On a Linear Partial Differential Equation of Hyperbolic Type.

By E. T. Copson.

(Read 7th December 1923. Received 26th June 1923).
\$1. Riemann's method of solution of a linear second order partial different'al equation of hyperbolic type was introduced in his memoir on sound waves.* It has been used by Darboux \dagger in discussing the equation

$$
\frac{\hat{\partial}^{2} z}{d x d y}+\infty_{\partial x}^{\hat{\partial} z}+\beta \frac{\hat{\partial} x}{\partial y}+\gamma z=0
$$

where α, β, γ are functions of x and y.
The method involves finding a particular solution of the partial equation adjoint to 1.1, viz.,

$$
\frac{\hat{\partial}^{-} u}{\partial \hat{\partial} y}-\frac{\hat{\partial}(d u)}{\hat{\partial} x}-\frac{\hat{\partial}(\beta u)}{\hat{c} y}+\gamma u=0
$$

This particular solution has to satisfy certain first order differential equations on the characteristics $x=\xi, y=\eta$ through the point at which z is to be determined.
$\$ 2$. Suppose that we are given the value of a function $z(x, y)$ and its first derivatives on the straight lines $x=\alpha(\alpha>0)$ and $y=0$, and that z satisfies a partial differential equation which is a particular case of 1.1 , viz.,

$$
F^{\prime}(z) \equiv \frac{\partial^{2} z}{\partial x \partial y}+\frac{a}{x} \frac{\partial z}{d x}+\frac{b}{x} \frac{\partial z}{\partial y}=0
$$

where a, b are constants $(a>0, b>1)$. It is required to find z at the point $(\hat{\xi}, \eta)$. The adjoint equation is

$$
G(u) \equiv \frac{\hat{\partial}^{2} u}{\hat{c} x \partial y}-\frac{a}{x} \frac{\partial u}{\partial x}-\frac{b}{x} \frac{\partial u}{\partial y}+\frac{a u}{x^{2}}=0
$$

[^0]We easily obtain that

$$
\int_{e}(M d y-N d x)=\iint_{S}\{u F(z)-z G(u)\} d x d y
$$

where C is the closesd boundary of a region S in the (x, y) plane, and

$$
\begin{aligned}
& M=\frac{a u z}{x}+\frac{1}{2}\left(u \frac{\partial z}{\partial y}-z \frac{\partial u}{\partial y}\right) \\
& N=\frac{b u z}{x}+\frac{1}{2}\left(u \frac{\partial z}{\partial x}-z \frac{\partial u}{\partial x}\right)
\end{aligned}
$$

If z and u are solutions of equations 2.1 and 2.2 respectively throughout the region S, then

$$
\int_{c}(M d y-N d x)=0 .
$$

Applying this result to the rectangle whose sides are $x=u$, $x=\xi, y=0, y=\eta$, we obtain the solution
$z(\dot{\xi}, \eta)=u(\alpha, 0 ; \dot{\xi}, \eta) z(\alpha, 0)$

$$
\begin{align*}
& +\int_{a}^{\xi} u(x, 0 ; \xi, \eta)\left\{\frac{\partial(x, 0)}{\partial x}+\frac{b}{x} z(x, 0)\right\} d x \\
& +\int_{0}^{\eta} u(\alpha, y ; \xi, \eta)\left\{\frac{\hat{\partial z}(\alpha, y)}{\hat{\partial} y}+\frac{a}{\alpha} z(\alpha, y)\right\} d y .
\end{align*}
$$

where $u(x, y ; \dot{\xi}, \eta)$ is a solution of equation 2.2 which satisfies the relations
(i) $\frac{\partial u}{\partial y}-\frac{a u}{x}=0$ when $x=\xi$,
(ii) $\frac{\partial u}{\partial x}-\frac{b u}{x}=0$ when $y=\eta$,
(iii) $u(\xi, \eta ; \xi, \eta)=1$.

In fact, $u(x, y ; \xi, \eta)=\left(\frac{x}{\dot{\xi}}\right)^{b} e^{a(y-\eta) / \xi} F\left\{-\frac{(x-\xi)(y-\eta)}{x \xi}\right\}$
where $F(t)=1+\sum_{n=1}^{\infty} \frac{(b-1)(b-2) \ldots(b-n)}{n!n!}(-a t)^{n}$
§3. Now let α tend to zero. The solution 2.3 becomes

$$
\begin{aligned}
z(\xi, \eta)= & \int_{0}^{\xi} u(x, 0 ; \xi, \eta)\left\{\frac{\partial z(x, 0)}{\partial x}+\frac{b}{x} z(x, 0)\right\} d x \\
& +\operatorname{Lt}_{\alpha \rightarrow 0} \int_{0}^{\eta} u(x, y ; \xi, \eta)\left\{\frac{\partial z(\alpha, y)}{\partial y}+\frac{a}{\alpha} z(\alpha, y)\right\} d y
\end{aligned}
$$

