
2

Basics

2.1 Data Types A

Environmental scientists are familiar with numerical data, especially with con-
tinuous numerical data – for example temperature, pressure, pollution concen-
tration, specific humidity, streamflow and sea level height. Numerical data can
also be discrete, being recorded in integers instead of real numbers. Figure 2.1
shows there are other types of data, namely categorical data. Categorical vari-
ables represent data which can be placed into groups or categories. Categorical
data can, in turn, be either nominal or ordinal. Nominal data do not have
order, for example true/false, colour (red, green, blue), country of birth (USA,
China, Russia, Liechtenstein, etc.), animals (cats, dogs, elephants, etc.). Ordi-
nal data have categories with some natural order, such as weather type (sunny,
cloudy, rainy), education level (elementary school graduate, high school gradu-
ate, some college and college graduate) and the Likert scale used in customer
surveys (strongly disagree, disagree, neutral, agree, strongly agree). Unlike in
the environmental sciences, where data are predominantly continuous, data in
commercial or computer science application areas tend to be predominantly
categorical and/or discrete. This has an important bearing as data methods
developed for commercial or computer science applications tend to be predom-
inantly designed for categorical and/or discrete data. Some were later adapted
to work with continuous data.

2.2 Probability A

Environmental data contain fluctuations – for example, the atmosphere has
fluctuations ranging from large-scale weather systems to small-scale turbulence.
Thus, an understanding of random variables and probability theory is essential
for analysing environmental data.

We start with a simple example for illustrating the basic concepts of prob-
ability. Suppose one has 100 days of weather observations, where there two
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Data types

Categorical Numerical

Nominal Ordinal ContinuousDiscrete

Figure 2.1 Main types of data.

variables in the daily weather, namely temperature and precipitation. For sim-
plicity, the temperature variable has three classes – cold (c), normal (n) and hot
(h) – while the precipitation has two classes – dry (d) and wet (w). Table 2.1
shows the distribution of the weather data – for example, out of 100 days, there
are 15 days of cold dry weather, 5 days of cold wet weather, and so on. The bot-
tom row gives the sum over the numbers in the column above, for example the
total number of cold days is 15 + 5 = 20. The rightmost column gives the sum
over the row, for example the total number of dry days is 15 + 35 + 10 = 60.

Table 2.1 Distribution of 100 days of weather observations, with the correspond-
ing probability distribution P (x, y) listed in the table to the right. P (x) and
P (y) are the marginal distributions.

cold norm hot sum
dry 15 35 10 60
wet 5 15 20 40
sum 20 50 30 100

P (x, y) x= c x= n x= h P (y)
y= d 0.15 0.35 0.10 0.60
y= w 0.05 0.15 0.20 0.40
P (x) 0.20 0.50 0.30 1

Next, we want to obtain the probability distribution P (x, y), where x and
y are the temperature and precipitation variables, respectively. P (c, d), the
probability of cold dry weather, is simply the number of observations with cold
dry weather divided by N , the total number of observations, that is, P (c, d) =
15/100 = 0.15. The probability table is shown on the right side of Table 2.1.
Strictly speaking, probability is defined only in the limit as N →∞, so our finite
N only allows us to get an estimate of the true probability. P (x, y) is called a
joint probability or joint distribution as it depends on both x and y. The bottom
row P (x) and the rightmost column P (y) are called marginal distributions, as
they appear on the margins of probability tables. They are obtained by summing
over P (x, y),

P (x) =
∑
y

P (x, y), P (y) =
∑
x

P (x, y), (2.1)
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as one can check by summing over the rows and columns of P (x, y) in Table
2.1. From P (y), the probability of dry days, P (d), is 0.60, while the probability
of wet days is 0.40. Note that∑

y

P (y) = 0.60 + 0.40 = 1, and
∑
x

P (x) = 0.20 + 0.50 + 0.30 = 1, (2.2)

as the sum of the probabilities over all the events must equal one.
P (x|y), the conditional probability of x given y, is the probability of observing

x when the value y is already known. For instance, if x = c and y = d, P (c|d)
is the probability of getting cold temperature under dry conditions. Since the
joint probability of getting x and y, that is, P (x, y), equals the probability of
getting y, that is, P (y), multiplied by the conditional probability of getting x
given y, that is, P (x|y), we can write

P (x, y) = P (x|y)P (y). (2.3)

Thus,

P (x|y) =
P (x, y)

P (y)
, if P (y) > 0, otherwise 0. (2.4)

Using the values from Table 2.1, P (c|d), the conditional probability of having
cold conditions given it is dry, is P (c, d)/P (d) = 0.15/0.60 = 0.25.

Similarly,

P (x, y) = P (y|x)P (x), (2.5)

where P (y|x) is the conditional probability of y given x. Thus,

P (y|x) =
P (x, y)

P (x)
, if P (x) > 0, otherwise 0. (2.6)

Using Table 2.1, P (d|c), the conditional probability of having dry conditions
given it is cold, is P (c, d)/P (c) = 0.15/0.20 = 0.75.

Combining (2.3) and (2.5) gives

P (y|x)P (x) = P (x|y)P (y). (2.7)

Thus,

P (y|x) =
P (x|y)P (y)

P (x)
=
P (x|y)P (y)∑

y P (x, y)
=

P (x|y)P (y)∑
y P (x|y)P (y)

, (2.8)

upon invoking (2.1) and (2.3). This equation is called Bayes theorem or Bayes
rule, having originated from the work of Thomas Bayes (1702–1761), an English
mathematician and Presbyterian minister. For more details on Bayes theorem,
see Section 2.14.

If the probability of getting x is not affected at all by the given value of y,
we have

P (x|y) = P (x). (2.9)
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Then, (2.3) simplifies to
P (x, y) = P (x)P (y), (2.10)

and x and y are said to be independent events. If one computes P (x)P (y)
from Table 2.1, one finds the product not equal to P (x, y), so x and y are not
independent events in that dataset.

Keeping the same P (x) and P (y) from Table 2.1, one can check that Table
2.2 indeed satisfies (2.10), so x and y are independent. Thus, in this example,
the probability of getting dry or wet weather is unaffected by whether the tem-
perature is cold, normal or hot, and similarly, the probability of getting cold,
normal or hot weather is unaffected by whether it is dry or wet.

