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Abstract

Assume that a Banach space has a Frechet differentiable and locally uniformly convex norm. We show
that the reflexive property of the Banach space is not only sufficient, but also a necessary condition for
the fulfillment of the proximal extremal principle in nonsmooth analysis.
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1. Introduction

Throughout this note, X is a Banach space and X* is its topological dual. We denote
by i and B* the closed unit balls in the space X and X*, respectively, and let ffif (*)
denote the closed ball in X, centered at x, with radius e > 0. By dn(x) we mean the
distance from * to a non-empty closed subset Q c X.

In [5], Clarke etal. developed proximal subdifferential calculus and its applications
in Hilbert spaces. In particular, the fuzzy sum rule and the chain rule hold. In [2, 3, 8],
the existence of the proximal subdifferential and the proximal normal formula for
Clarke's normal cone

x* e X*
x* — limx*, xn -*• x, x* is a proximal 1
normal functional to £2 at xn J '

in reflexive Banach spaces with Kadec and Frechet differentiable norms were given.
However, it is not clear whether the proximal fuzzy sum rule and proximal fuzzy chain
rule hold on general reflexive spaces.
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Inspired by the work of Mordukhovich and Shao [13] and employing similar
methods, in this note we characterize the reflexivity of Banach spaces using extremal
principles and fuzzy sum rules in terms of proximal normals/subdifferentials. Assume
that X has a locally uniformly convex and Frechet differentiable norm. We show that
the proximal extremal principle and fuzzy sum rule hold whenever X is reflexive,
and moreover, reflexivity of a Banach space X is equivalent to the fulfillment of each
of these principles in X. Consequently, the reflexive space framework gives neces-
sary and sufficient conditions for the usage of proximal-type normal/subdifferential
constructions.

2. Constructs in nonsmooth analysis

Let us review some basic concepts of nonsmooth analysis used in the sequel.
A linear functional x* e X* is said to be

(a) proximal normal functional to Q at x € Q if there is u £ Q such that

| |M-ar | |=dQ(ii) and {x*, u - x) = \\x'\\\\u - x\\.

(b) Frechet normal to £2 at x if

{x*,u -x)
lim sup < 0,

B_DJt | | H - X | |

where u -> n x means that u -> x and u e Q.

The collections of proximal normals and Frechet normals are denoted, respectively, by
NP(x; Q), NF(x; Q), and they are known as the proximal normal cone and the Frechet
normal cone to £2 at x. For an extended real-valued function f : X -*• (-co, oo], the
formulae

BFf(x) := {x* e X* : (x*, -1) € NF((x, /(*));epi /)},
3,/0c) := [x* e X* : ( JC ' , -1 ) e NP«x, /(*)); epi/)},

define the Frechet subdifferential, and proximal subdifferential of / at x, respectively,
provided that / is finite at x. Otherwise, these subdifferentials are assumed to be
empty. If X is reflexive and the norm of X is Frechet differentiable, then

NP(x; Q) c NF(x;Q) for every x e Q,

by [3, Corollary 3.1]. It is easy to check

(2.1) 0 € dpf(x) for any local minimizer x e dom / .
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Let £2,, Q2 be non-empty closed subsets of a Banach space X and let x e £2, D £22-
According to Mordukhovich and Shao [13, 9], x is a locally extremal point of the set
system (£2), £22} if there are sequences [aik] c X and a neighborhood t/ of x such
that a,* ->• 0 as k -*• oo for / = 1, 2 and (£2, - a u ) D (S22 - a2k) n £/ = 0 for
all* = 1,2

We say that the F-extremal principle holds in X if for any extremal system of
closed sets Q., <z X,i = 1,2, and any local extremal point x of [Qu Q2} and e > 0
there exist *, e £2, D Be(Jc) and JC* e X* such that

(2.2) * ; € NF(x,;Qi) for i = 1,2,

This principle is the driving force of the variational theory and its applications devel-
oped in [12].