Holmgren* has considered this limit problem by finding an asymptotic expansion of $F(t)$ for large negative values of the argument. If $z(x, 0)=\phi(x) z(0, y)=\psi(y)$, Holmgren's result is

$$
\begin{align*}
z(\xi, \eta)= & \int_{0}^{\xi} u(x, 0 ; \xi, \eta)\left\{\phi^{\prime}(x)+\frac{b}{x} \phi(x)\right\} d x \\
& +\frac{a^{b}}{\Gamma(b) \xi^{b}} \int_{0}^{\eta} \psi(y) e^{(y-\eta) / \xi}(\eta-y)^{b-1} d y
\end{align*}
$$

The object of this note is to show how Holmgren's result may be obtained by the more simple series solution method of T. W. Chaundy. \dagger
§4. Using the notation

$$
\delta=x \frac{\partial}{\partial x}, \quad \delta=y \frac{\partial}{\partial y}, \quad t=\frac{a y}{x}
$$

the equation 2.1 can be written in the form

$$
\left(\delta \delta^{\prime}+t \delta+b \delta^{\prime}\right) z=0
$$

Assuming a series-solution of the form

$$
z=x^{a} y^{\beta}\left\{1+c_{1} t+c_{2} t^{2}+\ldots \cdot+c_{n} t^{n}+\ldots\right\}
$$

we have the identity

$$
\begin{gathered}
\alpha \beta+c_{1}(\alpha-1)(\beta+1) t+\ldots+c_{n}(\alpha-n)(\beta+n) t^{n}+\ldots \\
+b \beta+c_{1} b(\beta+1) t+\ldots+c_{n} b(\beta+n) t^{n}+\ldots \\
+
\end{gathered} \quad \alpha t \ldots+\ldots+c_{n-1}(\alpha-n-1) t^{n}+\ldots \equiv 00 .
$$

This gives us the indicial equation $\alpha \beta+b \beta=0$ and the recurrence formula $c_{n}=\frac{(n-1-\alpha) c_{n-1}}{(\alpha-n+b)(\beta+n)}$.

[^1]We have therefore either $\beta=0$ or $\alpha=-b$, and also

$$
c_{n}=\frac{(n-1-\alpha)(n-2-\alpha) \ldots(-\alpha)}{(\beta+n)(\beta+n-1) \ldots(\beta+1)(\alpha+b-n)(\alpha+b-\overline{n-1}) \ldots(\alpha+b-1)}
$$

§ 5. Take $\alpha=-b$.
Then

$$
\begin{aligned}
\boldsymbol{c}_{n} & =\frac{(-)^{n} \Gamma(n+b) \Gamma(\beta+1)}{n!\Gamma(b) \Gamma(\beta+n+1)} \\
& =\frac{(-)^{n} \Gamma(n+b) \Gamma(\beta-b+1)}{n!\Gamma(\beta+n+1)} \cdot \frac{\Gamma(\beta+1)}{\Gamma(b) \Gamma(\beta-b+1)}
\end{aligned}
$$

If we substitute in 4.2 and omit a constant factor throughout we obtain the solution

$$
\begin{aligned}
& x^{-b} y^{\beta} \sum_{0}^{\infty} \int_{0}^{1} \theta^{n+b-1}(1-\theta)^{\beta-b} \cdot d \theta \cdot \frac{(-t)^{n}}{n!} \\
&=\int_{0}^{1} x^{-b}\{y(1-\theta)\}^{\beta} e^{-t \theta}\left(\frac{\theta}{1-\theta}\right)^{b} \frac{d \theta}{\theta} .
\end{aligned}
$$

Here β is arbitrary. Multiplying by a arbitrary constant eoefficient and summing for all possible values of β, we have the solution

$$
\begin{align*}
& \int_{0}^{1} x^{b} f\{y(1-\theta)\} e^{-t \theta}\left(\frac{\theta}{1-\theta}\right)^{b} \frac{d \theta}{\theta} \\
& f \text { being an arbitrary function } \\
= & \int_{0}^{y} x^{-b} f(p) e^{-\frac{a(y-p)}{x} \frac{(y-p)^{b-1}}{p^{b}} d p} \\
= & \int_{0}^{y} x^{-b} E(p) e^{-\frac{a(y-p)}{x}}(y-p)^{b-1} d p \ldots \ldots
\end{align*} \quad \quad \text { where } E \text { is an arbitrary function. }
$$

To consider what value this has when $x=0$, put $\frac{a(y-p)}{x}=q$.
The solution 5.1 becomes

$$
\int_{0}^{-\frac{-a y}{x}} E\left(y-\frac{x q}{a}\right) e^{-q} q^{b-1} \frac{d q}{a^{b}}
$$

which has the value

$$
\begin{aligned}
& \int_{0}^{\infty} E(y) e^{-t} q^{b-1} \frac{d q}{a^{b}} \text { when } x=0 \\
& =\frac{E(y) \Gamma(b)}{a^{b}} \\
\therefore \quad E(y) & =\frac{a^{b} \psi \frac{(y)}{\Gamma}(b)}{} .
\end{aligned}
$$