Table 2.2 Probability distribution P (x, y), with x and y being independent.

P (x, y) x= c x= n x= h P (y)
y= d 0.12 0.30 0.18 0.60
y= w 0.08 0.20 0.12 0.40
P (x) 0.20 0.50 0.30 1

2.3 Probability Density A

Thus far, only probabilities of discrete events have been considered. Next, we
extend the concept of probability to continuous variables. Suppose the prob-
ability of a real variable x lying within the interval (x, x + δx) is denoted by
p(x)δx for δx → 0 (Fig. 2.2(a)), then p(x) is called the probability density or

(a) (b)

Figure 2.2 (a) The probability of x lying within the interval (x, x+ δx) is given
by the area of the narrow vertical band of height p(x) and width δx. The two
peaks in p(x) indicate the two regions of higher probability. (b) The cumulative
distribution F (x̃) is given by the shaded area under the curve.
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probability density function (PDF) over x. The probability of x lying within
the interval (a, b) is obtained by integrating the PDF:1

P (x ∈ (a, b)) =

∫ b

a

p(x)dx. (2.11)

As probabilities cannot be negative, it follows that

p(x) ≥ 0. (2.12)

The requirement that the sum of probabilities over all discrete events equals one
is replaced in the continuous case by∫ ∞

−∞
p(x)dx = 1. (2.13)

Note that p(x) is not prohibited from exceeding 1.
The cumulative distribution function (CDF) F (x̃) is defined to be

F (x̃) = P (x ≤ x̃) =

∫ x̃

−∞
p(x)dx. (2.14)

In Fig. 2.2(b), F (x̃) is seen as the area under the curve p(x), stretching over the
interval −∞ < x ≤ x̃. It follows from taking the derivative of F that

p(x) =
dF (x)

dx
. (2.15)

From (2.14) and (2.11), we have

F (b)− F (a) =

∫ b

a

p(x)dx = P (x ∈ (a, b)). (2.16)

The complementary cumulative distribution function (CCDF) or simply the
tail distribution is

F̃ (x̃) ≡ 1− F (x̃) = P (x̃ < x) =

∫ ∞
x̃

p(x)dx. (2.17)

If there are two continuous variables x and y, the joint probability density
distribution is p(x, y). The marginal probability density distributions are defined
similar to the marginal probability distributions for discrete variables in (2.1),
but with integration replacing summation, that is

p(x) =

∫
p(x, y) dy, p(y) =

∫
p(x, y) dx, (2.18)

where the integrations are over the domains of y and x, respectively.
Similar to (2.6) for discrete variables, the conditional probability density

distribution can be defined by

p(x|y) =
p(x, y)

p(y)
(2.19)

for p(y) > 0, and analogously for p(y|x).

1 In this book, we try to follow the convention of using the capital letter P to denote a
probability and the small letter p to denote a probability density.
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2.4 Expectation and Mean A

Let x be a random variable that takes on discrete values. For example, x can be
the outcome of a die cast, where the possible values are xi = i, with i = 1, . . . , 6.
The expectation or expected value of x from a population is given by

E[x] =
∑
i

xiPi, (2.20)

where Pi is the probability of xi occurring. If the die is fair, Pi = 1/6 for all i,
so E[x] is 3.5. We also write

E[x] = µx, (2.21)

with µx denoting the mean of x for the population, that is, the population mean.

The expectation of a sum of random variables satisfies

E[ax+ by + c] = aE[x] + bE[y] + c, (2.22)

where x and y are random variables, and a, b and c are constants.
For a random variable x that takes on continuous values over a domain Ω,

the expectation is given by an integral,

E[x] =

∫
Ω

x p(x) dx, (2.23)

where p(x) is the PDF. For any function f(x), the expectation is

E[f(x)] =

∫
Ω

f(x)p(x) dx (continuous case),

E[f(x)] =
∑
i

f(xi)Pi (discrete case). (2.24)

In real world problems, one normally cannot compute the mean by using the
formula for the population mean, that is, (2.20) or (2.23), because one does not
know Pi or p(x). One can sample only N measurements of x (x1, . . . , xN ) from
the population. The sample mean x or 〈x〉 is calculated by

x ≡ 〈x〉 =
1

N

N∑
i=1

xi, (2.25)

that is, simply taking the average of the N measurements, which is in general
different from the population mean µx. However, one can show that the expec-
tation of the sample mean equals the population mean. Thus, as the sample size
increases, the sample mean approaches the population mean. In general, the
sample mean should be regarded as a statistical estimator of the true population
mean.
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2.5 Variance and Standard Deviation A

The fluctuations around the mean value are commonly characterized by the
variance of the population (i.e. the population variance),

var(x) ≡ E[(x− µx)2] = E[x2 − 2xµx + µ2
x]

= E[x2]− 2µxE[x] + µ2
x = E[x2]− µ2

x, (2.26)

where (2.22) and (2.21) have been invoked. The population standard deviation
σ is the positive square root of the population variance, that is,

σ2 = var(x). (2.27)

The sample standard deviation s is the positive square root of the sample
variance, given by

s2 =
1

N − 1

N∑
i=1

(xi − x)2. (2.28)

The denominator of N − 1 (instead of N) is a bias correction introduced by
Friedrich Bessel (1784–1846) to ensure the expectation of the sample variance
equals the population variance. As the sample size increases, the sample vari-
ance approaches the population variance. For large N , there is negligible dif-
ference in the result when using N − 1 or N in the denominator of (2.28), so
either form can be used. The sample variance is a statistical estimator of the
population variance.

Note that the standard deviation has the same unit as the variable x. For
instance, if x is wind speed measured in m s−1, then its mean and standard
deviation will also have units of m s−1, while the variance will have units of
m2s−2. The mean is a measure of the location of the data, while the standard
deviation is a measure of the scale or spread of the data.

