{-1} \epsilon.$$

Therefore $\bar{\mu}(E_n) - \bar{\mu}(H_n) < 2^{-1} \epsilon$, and in the limit, $\bar{\mu}(E) - \bar{\mu}(H) < \epsilon$.

The dual of the above method – passing by \mathbf{R}^- instead of by \mathbf{R}^+ -does not work in the general case. To see why, it suffices to consider the case of a set $E \in \mathbf{R}^- - \mathbf{R}$ such that for every ascending sequence $\{E_n\}$ $(E_n \in \mathbf{R})$ converging to E from below, $\lim \mu(E_n) < \infty$, and for every descending sequence $\{F_n\}$ $(F_n \in \mathbf{R})$ converging to E from above, $\mu(F_n) = \infty$ (n = 1, 2, ...). For the same reason, the direct induction from \mathbf{R} to \mathbf{R}^0 by the formula

522

$$\lim_{n \to \infty} \mu(E_n) = \mu^0(E) \qquad (E_n \in \mathbf{R}, \lim_{n \to \infty} E_n = E \in \mathbf{R}^0)$$

is not applicable to the general case. However, if μ is finite and bounded on **R**, it can be shown that each of these alternative methods is applicable. Then, each must give the normal extension, since, in this case, the extension from **R** to **S**(**R**) is unique.

References

- 1. J. Albuquerque, Ensembles de Borel, Portugaha Math. (1944).
- E. Borel, Leçons sur la théorie des fonctions. Collection de monographies sur la théorie des fonctions publiées sous la direction de Emile Borel (Paris, 1950).
- 3. P. R. Halmos, Measure Theory (New York, 1950).
- N. Lusin, Leçons sur les ensembles analytiques et leurs applications. Collection de monographies sur la théorie des fonctions publiées sous la direction de Emile Borel (Paris, 1930).
- 5. R. Neves, Sôbre a construçae algebrica da teoria geral da Medida. Instituto Para a alta cultura, Gendro de estudas matematicas, Publ. no. 13, 22 pp. (1945).

Université de Montréal