The value of the expression 5.1 at the point (ξ, η) is therefore

$$
\frac{a^{b}}{\Gamma(b) \dot{\xi}^{b}} \int_{0}^{\eta} \psi(y) e^{a(y-\eta) / \xi}(\eta-y)^{b-1} d y
$$

$\$ 6$. In the case when $\beta=0$, equation 4.3 gives

$$
c_{n}=\frac{\Gamma(\alpha+b-n) \Gamma(n-\alpha)}{\Gamma(\alpha+b) \Gamma(-\alpha) n!}
$$

The solution in this case is, omitting a constant factor throughout,

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \quad \int_{0}^{1} x^{a} \frac{t^{n}}{n!}(1-\theta)^{a+b-n-1} \theta^{n-a-1} d \theta \\
& \quad=x^{a} \int_{0}^{1} e^{t \theta(1-\theta)}(1-\theta)^{\alpha+b-1} \theta^{-a-1} d \theta \\
& \quad=x^{\alpha} e^{-t} \sum_{n=0}^{\infty} \frac{t^{n}}{n!} \frac{\Gamma(a+b-n) \Gamma(-\alpha)}{\Gamma(b-n)}
\end{aligned}
$$

Omitting a constant factor, this may be written

$$
\begin{aligned}
& x^{a} e^{-t} \sum_{n=0}^{\infty} \frac{\Gamma(b)}{\Gamma(b-n)} \frac{t^{n}}{n!n!} \int_{0}^{1} \theta^{a+b-n-1}(1-\theta)^{n} d \theta \\
&= x^{a} e^{-1} \int_{0}^{1} \theta^{a+b-1} F\left\{-\frac{t}{a} \frac{(1-\theta)}{\theta}\right\} d \theta \\
& \quad \text { where } F \text { is the function of } 2.4
\end{aligned}
$$

Here α is arbitrary. Multiplying by an arbitrary constant coefficient and summing for all values of α, we obtain the solution

$$
\begin{aligned}
& e^{-t} \int_{0}^{1} g(x \theta) \theta^{s} F^{\prime}\left\{-\frac{y}{x} \frac{(1-\theta)}{\theta}\right\} x d \theta \\
= & \int_{0}^{x} e^{-\frac{a y}{x}} y(p)\left(\frac{p}{x}\right)^{b} F\left\{-\frac{y(x-p)}{x p}\right\} d p \\
= & \int_{0}^{x} g(p) u(p, 0 ; x, y) d p
\end{aligned}
$$

$$
\text { where } g \text { is an arbitrary function. }
$$

where u is the function defined in 2.4.

As this expression has the value $\phi(x)$ when $y=0$, we easily find that

$$
g(p)=p^{-b} \frac{d}{d p}\left\{\phi(p) p^{b}\right\}
$$

The solution just obtained is then

$$
\begin{aligned}
& \int_{0}^{x} p^{-b} \frac{d}{d p}\left\{p^{b} \phi(p)\right\} u(p, 0 ; x, y) d p \\
= & \int_{0}^{x}\left\{\phi^{\prime}(p)+\frac{b}{p} \phi(p)\right\} u(p, 0 ; x, y) d p .
\end{aligned}
$$

The value of this at (ξ, η) is

$$
\int_{0}^{\xi}\left\{\phi^{\prime}(x)+\frac{b}{x} \phi(x)\right\} u(x, 0 ; \xi, \eta) d x \ldots \ldots \ldots . .6 .1
$$

§7. From 5.2 and 6.1 , we see that if z is a solution of the equation 2.1 which has the value

$$
\begin{aligned}
& \phi(x) \text { when } y=0 \\
& \psi(y) \text { when } x=0
\end{aligned}
$$

then

$$
\begin{aligned}
z(\xi, \eta) & =\int_{0}^{\xi} u(x, 0 ; \xi, \eta)\left\{\phi^{\prime}(x)+\frac{b}{x} \phi(x)\right\} d x \\
& +\frac{a_{b}}{\Gamma(b) \xi^{b}} \int^{\eta} \psi(y) e^{a(y-\eta) / \xi}(\eta-y)^{b-1} d y
\end{aligned}
$$

which is Holmgren's result.

[^0]: * Ueber die Fortpflanzung ebener Luftwellen (Werke, p. 145).
 + Théorie Génerule des Surfaces, t. II., ch. IV.

[^1]: * Cinquième congrès des mathématiciens scandinaves. Helsingfors (1922), p. 260.
 \dagger Proc. Lond. Math. Soc. Series 2. Vol. 21, p. 214.