Often one would like to compare two very different variables, for example sea
surface temperature and fish catch, which have different units and very likely
different magnitudes. To avoid ‘comparing apples with oranges’, one usually
standardizes the variables. The standardized variable

z = (x− x)/s (2.29)

is obtained from the original variable by subtracting the sample mean and di-
viding by the sample standard deviation.2 The standardized variable is also
called the standard score, z-score, z-value, normal score, normalized variable or
standardized anomaly (where anomaly means deviation from the mean value).
The advantage of standardizing variables is that now the sea surface temper-
ature and fish catch standardized variables will both have no units and have
sample means of zero and sample standard deviations of one.

2 In situations where the population mean µx or standard deviation σ are known, they are
used instead of the sample mean x and standard deviation s in (2.29).
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2.6 Covariance A

For two random variables x and y, with mean µx and µy, respectively, their
covariance is defined by

cov(x, y) = E[(x− µx)(y − µy)]. (2.30)

For brevity, we will use ‘covariance’ instead of ‘population covariance’ when
there is no ambiguity. Note that cov is symmetric with respect to its two
arguments, that is, cov(x, y) = cov(y, x). The variance in (2.26) is simply a
special case of the covariance, with

var(x) = cov(x, x). (2.31)

Covariance is a measure of the joint variability of x and y. If high values of
x occur together with high values of y, then (x − µx)(y − µy) will be positive;
similarly, if low values of x occur together with low values of y, then (x−µx)(y−
µy) will involve multiplying two negative numbers and so will also be positive –
leading to a positive covariance. If high values of x occur together with low
values of y, and vice versa – the covariance will be negative. Thus, a positive
covariance indicates a tendency of similar behaviour between x and y, whereas a
negative covariance indicates opposite behaviour. For instance, if the covariance
between temperature and snow amount is negative, then high temperature tends
to occur with low snow and low temperature with high snow.

One can show that if x and y are independent, then their covariance is zero.
However, the converse is not true in general – for example, if x is uniformly
distributed in [−1, 1] and y = x2, one can show that cov(x, y) is zero, even as
y depends on x non-linearly. Thus, covariance only measures the linear joint
variability between two variables.

The sample covariance computed from the data by

cov(x, y) =
1

N − 1

N∑
i=1

(xi − x)(yi − y) (2.32)

approaches the population covariance as N →∞.

The magnitude of the covariance is not too useful since it is not normalized
and, therefore, depends on the magnitudes of the variables. For instance, if x
and y are measured in units of centimetres instead of metres, the covariance
computed using measurements in cm will be 104 times that using metres. The
normalized version of the covariance, the correlation coefficient (Section 2.11),
is widely used as its magnitude reveals the strength of the linear relation.

If instead of just two variables x and y, we have d variables, that is, x =
x1, ..., xd, then the covariance coefficient generalizes to the covariance matrix :
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cov(x) = E
[
(x− E[x])(x− E[x])T

]
=


var(x1) cov(x1, x2) · · · cov(x1, xd)

cov(x2, x1) var(x2) · · · cov(x2, xd)
...

...
. . .

...
cov(xd, x1) cov(xd, x2) · · · var(xd)

 , (2.33)

where the superscript T denotes the transpose of a vector or matrix.
Another way to generalize (2.32) is by letting

cov(x,y) = E
[
(x− E[x])(y − E[y])T

]
=


cov(x1, y1) cov(x1, y2) · · · cov(x1, yd)
cov(x2, y1) cov(x2, y2) · · · cov(x2, yd)

...
...

. . .
...

cov(xd, y1) cov(xd, y2) · · · cov(xd, yd)

 . (2.34)

Clearly, cov(x) in (2.33) is equivalent to the special case cov(x,x) in (2.34).
There is no standard nomenclature for cov(x) and cov(x,y), as both are referred
to as covariance matrices. Some authors call cov(x) the variance matrix or the
variance-covariance matrix and cov(x,y) the covariance matrix, while others
call cov(x) the covariance matrix and cov(x,y) the cross-covariance matrix. In
this book, we will use ‘covariance matrix’ to denote either cov(x) or cov(x,y).

2.7 Online Algorithms for Mean, Variance and
Covariance C

In recent decades, there has been increasing interest in online learning prob-
lems where data become available in a sequential order and the models are to be
updated with the continually arriving new data. The traditional batch learning
approach, which trains the model with the complete training dataset, is very
inefficient in the online learning situation – to update the model with one ad-
ditional data point, the model has to be retrained with the complete dataset
containing N points. In contrast, an online learning algorithm would update
the model with only the single new data point – and all previous data points
can be erased from the computer memory. Obviously, when one has to update
a model frequently with newly arrived data, an online learning algorithm would
have a huge advantage over a batch learning algorithm in terms of computer
time and memory.

First, consider the sample mean. The batch algorithm is given by (2.25),
where one has to use all N data points for the computation. To develop an
online algorithm, we first define the sample mean computed with N data points
to be

xN ≡
1

N

N∑
i=1

xi, (2.35)
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which can be rewritten as

N xN =

N∑
i=1

xi =

N−1∑
i=1

xi + xN (2.36)

= (N − 1)xN−1 + xN = N xN−1 + xN − xN−1. (2.37)

Thus, the online algorithm for the sample mean is given by

xN = xN−1 +
xN − xN−1

N
. (2.38)

This means that if one has xN−1, the sample mean for the first N − 1 data
points, and a new data point xN , then the updated sample mean for the N
data points can be obtained simply from xN−1 and xN . The earlier data points
x1, . . . , xN−1 are not needed in this update of the sample mean. The ability to
delete old data can be very helpful as datasets can grow to enormous size as
time passes.

Let us count the number of operations in the two approaches. In the batch
algorithm (2.35), there are N − 1 additions followed by one division. In the
online algorithm (2.38), there are one subtraction, one division and one addition.
When N becomes large, the batch algorithm becomes much slower than the
online algorithm.