We say that the F-fuzzy sum rule holds if for any S > 0 and e > 0, any func-
tions 4>\,<j>2 : X -> (—oo, +oo], and x e donn/)] n dom02 such that <j>\ is lower
semicontinuous, and <p2 is Lipschitz continuous around x, one has

(2.3)

If yvf (J:; S2) is replaced by NP(x\ Q) in (2.2), and dF by dp in (2.3), we call them the
proximal extremal principle, and proximal fuzzy sum rule, respectively.

Let us summarize the well-known subdifferential characterizations of Asplund
spaces.

THEOREM 2.1. Let X be a Banach space. Then the following are equivalent.

(a) X is Asplund.
(b) The F-extremal principle holds in X.
(c) The F-fuzzy sum rule holds in X.
(d) For each non-empty closed subset £2 of X, the set of points x e bd £2 such that

NF(x;Q) ^ {0} is dense in the boundary bd £2 of SI.

While (a) if and only if (b) is due to Mordukhovich and Shao [13], (a) if and only
if (c) is due to Fabian [6], and (a) if and only if (d) by Fabian and Mordukhovich [7], in
which one may find a complete subdifferential characterizations of Asplund spaces. As
such, we now know that the Asplund space framework gives necessary and sufficient
conditions for the usage of Frechet-type normal/subdifferential constructions. All of
these have been documented in Mordukhovich [12].

We believe that it is interesting to investigate what happens to Theorem 2.1 if one
uses proximal subdifferentials and proximal normal cones instead.
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3. Nonsmooth characterizations of reflexive spaces

We shall work in Banach spaces with a locally uniformly convex and Frechet
differentiable norm. Recall that a norm || • || on X is said to be locally uniformly
convex if, for each x e X, one has \\xn — x\\ -*• 0 whenever ||xn|| -> ||JC|| and
||x + xn\\/2 -»• \\x\\, as n -» oo. It follows from the parallelogram law that the norm
of a Hilbert space is locally uniformly convex. Every reflexive Banach space can be
given an equivalent Frechet differentiable and locally uniformly convex (hence Kadec)
norm. The following Lau's nearest point theorem [1, 10] will be needed on our way.

LEMMA 3.1. IfX is a reflexive Banach space with a Kadec norm, and Q is a closed
subset ofX, then the set of those points that have a nearest point in Q is dense in X.

Now we can state and prove our main equivalence result.

THEOREM 3.2. Let X be a Banach space with a locally uniformly convex and
Frechet differentiable norm. Then the following are equivalent.

(i) X is a reflexive space.
(ii) The proximal extremal principle holds in X.

(iii) For each non-empty closed subset £2 ofX, the set of points x € bd £2 such that
NP(x; Si) ^ {0} is dense in the boundary bd Q of Si.

(iv) The proximal fuzzy sum rule holds in X.

PROOF. We prove the theorem by following the scheme (i) implies (ii) implies (iii)
implies (i), then (ii) if and only if (iv).

(i) implies (ii): First, when X is a Banach space with a Frechet differentiable
norm, the F-extremal principle holds. Although this was done in Ioffe [8, Lemma 2],
the full version of the F-extremal principle in Asplund spaces was established by
Mordukhovich and Shao [13]. For further details and e-Frechet normal versions, see
[9, 12].

That is, if x is an extremal point of the set system {Si\, Si2] in X with a Frechet
differentiable norm, then for any e > 0 there exist x(,x*, i = 1, 2, such that

x, e £2,, \\x, -x\\<e, 1 + € > |U;|| > 1/2 - €, and

(3.1) x*eNF(xr,Qi) and | |x*+*21 < e.

Next we observe that in any reflexive Banach space with a Frechet differentiable
and locally uniformly convex norm one can always approximate Frechet normals in
the norm topology by proximal ones at base points near the point of interest.
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PROPOSITION 3.3. Suppose that X is a reflexive Banach space with a norm which
is Frechet differentiable and locally uniformly convex. Suppose further that ft is a
closed subset ofX and u e ft. Then for every e > 0, 8 > 0, one has

NF(u;Q) C U{Np(v;Q) : v e E5(u) n ft} + eE*.

