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LOCAL ENDOMORPHISM NEAR-RINGS

by CARTER G. LYONS and GARY L. PETERSON

(Received 6th July 1987)

The purpose of this paper is to study the consequences of an endomorphism near-ring
of a finite group being a local near-ring and the existence of such near-rings. As we shall
see in Section 2, an endomorphism near-ring of a finite group being local gives us some
information about both the structure of the group (Theorem 2.2) and the automorph-
isms of the group lying in the near-ring (Theorem 2.3). Existence of local endomorphism
near-rings of finite groups is considered in Section 3 where we obtain as our main result
that any p-group of automorphisms of a p-group containing the inner automorphisms
always generates a local endomorphism near-ring. In particular, we get as a corollary
that the endomorphism near-ring of a finite group G generated by the inner automorph-
isms of G is local if and only if G is a p-group. The third section concludes with a
discussion of endomorphism near-rings of dihedral 2-groups and generalized quaternion
groups.

1. Preliminaries

We shall follow the conventions of [7] with regard to notation and terminology,
while our basic reference on local near-rings is [6] suitably modified to the afore-
mentioned specifications. In particular, this means that a near-ring R is local if the set

L = {reR\r does not have a right inverse}

is a right i?-subgroup of R.
Throughout, G will denote a finite group written additively (but not necessarily

abelian). The sets of inner automorphisms, automorphisms, and endomorphisms of G
will be denoted Inn(G), Aut(G), and End(G), respectively. If S is a semigroup of
endomorphisms of G, S generates the endomorphism near-ring R under pointwise
addition and composition of functions which is a distributively generated (d.g.) near-
ring. The endomorphism near-rings generated by Inn(G), Aut(G), and End(G) will be
respectively denoted /(G), A(G), and E(G).

As in [7], we shall say that an endomorphism near-ring R generated by a semigroup
of endomorphisms S is tame when Inn(G) g S. The reader should keep in mind that the
notion of a subgroup H of G being an R-submodule (or /^-subgroup) coincides with the
notion of H being an /?-ideal when R is tame [7, Lemma 10.7]. Moreover, it is easy to
see that this equivalence extends to quotients of G by K-submodules:

409

https://doi.org/10.1017/S0013091500006805 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500006805


410 C. G. LYONS AND G. L. PETERSON

Lemma 1.1. / / R is a tame endomorphism near-ring of G, H is an R-ideal of G, and
G = G/H, then a subgroup K of G is an R-submodule if and only if R is an R-ideal of G.
Finally, the standard radicals (J2{R), J\(R), and J0(R)) a r e all t n e same when R is a
tame endomorphism near-ring and we shall denote the radical in this setting by J(R).

If H and K are subgroups of a group G, we will use \H, K] to denote the subgroup of
G generated by the commutators [h,k], heH, keK. The proof of Lemma 10.17 of [7]
can be easily modified to obtain:

Lemma 1.2. Let (R, S) be a d.g. near-ring and G be an (R, S)-group. If H and K are
(R, S)-subgroups of G, then [H, K~] is an (R, S)-subgroup of G.

In particular, we have that commutators of /?-ideals in G are /?-ideals when R is a
tame endomorphism near-ring of G.

From time to time we will make use of the following notions from group theory: An
element a in Aut(G) is said to stabilize a series

of subgroups of G if (g+Gi)ix=g + Gi for all geGi+l for all i=0, l,...,n — 1. In this case,
1 — a annihilates the series and is nilpotent of degree n in any endomorphism near-ring
containing 1 and a. A subgroup A of Aut(G) is called a stability group of G if there is a
series of subgroups

stabilized by each element of A. Using n(G) to denote the set of primes dividing |G|, a
basic and easily proved result about stability groups is the following (or see [8, Lemma
5] which is an even better result):

Lemma 13. If A is a stability group of G, then n(A) ̂  n{G).

2. Consequences of localness

Let R be a tame endomorphism near-ring of a group G that is local. We begin this
section by noting that L = J(R) [6, Theorem 2.10] and proceed to obtain some results
about G and R/L. Let

be an /^-principal series (that is, a maximal series of K-submodules) of G.