For online updating of the sample variance, the Welford algorithm (Welford,
1962; Knuth, 1998, vol. 2, p. 232) involves updating the mean with (2.38) and
updating the sum of squared differences

SN ≡
N∑
i=1

(xi − xN )2, (2.39)

by
SN = SN−1 + (xN − xN−1)(xN − xN ), N ≥ 2, (2.40)

with the sample variance

s2
N =

SN
N − 1

. (2.41)

Similarly, for an online algorithm to compute the sample covariance, define

CN ≡
N∑
i=1

(xi − xN )(yi − yN ). (2.42)

With

yN = yN−1 +
yN − yN−1

N
, (2.43)

one can show that

CN = CN−1 + (xN − xN−1)(yN − yN ) (2.44)

= CN−1 +
N − 1

N
(xN − xN−1)(yN − yN−1), (2.45)

with the sample covariance being CN/(N − 1).
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2.8 Median and Median Absolute Deviation
A

In the last few decades, there has been increasing usage of robust statistics to
alleviate weaknesses in traditional statistical estimators (Wilcox, 2004). Tradi-
tional statistical methods commonly make assumptions (e.g. the random vari-
ables obey a Gaussian distribution) that may not be valid for some datasets,
leading to poor statistical estimates. Statistical methods that perform poorly
when the underlying assumptions are not satisfied are called non-robust. Robust
methods are designed to work well with a broad range of datasets.

Another weakness is referred to as being non-resistant to outliers in the
data – an outlier being an extreme data value arising from a measurement or
recording error, or from an abnormal event. For instance, someone entering
data by hand may misread ‘.100’ as ‘100’, and ends up entering a number a
thousand times larger than the actual value. Non-resistant methods yield poor
estimates when given even a small number of outliers. Resistant methods are
designed to work well even when the datasets contain outliers.

It is desirable to have methods that are robust and resistant . Some authors,
such as Wilks (2011), make a distinction between robustness and resistance.
However, since most methods that are robust are also resistant, and vice versa,
many authors do not make a distinction between robustness and resistance and
simply refer to all such methods as robust methods.

While the mean and standard deviation are the most common estimators
of location and scale (or spread) of the data, they are not resistant to outliers.
Suppose student A made seven repeated measurements in a laboratory experi-
ment, recording the values (arranged in ascending order): 1.0, 1.2, 1.2, 1.3, 1.5,
1.7 and 1.8. His lab partner, student B, also recorded the same measurements
but mistakenly typed in ‘18.’ instead of ‘1.8’ for the final data point. The mean
computed by A was 1.386, but was 3.700 by B. The computed standard devia-
tion was 0.291 by A and 6.310 by B. Clearly, the mean and standard deviation
are non-resistant to outliers.

A robust/resistant alternative to the mean is the median, defined as the
middle value of a population or a sample of measurements sorted in ascending
order. In the above example of seven measurements, the middle is the fourth
measurement, namely 1.3, as there are three measurements above and three
below. What happens if there is an even number of data points? Suppose we
drop the seventh data point and are left with six measurements. Then the third
and fourth are the two middle points, and we take the average of these two
values, that is, (1.2 + 1.3)/2 = 1.25, as the median. Thus, the median is defined
to be the middle value if N , the number of data points, is odd, and to be the
average of the two middle values if N is even.

Let us return to the example with the students each recording seven mea-
surements. Student A’s mean was 1.386 and his median was 1.3, while student
B’s mean was 3.700 and his median was 1.3. Thus, with a completely erroneous
seventh data point, student B managed to obtain the same median value as
student A.
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The breakdown point of a statistical estimator is the proportion of incorrect
data points, for example data points with arbitrarily high or low values, the
estimator can handle before giving a completely incorrect result. For the mean,
the breakdown point is 0, since the mean cannot handle even one single incorrect
data point. In contrast, the median has a breakdown point of 50%. For instance,
if the above example has values recorded as 1.0, 1.2, 1.2, 1.3, 999, 999 and 999,
the median will still be 1.3.

A robust and resistant substitute for the standard deviation is the median
absolute deviation (MAD), defined by

MAD = median(|x−median(x)|), (2.46)

with a breakdown point of 50%. The deviations, x−median(x), are around the
median instead of the mean, and computing the absolute value avoids squaring
the deviations in the standard deviation formula (2.28), which amplifies the
large deviations.

For student A, with median = 1.3, his deviations x − median(x) = −0.3,
−0.1, −0.1, 0.0, 0.2, 0.4 and 0.5, and the absolute deviations sorted in ascending
order are 0.0, 0.1, 0.1, 0.2, 0.3, 0.4 and 0.5, with MAD = 0.2. For student B,
the absolute deviations arranged in ascending order are 0.0, 0.1, 0.1, 0.2, 0.3,
0.4 and 16.7, again with MAD = 0.2.

Unlike the mean and standard deviation, there are no simple online learning
algorithms for the median and MAD, that is, algorithms where one can erase
the old data as new data arrive to update the estimator.

In this book, MAD stands for median absolute deviation around the median.
Other estimators with the same acronym MAD can be defined, for example,
mean absolute deviation around the mean, mean absolute deviation around the
median or even median absolute deviation around the mean (though this final
one is not commonly used).

2.9 Quantiles A

Often one is interested in finding a value xα where P (x ≤ xα) = α for a
given value of α, with 0 ≤ α ≤ 1. For instance, one may want to know the
value x0.95 where 95% of the distribution lies below the value x0.95 – that is,
finding the 95th percentile. As the cumulative probability distribution function
F (xα) ≡ P (x ≤ xα) from (2.14) is a monotonically increasing function, it has
an inverse function F−1(α). F−1(α) is the value of xα where F (xα) = α. We
call qα ≡ xα the α quantile of F .

Figure 2.3 illustrates how to obtain a quantile value from a cumulative dis-
tribution function F (x). Along the ordinate axis, we locate the value 0.95. To
find F−1(0.95), we simply look at the intersection between the cumulative dis-
tribution curve and the horizontal line with ordinate = 0.95, leading to the value
of the quantile q0.95 along the abscissa. F−1(0.5) = q0.5 is simply the median,
with 50% of the x values distributed above and 50% below the median.
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Figure 2.3 A cumulative
distribution function F (x).
By inverse mapping from
the ordinate to the abscissa,
one can obtain the quantiles
qα. The 95th percentile
q0.95 and the median q0.5

are shown.
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The median splits up the cumulative distribution into two equal halves.
Other common ways to split up the cumulative distribution into quantiles in-
clude terciles, with q0.333 and q0.667 splitting the distribution into three equal
parts, and quartiles, with q0.25, q0.5 and q0.75 splitting the distribution into four
equal parts. The interquartile range (IQR), defined by the separation between
the third quartile and the first quartile,

IQR = q0.75 − q0.25, (2.47)

is often used to characterize the spread or scale of the data, as it measures the
spread of the middle 50% of the data. Since it ignores the top and bottom 25%
of the data, it is resistant to outliers.