This will be proved if we show that given u* e NF(u;Q), there are sequences
un € ft and u* such that un -> u, u*n e NP(un;£l) and u* -> u* (in norm). Let
M* € NF(u;Q). We may, of course, suppose that ||w*|| = 1. By the definition

(3.2) (u*,w-u) <r(\\w-u\\)\\w-u\\ for all iy e ft,

where r(t) ->• 0 at t ->• 0.
Take h e X, \\h\\ = 1 such that

(3.3) («*,*) = | | M 1 - | | / I | | = 1,

which is possible since X is reflexive. Then, as follows from (3.2), u + th ^ fi for
sufficiently small t > 0.

Since X is reflexive, and the given norm on X is locally uniformly convex, by
Lemma 3.1, for sufficiently small t > 0 there is h, such that \\h, — h\\ < t and
u + th, g Q has a nearest point in ft; that is to say, u, e ft such that

\\u + th,-u,\\ =dn(u + th,).

We set u, — u + tv,. Then u, -> u as t I 0, and f||u, — /i,|| = dn(u + th,) < t\\h,\\,
so that || v, -h,\\ < \\h,\\ and ||v,|| < 2||A,||. ASM, € ft, by (3.2),

we get

(3.4) limsup(«', u,> < 0.

no

Set further w, := {h - v,)/(\ + It). Then

H M \ \ h - h , \ \ + \ \ h , - v , \ \ t + \\h,\\ t + \ + t
M TTit TTIT - -TTiT - h

and |<M*, IO,)| < ||«*||||io,|| < 1. Using (3.4), we have

1 > limsup{«*. w,) > liminf(«*, w,) = liminf —'• ———
~ u o no " no 1 +2t
> (M*, h) - lim sup(«*, v,) > («', A) = 1,

'10
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therefore

(3.5)

It follows that

IV
 

IV
\\w,

II w ,

+ h\\ ,
2

II > <«*

Xianfu Wang

10,) = («*,

2

> - * - ! =

y»> = i .

/z\

= I I A I I .

[6]

1, and

Since the norm is locally uniformly convex, w, norm converges to h, hence ||u, || -*• 0.
For any t > 0 there is a unique M* G X* such that

(3.6) ||«;|| = 1, (u;,u + th,-u,)=\\u + th,-u,\\

Then w,* € #/>(«,; Q) and («,*, A, - v,) = \\h, - v,\\. Now

\(u;,h-h,)\<\\h-h,\\^O, and | « , u,)|

when t I 0. This gives

<«;, h) = l i m [ « , A - h,) + («,*, ft, - v,) + («,*, u,)]

= l i m « , h, - v,) = lim ||A, - u,|| = ||A|| = 1.

Since the norm in X is Frechet differentiable at h, by (3.3), u* e K* is weak*
strongly exposed by h. We conclude that u* must converge in norm to u*. See [14,
Proposition 5.11].

Now combining the F-extremal principle and Proposition 3.3, by (3.1) there exist
,%,,y*, i = 1,2, such that y* e NP(yr, ft,) and ||v,- - JC,-|| < e, \\y* - x*\\ < e. Then
\\yi ~x\\ < 2e, 1 +2e > ||j*ll > l /2-2e ,and H.v^+^ll < 3e. This is the extremal
principle in proximal normal functionals.

(ii) implies (iii): Assume the extremal principle holds in X. We prove the following:
Let £2 c X be a non-empty closed subset of X. Then the set of points

(3.7) x e Q and NP(x;Q) ^ {0},

is dense in the boundary of £2.
To this end, we follow the proof of [13, Corollary 3.4]. Indeed, if x is a boundary

point of the set Q, then it is a locally extremal point of the system {fii, Q2] in X,
where Q, = ft and Q2 = {•*}• Applying (ii) with 0 < e < 1/2 we find xt e £2 and
**,** € X* such that ^, 6 Be(;t), x* 6 #/>(*,; £2), and 1 + e > ||jr(*|| > 1 / 2 - e,
II** + *2 II < e- This implies that ||jr*|| > 0 and the cone NP(-\ Q) is nontrival at xx,
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which is a boundary point of £2 within e of x. Therefore, the set (3.7) is norm dense
in the boundary of Q.

(iii) implies (i): If X is not reflexive, by James' theorem there exists x* e X* with
1 = ||JC*|| > (x*, y) for each j e l Let ft := B n {x e X : (x*,x) < 0}, and
U : = ( l / 3 ) B n { x eX : {x\x) > 0}. Thenrfn(x) = {x*,x) for each A: € £/.