Lemma 2.1. Let R be a tame endomorphism near-ring of G that is local and let g be
any nonzero element ofGilGi-^ Then

AnnR{g) = AnnR(Gi/Gi.1) = J(R)

for all i=l,2,...,n.
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Proof. Clearly we have

Since L is the unique maximal R-subgroup of R [6, Theorem 2.2], L ^ AnnR(g) and the
result follows.

Theorem 2.2. / / R is a tame endomorphism near-ring of G that is local, then:

(i) Gj/G; _! =s R/L as R-modules for i = 1,2,..., n.

(ii) G,/Gj_! is an elementary abelian p-group for i = 1,2,..., n.

(iii) G is a p-group.

(iv) R/L is a finite field of characteristic p.

(v) The series 0 = Go ^ Gx ^ • • • ^ Gn = G is a central series.

Proof, (i) Let g be a nonzero element of GJGi-i. As gR = Gi/Gi-i, Gi/Gi.1^
R/AnnR(g) = R/L and R-modules.

(ii) This follows because R/L is a near-field [6, Corollary 2.11] and because the
additive group of a finite near-field is an elementary abelian p-group.

(iii) is now immediate.

(iv) Since R/LgEnd(G,/G1_1), End(G,/Gj_,) is a ring, and R/L is a near-field, R/L
must be a finite division ring which is a field and the characteristic is p by (i) and (ii).

(v) Since G is a p-group and Gt is a normal subgroup of G, [Gj/Gj_1,G/GI_1]<
Gj/Gj-!. Thus [G./G,-! ,G/Gi_1]=0 since G^G,-! is a simple R-module and the result
follows.

We next obtain some information about the group of automorphisms lying in a tame
endomorphism near-ring that is local.

Theorem 23. Suppose R is a tame endomorphism near-ring of G that is local. Let
X = Aut(G)nR, (R/L)* = R/L-{0}, and d:A->(R/L)* be the multiplicative homomorphism
obtained by restricting the natural projection from R onto R/L to A.

(i) ker5 is the p-Sylow subgroup P of A where p is the prime dividing \G\.

(ii) P has a complement K in A which is cyclic and \K\ divides p" — \ where p" = |R/L|.

Proof, (i) First note that if a e A has order a power of p, then <x<5 = 1 since |(R/L)*| =
p" — 1 is relatively prime to p. Conversely suppose a e ker S and consider an R-principal
series 0 = G o ^ G ! ^ ••• ^GB = G of G. Since 1— a e L and L = AnnR(G1/Gj_1), a stabilizes
this series and hence |a| is a power of p by Lemma 1.3. The result now follows.

(ii) This follows from the Schur-Zassenhaus Theorem [1, p. 221] and from the fact
that a multiplicative subgroup of finite order in a field is cyclic.

3. Some local endomorphism near-rings

We begin this section with an elementary group theory result whose proof we include
for the sake of completeness.
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Lemma 3.1. Let G be a p-group, A a p-group of automorphisms of G, and H a minimal
A-invariant subgroup of G. Then A acts trivially on H.

Proof. Let us momentarily switch to the usual group theory conventions of writing
G as a multiplicative group and indicating the action of an automorphism a of G by
exponentiation (i.e., ga=g* for geG). Let [H,A] be the subgroup of G generated by the
commutators [/t,a] = /i"1/ia, heH, aeA. Since [h,a]" = [/i",a"] for 0eA, it follows that
[H,A~\ is an ^-invariant subgroup of G. Viewing [H,A] in the semidirect product GA
which is also a p-group, we have [H, / l ]<# and hence [H,A] = l since H is a minimal
X-invariant subgroup.

We now come to the main result of this section. In the proof of this result we shall
make use of the socle series of G for a tame endomorphism near-ring R on G which is
obtained as follows: The socle of G, Soc(G), is the sum of the minimal /^-subgroups of G
and the socle series is defined by letting Soc1(G) = Soc(G) and Soc^G) be the inverse
image of Soc(G/Soc»_1(G)) in G for k>l. By Theorem 10.37 of [7] we have that
SocB(G) = G for some positive integer n.

Theorem 3.2. Let A be a p-group of automorphisms of a p-group G with Inn(G) ^A. If
R is the endomorphism near-ring of G generated by A, then R is local.