For a five-part split, quintiles use q0.2, q0.4, q0.6 and q0.8. For a 10-part
split, deciles use q0.1, q0.2, . . . , q0.9. For a 100-part split, percentiles use q0.01,
q0.02, . . . , q0.99.

Next, we examine how quantiles can be computed from a dataset {x1, . . . , xN}.
We first sort the data points into ascending order, that is, x(1), . . . , x(N), with
x(1) the smallest and x(N) the largest value in the original dataset.

Computing quantiles with observed data is not entirely straightforward. The
reason is that the quantile qα usually falls between x(i) and x(i+1) for some
integer i. For example, with six data points, the median q0.5 falls between
x(3) and x(4), so we let q0.5 be the average of the two values. In general, qα
need not fall midway between x(i) and x(i+1), so various schemes compute qα
differently. Hyndman and Y. N. Fan (1996) listed nine different schemes for
computing quantiles. Fortunately, when N ≥ 100, the differences between the
various schemes become negligible.
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2.10 Skewness and Kurtosis B

As the mean is computed from the first moment of the data and the variance
from the second moment, one can proceed onto skewness, a third moment statis-
tic. The population skewness coefficient is traditionally defined by

γp = E

[(
x− µx
σ

)3
]

=
E[(x− µx)3]

σ3
, (2.48)

where µx and σ are the population mean and standard deviation, respectively.
The sample skewness is computed from

γ =
1
N

∑N
i=1(xi − x)3

s3
, (2.49)

where x and s are the sample mean and standard deviation, respectively.
The skewness is easily seen to be zero for a symmetric probability distribu-

tion, for example the Gaussian distribution (Section 3.4). If the right tail of
the Gaussian is made longer or fatter, the skewness becomes positive. If the
left tail is longer or fatter, the skewness becomes negative. Note that while
symmetry implies zero skewness, the converse is not true, as one can make the
left tail fatter and the right tail longer to compensate each other, leaving the
skewness at zero. Distributions for variables that are non-negative, for example
wind speed, precipitation amount, pollution concentration, and so on tend to
have positive skewness.

The cubic power makes the traditional skewness coefficient very non-resistant
to outliers, thus rather unreliable to use in practice. A resistant skewness coef-
ficient based on quartiles was introduced in Bowley (1901), generally regarded
as the first English-language textbook on statistics, with

γB =
q0.75 + q0.25 − 2q0.5

q0.75 − q0.25
, (2.50)

where the denominator is simply the IQR. Bowley’s skewness is also called Yule’s
coefficient or the Yule–Kendall index (Yule, 1912).

From the fourth moment of the data, the population kurtosis is defined by

β =
E[(x− µx)4]

σ4
. (2.51)

For a Gaussian distribution, β = 3. Distributions with more outliers than the
Gaussian has β > 3, while those with fewer outliers has β < 3. Many authors
use ‘kurtosis’ to mean ‘excess kurtosis’ (i.e. the kurtosis of a distribution relative
to that of a Gaussian), that is, β′ ≡ β − 3, so the Gaussian has β′ = 0. With
the fourth power involved, the traditional kurtosis is obviously not resistant to
outliers.

For more resistant higher moments, L-moments are often used (Hosking,
1990; von Storch and Zwiers, 1999).
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2.11 Correlation A

2.11.1 Pearson Correlation A

The (Pearson) correlation coefficient, widely used to represent the strength of
the linear relationship between two variables x and y, is defined by

ρ̂xy =
cov(x, y)

σxσy
, (2.52)

where σx and σy are the population standard deviations for x and y, respectively.

For a sample containing N pairs of (x, y) measurements or observations, the
sample correlation is computed by

ρ ≡ ρxy =

∑N

i=1
(xi − x)(yi − y)[∑N

i=1
(xi − x)2

] 1
2
[∑N

i=1
(yi − y)2

] 1
2

, (2.53)

which lies between −1 and +1. At the value +1, x and y will show a perfect
straight-line relation with a positive slope, whereas at −1, the perfect straight
line will have a negative slope. With increasing noise in the data, the sample
correlation moves towards 0.

This formula for ρ involves two passes with the data, as it requires a first
pass to compute the means x and y. Substituting in the formulas for the means
(2.25), one can rewrite (2.53) as

ρ =
N
∑N

i=1
xiyi −

∑N

i=1
xi
∑N

i=1
yi[

N
∑N

i=1
x2
i −

(∑N

i=1
xi

)2
] 1

2
[
N
∑N

i=1
y2
i −

(∑N

i=1
yi

)2
] 1

2

, (2.54)

where ρ can be computed by a single pass. For some datasets, this formula can
lead to the subtraction of similar numbers, resulting in the loss of significant fig-
ures. For instance, consider a number with seven significant figures: 0.1234567.
If one is to subtract from it the similar number 0.1234511, one gets 0.0000056,
with only two significant figures.

With two variables x and y, a scatterplot that plots the data points as
dots in the x-y plane is often useful for visualizing the distribution of the data
points. In Fig. 2.4, scatterplots of synthetic (x,y) data are shown, along with
the corresponding correlation coefficient. The x variable is from a Gaussian
distribution with zero mean and unit standard deviation, while y = x+ noise in
Figs. 2.4(a), (c) and (e), and y = −x + noise in Figs. 2.4(b), (d) and (f). The
added random noise is Gaussian, with increasing noise lowering the magnitude
of the correlation from (a) to (f).
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Figure 2.4 Scatterplots showing distribution of (x, y) data and the correspond-
ing Pearson correlation coefficient as the noise level rises from (a) to (f).