To see this, choose yn e i such that (x*,^) -> 1 so that we may assume
(x*, yn) > 1/2 for all n. Ux e U, set

(x*,x)
zx yn.

(x*,yn)

Then |UJ| < 1/3 + 2\{x*, x)\\\yn\\ < 1/3 + 2/3 < 1, and (**, zn) = 0. Therefore,
zn e Q and

< liminf ||JC — zn\\ < liminf <(x\x),

if (x*, x> > 0. On the other hand, if {x*, y) < 0 for y e Q, this gives

da(x) - inf ||jc - y\\ > M(x\ x - y) > {x*. x).

If we can show that for each y e (1/3)IB n b d ^ , NP(y;Q) = {0}, this will
be a contradiction to (iii). Suppose not, that is, NP(y;Q) ^ {0} for some y 6
(1/3)B n bd Q. Then there exists a point x € U having y e Q as a nearest point. This
means ||JC - y\\ = dn(x) — (x*, x) = (x*, x — y), since (x*, y) = 0. This contradicts
the fact that x* does not attain its norm.

(ii) implies (iv): As shown above, (ii) implies that X is reflexive. We need the
following simple result, which generalizes Proposition 4.5 [5, page 138] (thanks go
to a referee for pointing out that this also follows from Loewen [11, Theorem 5.5]).

PROPOSITION 3.4. Assume that a Banach space X is reflexive and has a locally
uniformly convex and Frechet differentiable norm, and that f : X -> (—00, +00] is
lower semicontinuous. Ifx* e dFf(x), thenforanye > 0 there exist y e B((x) and
y* e dpf(y) such that \f(y) - f(x)\ < e and \\x* - y*\\ < e.

Indeed, ifx* e dFf(x), then (JC*,-1) € NF((x, / ( * ) ) ; ep i / ) . Note that epi /
is a closed subset of X x OS, whose norm we take to be ||(JC, r)\\ :— y/\\x\\2 + r2.
Clearly, this canonical norm on X x R is locally uniformly convex and Frechet
differentiable whenever the norm on X is. By Proposition 3.3, there exists (y*, ft) 6
NP((y, r)\epi/) such that (y,r) 6 e p i / , | | y - * | | <e,\r- f(x)\ < € and
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For v > 0 sufficiently small, we have |/3| > 1/2, and this forces r — f(y). Then
(y*. 0) € NP«y, /(y));epi / ) gives -y*/fi € dpf(y), and

-r — x
—y* + JC*

if v is sufficiently small.
Whenever the proximal extremal principle holds in X, of course the F-extremal

principle holds. The latter implies that the F-fuzzy calculus holds in X, by Theo-
rem 2.1 or Ioffe [8, Lemma 2]. That is, if ft, f2 are lower semicontinuous near x and
that one of them is Lipschitz continuous at x, then for any e > 0 one has

h)ix) C (J x, eB((x),\fi(xi)-fi(x)\
i = 1,2

Now let x* € 3p(/i + f2)(x). Since dp c 3f, we have JC* € dF(/, + /2)(;t), so there
exists* € dFfi-.(xj) such that ^ 6 ie(*), I/•(*,•)-/-CO | < eandx* e ^ + ^ + fl*.
By Proposition 3.4, choose y* e dpfj(yd such that \\y*-x*\\ < c/2and>',- € Bf/2(*,•),
\fi(yi) ~ fi(xi)\ < €/2. This implies that JC* e y* + y2* + 2eB*. Therefore

Bpifi + fi)(x) C ( J +

which is the proximal fuzzy sum rule in X.
(iv) implies (ii): Assume that the proximal fuzzy sum rule holds in X. Let fi,

and fi2 be two closed sets in X, which form an extremal system, and let x e Q\ n Q.2
be a local extremal point of {S2j, S22}. We need to prove that for any e > 0 there exist
JC, € ft, fl B((Jt) and JC* € NP(XJ; fi,), / = 1,2 such that

(3.8) and \+e > \\x*\\>\/2-e.