Proof. Let

Soc2(G) < < SocB(G) = G

be the socle series of G. We first show that A stabilizes this series. By induction on \G\,
it suffices to show that A acts trivially on Soc(G) since R/AnnR(G/Soc(G)) will be an
endomorphism near-ring of the same type on G/Soc(G). But this needed trivial action
on Soc(G) follows from the previous lemma since Soc(G) is the direct sum of the
minimal /^-subgroups of G.

We now have that 1 — a annihilates the socle series of G for all cue A and hence
1— txeJ(R) by Lemma 2.5 of [4]. Also, p i annihilates the socle series since the socle
summands are elementary abelian p-groups [7, Theorem 10.30]. Thus it follows that
R/J(R)~Zp and J(R) is a maximal right i?-subgroup of R.

By Theorem 2.8 of [6], the proof will be complete if we can show that J(R) is the
unique maximal R-subgroup of R. Let M be a maximal /^-subgroup of R. If p* is the
exponent of G, then p*r = 0 for all reR and hence the additive group of R, (R, +), is a
p-group. Let N denote the normal closure of (M, +) in (R, +); that is, N is the smallest
normal subgroup of (R, +) containing M and N is generated by elements of the form
— r + m + r where r eR, meM. We have that N<R since the normal closure of a proper
subgroup of a p-group is proper (apply Theorem 4.3.2. of [2], for example). Also if aeA,
reR, and meM,

(~r + m + r)a = — ra.+ma + ra.eN

and it follows that TV is an R-subgroup of R. Thus N = M and M is a right ideal of R
[7, Corollary 9.22]. Hence we have that J(R)<LM (Theorem 5.17 of [7]) and
consequently J(R) = M completing the proof.
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Using Theorems 2.2 and 3.2, we can now characterize those groups G for which I(G)
is local. For if /(G) is local, then G is a p-group by Theorem 2.2. Conversely, if G is a
p-group, then /(G) is local by Theorem 3.2. Thus we have:

Corollary 33. I(G) is local if and only if G is a p-group.

We conclude this section by noting that our results unify some of the work that has
already been done on endomorphism near-rings. Specifically, when G is a dihedral 2-
group or a generalized quaternion group we have an alternative approach for obtaining
some of the results in [3] and [5].

If G is a dihedral group of order 2" (n>2),

G = (a,b\2"-1a = 2b=0, -b + a + b=-a},

then Aut(G) is a 2-group (Lemma 2.2 of [3]) and so it follows that A(G) and /(G) are
both local by Theorem 3.2. Moreover, we see from the proof of Theorem 3.2 that
R/J(R)^Z2 in both cases, thereby obtaining the result of Theorem 3.4 of [3] in this
setting. We also remark that E(G) is not local since the projection from G onto the
cyclic subgroup generated by b is an idempotent endomorphism of G and local near-
rings have no nontrivial idempotents [6, Theorem 4.2].

Similar results hold for A(G) and /(G) if

G = (a,b\2--1a=0,2"-2a = 2b, -b + a + b=-a}

is a generalized quaternion group of order 2" when n>3 since Aut(G) is a 2-group [5,
Theorem 2]. Moreover these results extend to £(G) since A(G) = E(G) as shown in [5]
(Theorem 5) or which can be seen by examining the endomorphisms of G as follows:
End (G) has three nontrivial endomorphisms that are not automorphisms whose kernels
are the normal subgroups of G generated by a, b and a + b and whose images are the
subgroup generated by 2"~2a which is the centre of G. (See the proof of Theorem 2 of
[5]). If p is such an endomorphism, it is easily checked that the mapping a defined by
ga=g(l + P) is an automorphism of G and hence E(G) = A(G).

Finally, we point out that E(G) and A(G) are not local if G is the quaternion group of
order 8 (a case not covered in [5]) where we will still have E(G) = A(G). This lack of
localness follows because G has an automorphism a of order 3 [9, p. 148] which acts
trivially on <2a>. Hence, if E(G) were local, 1— aeJ(R) by Lemma 2.1 which violates
part (i) of Theorem 2.3. This example brings up the question of whether we might have
a converse to Theorem 3.2; that is, if G is a p-group and A is a group of automorphisms
of G with lnn(G)^A which generates a local near-ring R, is A a p-group? As of this
writing we have been unable to resolve this question.
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