It will be instructive to look at scatterplots and correlations with real data.
The daily surface air temperature, relative humidity, wind speed and sea level
pressure at Vancouver, British Columbia, Canada, from averaged hourly obser-
vations by Environment and Climate Change Canada, were downloaded from
www.weatherstats.ca. In Fig. 2.5(a), the correlation is −0.33 and, indeed, fo-
cusing on where the data density is high, we see lower relative humidity con-
curring with higher temperature, which is not surprising since Vancouver has
rainy winters and dry summers. However, when temperature becomes very low,
the relative humidity drops as temperature drops, opposite to our expectation
from the negative correlation coefficient. The reason for this behaviour is that
in winter there are occasional Arctic air outbreaks, bringing very cold, dry air
from the Arctic. The strongest correlation of −0.38 was found between pres-
sure and wind speed in Fig. 2.5(d), as low pressure systems give rise to stormy
weather with high wind speeds.

The Pearson correlation assumes a linear relation between x and y; however,
the sample correlation is not robust to deviations from linearity in the relation,
as illustrated in Fig. 2.6(a) where ρ ≈ 0 though there is a strong (non-linear)
relationship between the two variables. Thus, the correlation can be misleading
when the underlying relation is non-linear. Furthermore, the sample correlation
is not resistant to outliers, where in Fig. 2.6(b) ρ = −0.50. If the single outlier is
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(a)  correlation = –0.33 (b)  correlation = 0.03

(c)  correlation = –0.11 (d)  correlation = –0.38

Figure 2.5 Scatterplots and Pearson correlation coefficients of daily weather
variables from Vancouver, BC, Canada, with 25 years of data (1993–2017).
[Data source: weatherstats.ca based on Environment and Climate Change
Canada data.]

removed, ρ changes from −0.50 to +0.70, that is, the strong positive correlation
was completely masked by one outlier. Later in this chapter, we will study more
robust/resistant estimates of the correlation.

If there are d variables, for example d stations reporting the air pressure,
then correlations between the variables lead to a correlation matrix

C =


ρ11 ρ12 · · · ρ1d

ρ21 ρ22 · · · ρ2d

...
...

. . .
...

ρd1 ρd2 · · · ρdd

 , (2.55)
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Figure 2.6 (a) An example illustrating that correlation is not robust to devi-
ations from linearity. Here, the strong non-linear relation between x and y
is completely missed by the near-zero correlation coefficient. (b) An example
showing that correlation is not resistant to outliers. By removing the single out-
lier on the lower right corner, the correlation coefficient changes from negative
to positive.

where ρij is the correlation between the ith and the jth variables. The diagonal
elements of the matrix satisfy ρii = 1, and the matrix is symmetric, that is,
ρij = ρji. The jth column of C gives the correlations between the variable j
and all other variables. The correlation matrix is simply the normalized version
of the covariance matrix cov(x) in (2.33).

2.11.2 Serial Correlation A

Often the observations are measurements at regular time intervals, that is, time
series, and there is serial correlation in the time series – that is, neighbouring
data points in the time series are correlated. Serial correlation is well illustrated
by persistence in weather patterns, for example, if it rains one day, it increases
the probability of rain the following day. Serial correlation in a single time
series is called autocorrelation. Serial correlation can involve more than one
time series, for example rainfall today can increase river runoff tomorrow.

In making statistical estimates, it is common to also estimate the confidence
interval (Section 4.4). For instance, for a statistical estimate z, we would like
to estimate the interval [zlower, zupper] containing z, where there is 95% chance
that the true parameter ztrue lies within this confidence interval. In hypothesis
testing (Section 4.1), one would like to know if the observed z is enough to
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reject the null hypothesis at a certain level. In both cases, the answers depend
on the sample size N , that is, larger sample size makes the confidence intervals
narrower, or z significant at a more desirable level.

Unfortunately, traditional confidence interval estimates and significance tests
assume the N data points are all independent observations. With serial corre-
lation, this assumption is false, as the number of independent observations is
smaller and sometimes much smaller than N . For example, suppose the weather
is typically three days of rain, alternating with five days of sun, that is, one has
a typical rainy event of three days alternating with a sunny event of five days,
so over eight days, there are two events. If one has N = 80, there are only
about 20 events, so the effective sample size Neff is only about 20. One needs to
use Neff instead of N in the significance tests and confidence interval estimates
when there is serial correlation in the data (see Section 4.2.4).

To determine the degree of autocorrelation in a time series, we use the auto-
correlation coefficient, where a copy of the time series is shifted in time by a lag
of l time intervals and then correlated with the original time series. The lag-l
autocorrelation coefficient is given by

ρ(l) =

∑N−l

i=1
[(xi − x)(xi+l − x)]∑N

i=1
(xi − x)2

, (2.56)

where x is the sample mean. There are other estimators of the autocorrelation
function, though this version is most commonly used (von Storch and Zwiers,
1999, p. 252). The function ρ(l) has the value 1 at lag 0. From symmetry, one
defines ρ(−l) = ρ(l).

The effective sample size can be derived as

Neff = N

[
1 + 2

N−1∑
l=1

(
1− l

N

)
ρ(l)

]−1

, (2.57)

(von Storch and Zwiers, 1999, p. 372; Thiébaux and Zwiers, 1984). Thiébaux
and Zwiers (1984) compared several methods for estimating Neff . Their direct
estimation approach involves substituting values of ρ(l) into (2.57), Unfortu-
nately, direct estimation involves estimating ρ(l) at large lags (when the true
autocorrelation function is effectively zero) and summing over many such terms.
Even using the option of truncating the summation at large lags, direct estima-
tion was not among the better methods (Thiébaux and Zwiers, 1984).

A better approach is to assume an auto-regressive (AR) process (Section
11.8). For the simplest AR process of order 1 (abbreviated as AR(1)), when N
is large, the effective sample size is approximated by

N ′eff ≈ N
1− ρ(1)

1 + ρ(1)
, (2.58)
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with ρ(1) being the lag-1 autocorrelation coefficient (Zwiers and von Storch,
1995). For 0 ≤ ρ(1) < 1, (2.58) gives 0 < N ′eff ≤ N . If ρ(1) = 0, N ′eff = N ,
as expected for independent data. Sallenger et al. (2012) found that ρ(1) from
(2.56) did not give stable estimates for noisy time series; instead, they fitted an
AR(1) model and substituted the AR(1) coefficient for ρ(1) in (2.58) to obtain
N ′eff .