To proceed, we use ideas from [13, Lemma 4.1]. According to the definition of locally
extremal points, for a given e > 0, we can choose a € X such that ||a|| < e2/16
and (ft] + a) D Q2 n {/ = 0 for some neighborhood U of i . For simplicity we take
U = X. Thus considering the function /(w, v) := ||M —-V + a\\/2, we conclude that
/ ( M , U) > 0 for any u e Qi and v e Q2 while f(x,x) < e2/16.

Now apply Ekeland's variational principle to the function / on the complete metric
space E \=Q.\ x Q2 whose metric is induced by canonical norm

on X2
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With e :— €2/\6 and A := e/4, we find points (jf,, x2) 6 E such that ||Jc,- — *|| < A,
i = l,2,and/(ii,Jf2) < / (« , v) + (e/4)||(« - xu v -x2)\\, for all («, v) e E. This
means that the function

€

41 («, v), a,

on X2 attains its unconditional local minimum at (jfi, Jf2). Here 8(-, £2| x £22) is the
indicator function, that is, 0 on £2, x Q2 and +oo otherwise. If so, then

(p(u,x2) :=

</)(xi, v) : =

x2 + a\\ € attains a local min at*,,

— (- -\\v — x2\\ +<5(i», Q.2) attains a local min atx2.

Recall that \\xi —x2 + a\\ ^ 0 and the norm || • || on X is Frechet differentiable. Using
(2.1) and (iv), that is, the proximal fuzzy sum rule, for every 0 < v < e/2 we can find
(xux2) e Qt x Q2, (>>i, y2) e X2 with ||*, — Jc/|| < v and ||>>, — i,|| < v, such that
y>t - x2 + a ^ 0, xi - y2 + a / 0, and

( 3 9 )

( 3 . , o ) 0 6 ? + r + ^ ( x 2 ; n 2 ) + | B .

Here, V, || • || (M - v + a) denotes the Frechet derivative of the norm with respect to
u, and V2|| • || is similarly defined. Since the norm on X is Frechet differentiable,
V|| • || : X -> X* is norm to norm continuous, we may also require v > 0 sufficiently
small such that

(3.11)

(3.12) V2|HI(Jc. -

On the other hand, V,|| • ||(i, -x2 + a)/2 = -V2| | • ||(Jc, - x2 +a)/2, which by
(3.11) and (3.12) implies

a) €

4

It follows from (3.9) and (3.10), that there exists x* e NP(xr, n,-) for / = 1, 2 such
that

x: = - -
V , | | - | l ( y i - * 2 3c , 3e

r- — O, ,
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for some b* e IB*. Moreover, ||JC* + x\\ < e/4 + 6e/8 = e, with

11*/ - *\\ < 11*/ - */ll + 11*/ ~X\\ <V + ^<€.

This implies that x*, x% satisfy (3.8). Hence the proximal extremal principle holds
in X. This completes the proof of the theorem. •

REMARK. Complete subdifferential characterizations of Asplund spaces are given
by Fabian and Mordukhovich [7]. Similarly, it is possible to enlarge the list of
subdifferential characterizations of reflexive spaces in Theorem 3.2. We illustrate this
with one example.

A set Q. c X is sequentially normally compact at x e Q if for any sequence
((*n> -O) e X x X*, n > 1, satisfying

x* € NP(xn; Q), xn -> x, and x* ^ ^ 0,

one has ||**|| -> 0 as n -*• oo. Define the sequential limits

The following statement may be added to the list of Theorem 3.2.

(v) For every locally extremal point x e Q\ D S22 C X of the system of closed
sets [Q], Q2), one of which is sequentially normally compact at Jc, there exists x* •£ 0
such that x* 6 N(x;£2i) D (-N(x\£l2))-

REMARK. When X is a Frechet smooth Banach space, Borwein and Zhu have fully
developed the Frechet subdifferential calculus and applications [4]. By Theorem 3.2,
many of the results there can be written in terms of proximal subdifferentials provided
the Banach space X is reflexive and has a locally uniformly convex and Frechet
differentiable norm. For a full Frechet subdifferential calculus in Asplund spaces, see
Mordukhovich [12, Chapters 2 and 3].
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