It is possible to have N ′eff > N if ρ(1) < 0. To keep the effective sample size
within a reasonable range, Zwiers and von Storch (1995) recommended using

Neff =

 2 if N ′eff ≤ 2,
N ′eff if 2 < N ′eff ≤ N,
N if N < N ′eff ,

(2.59)

with N ′eff computed from (2.58). How Neff is used in hypothesis testing is further
pursued in Section 4.2.4.

For illustration, the autocorrelation function was computed for the daily
temperature at Vancouver, BC in Fig. 2.7. That the autocorrelation function
in Fig. 2.7(a) has a strong trough at around 180 days and a strong peak at
around 360 days merely indicates that the time series has a strong seasonal cycle.
For Gaussian white noise,3 95% of the distribution falls within the interval
[−1.96/

√
N, 1.96/

√
N ], which is marked by the two horizontal lines in Fig.

2.7, (see Section 3.4) (Box, Jenkins, et al., 2015, Section 2.1.6; von Storch and
Zwiers, 1999, pp. 252–253), that is, outside of this interval, there is only 5%
chance the true autocorrelation is zero.

For the short record of N = 90 days during the winter of 2016–2017 (Fig.
2.7(b)), (2.59) gave Neff ≈ 7.9, an order of magnitude smaller than N .

2.11.3 Spearman Rank Correlation A

For the correlation to be more robust and resistant to outliers, the Spearman
rank correlation (Spearman, 1904) is often used instead of the Pearson corre-
lation. If the data {x1, . . . , xN} are rearranged in order according to their size
(starting with the smallest), and if x is the nth member, then rank(x) ≡ rx = n.
The Spearman correlation ρspearman is simply the Pearson correlation ρ of rx
and ry, that is,

ρspearman(x, y) = ρ(rx, ry). (2.60)

Spearman correlation assesses how well the relationship between two variables
can be described by a monotonic function. If the relation is perfectly monotonic,
that is, if xi < xj , then yi < yj for all i 6= j, then the Spearman correlation
takes on the maximum value of 1. The minimum value of −1 is attained if
xi < xj , then yi > yj for all i 6= j. Thus, the Pearson correlation measures
if the relation between two variables is linear, while Spearman measures if the
relation is monotonic (regardless whether it is linear or non-linear).

3 White noise is a random signal having equal intensity at all frequencies. The values at any
two times are identically distributed and statistically independent; thus, the autocorrelation
ρ(l) = 0 for all l 6= 0.
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Figure 2.7 Autocorrelation function for the daily temperature at Vancouver,
BC during (a) 1993–2017 and (b) winter of 2016–2017 (Dec.-Feb.), with the
horizontal lines indicating the 95% confidence interval. [Data source: weather-
stats.ca based on Environment and Climate Change Canada data.]

For example, if five measurements of x yielded the values 1, 3, 0, 3 and 6, then
the corresponding rx values are 2, 3.5, 1, 3.5 and 5 (where the tied values were
all assigned an averaged rank). If measurements of y yielded 2, 3,−1, 7 and −99
(an outlier), then the corresponding ry values are 3, 4, 2, 5 and 1. The Spearman
rank correlation is −0.05, while the Pearson correlation is −0.79, which shows
the strong influence exerted by an outlier.

In Fig. 2.6(a), the Pearson correlation is 0.00 while the Spearman correlation
is −0.02, but in Fig. 2.6(b), it is −0.50 for Pearson versus +0.44 for Spearman.
If the single outlier at the bottom right corner of Fig. 2.6(b) is removed, it is
0.70 for Pearson and 0.68 for Spearman. Clearly, the Spearman correlation is
much more resistant to the outlier than Pearson.

There are alternative robust and resistant correlations, such as the Kendall
rank correlation and the biweight midcorrelation.

2.11.4 Kendall Rank Correlation A

An alternative approach to rank correlation is via Kendall rank correlation or
Kendall’s tau (after the Greek letter τ) (Kendall, 1938; Kendall, 1945). Given
xi and yi (i = 1, . . . , N), we say that a pair (i, j), i < j, is:
- concordant when xi−xj and yi−yj are both non-zero and have the same sign;
- discordant when xi−xj and yi−yj are both non-zero and have opposite signs.

Let C and D be the number of concordant pairs and discordant pairs, re-
spectively. The total number of pairs (i, j) with i < j is N0 = N(N − 1)/2.
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Kendall’s τA was defined originally in Kendall (1938) as

τA =
C −D
N0

, (2.61)

which has a rather simple interpretation, namely the number of concordant pairs
minus the number of discordant pairs, divided by the total number of pairs. If
all pairs are concordant, then C = N0, D = 0 and τA = 1, and if all pairs are
discordant, then τA = −1.

The denominator was adjusted for ties (i.e. xi = xj or yi = yj) in Kendall
(1945), and statistical packages usually implement this modified τ (often called
τB), so τB ranges from −1 to +1 even with tied data. τB is defined by

τB =
C −D√

(N0 − Tx)(N0 − Ty)
, (2.62)

with

Tx =

g(x)∑
j=1

t
(x)
j (t

(x)
j − 1)/2, (2.63)

Ty =

g(y)∑
j=1

t
(y)
j (t

(y)
j − 1)/2, (2.64)

where g(x) is the number of tied groups in the variable x and t
(x)
j is the size of

tied group j (e.g. if the value x = 5.1 appears twice, t
(x)
j = 2), and g(y) and t

(y)
j

are similarly defined for the variable y. When there are no ties, τA = τB .
In Fig. 2.6(b), the correlation is −0.50 for Pearson, 0.44 for Spearman and

0.35 for Kendall. If the single outlier at the bottom right corner of Fig. 2.6(b)
is removed, it is 0.70 for Pearson, 0.68 for Spearman and 0.50 for Kendall.

The usage of Kendall’s τ has been increasing in recent decades, though
whether it is better or worse than the Spearman correlation is problem depen-
dent (W. C. Xu et al., 2013).

2.11.5 Biweight Midcorrelation B

We have seen one approach in making correlation more robust and resistant,
namely using ranks as in the Spearman and Kendall rank correlations. A
different approach involves replacing the non-robust/resistant measures in the
Pearson correlation, that is, the mean and deviation from the mean, by the cor-
responding robust/resistant ones, that is, the median and the deviation from the
median. This second approach is used in the biweight midcorrelation (Mosteller
and Tukey, 1977; Wilcox, 2004, pp. 203–209).

To calculate the biweight midcorrelation function bicor(x, y), first rescale
x and y by

pi =
xi −Mx

9 MADx
, qi =

yi −My

9 MADy
, i = 1, . . . , N, (2.65)
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where Mx and My are the median values of x and y, respectively, and MADx

and MADy (the median absolute deviations) are the median values of |xi −Mx|
and |yi −My|, respectively.

Next, define the weights (called ‘biweights’ by Beaton and Tukey (1974))

w
(x)
i =

{
(1− p2

i )
2, if |pi| < 1

0, if |pi| ≥ 1,
(2.66)

w
(y)
i =

{
(1− q2

i )2, if |qi| < 1
0, if |qi| ≥ 1.

(2.67)

The biweight midcorrelation is defined by

bicor(x, y) =

∑N

i=1
w

(x)
i (xi −Mx) w

(y)
i (yi −My){∑N

i=1[w
(x)
i (xi −Mx)]2

} 1
2
{∑N

i=1[w
(y)
i (yi −My)]2

} 1
2

. (2.68)

Formally, bicor resembles the Pearson correlation (2.53), except for the presence

of the weights w
(x)
i and w

(y)
i and the use of medians Mx and My instead of the

means. The weights in (2.66) and (2.66) are set to zero for outliers (large |pi|
or |qi|); thus, bicor is resistant to outliers. The biweight midcorrelation, like
the Pearson correlation, ranges from −1 (negative association) to +1 (positive
association).

2.12 Exploratory Data Analysis A

In statistics, exploratory data analysis (EDA) was pioneered by John W. Tukey,
who wrote the classic book entitled Exploratory Data Analysis (Tukey, 1977).
Tukey felt that statistics placed too much emphasis on statistical hypothesis
testing, so he advocated EDA, which tries to explore and visualize the data,
thereby letting the data suggest what hypotheses to test. Besides using more
robust/resistant statistics such as the median and the quartiles to summarize a
dataset than using the traditional mean and standard deviation, EDA also uses
graphical methods extensively to aid in visualizing the structure of the datasets.
Graphical methods include scatterplots (Fig. 2.5), histograms, quantile–quantile
plots and boxplots.

2.12.1 Histograms A

Histograms (from ‘historical diagrams’), introduced by Pearson (1895), present
the probability distribution of a given variable by plotting the frequencies of
observations occurring over the domain of the variable. To construct a his-
togram, the domain is partitioned into intervals (called ‘bins’ or ‘buckets’), and
the frequency, that is, how many observed values fall into each bin, is counted.
The frequencies can be simply the raw counts, or normalized, that is, dividing
the counts by the total number of observations. The bins are usually of equal
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width, but can be of unequal width. With normalized frequencies, the area
over each bin gives the probability of occurrence within that interval. The bin
width cannot be chosen to be too wide, which smooths out important details in
the histogram, nor too narrow, which gives a noisy-looking histogram. (Scott,
2015, p. 78) recommends using a bin width ≤ 2.6 IQR/(N1/3), where IQR is
the interquartile range and N the sample size. Most histogram packages will
have a reasonable default bin width, so the user does not have to specify the
bin width.

Figure 2.8 gives an example of using the histogram method on the weather
data for Vancouver, BC. The histogram gives the actual distribution of the
data, while a Gaussian distribution curve has also been fitted to the data.4

Comparing the histogram with the Gaussian curve tells us how close the ob-
served distribution is to a Gaussian distribution. Temperature in Fig. 2.8(a)
actually shows a bimodal distribution (i.e. having two humps) in contrast to
the unimodal Gaussian, while wind speed in Fig. 2.8(c) is also clearly non-
Gaussian. The fit for relative humidity (Fig. 2.8(b)) is poor for the right tail
as humidity cannot exceed 100%, and the pressure distribution (Fig. 2.8(d))
is more narrowly distributed than a Gaussian. For precipitation (Fig. 2.8(e)),
most days have no precipitation – these dry days are omitted in Fig. 2.8(f). Al-
though the Gaussian distribution is called the ‘normal distribution’, in reality,
environmental variables often do not closely resemble Gaussians.

2.12.2 Quantile–Quantile (Q–Q) Plots B

A quantile–quantile plot (Q–Q plot) is a probability plot, which provides a
graphical tool for comparing two probability distributions by plotting their
quantiles against each other. For a chosen set of quantiles, a point (x, y) on the
plot corresponds to one of the quantiles of the y distribution plotted against the
same quantile of the x distribution.

There are two ways to use a Q–Q plot: (i) to compare observed data with a
specified theoretical distribution (e.g. a Gaussian distribution) and (ii) to assess
whether two sets of observed data obey the same distribution. If the agreement
between the two distributions is perfect, then the plot is a straight line.

There are many ways to choose the quantiles for the plot. If the distribution
for the observations yi, (i = 1, . . . , N), is to be compared with a specified
theoretical distribution, one way is to simply use N quantiles. The y data are
sorted into ascending order, y1, . . . , yN , then the ith ordered value y(i) is plotted
against the (i− 1

2 )/N quantile of the theoretical distribution along the x-axis.
The Q–Q plot for Vancouver’s daily temperature versus the standard Gaus-

sian distribution (i.e. Gaussian with zero mean and unit standard deviation)
shows the temperature to have weaker tails than the Gaussian, especially for
high temperatures (Fig. 2.9(a)), which can also be seen in (Fig. 2.8(a)). However
the bimodal structure seen in the histogram is much less noticeable in the Q–Q

4 The Gaussian distribution is specified by two parameters, namely its population mean µ
and variance σ2 (see Section 3.4). From the dataset, compute the sample mean and variance
and use these as the parameters of the Gaussian distribution.
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Figure 2.8 Histogram for the distribution of daily (a) temperature, (b) relative
humidity, (c) wind speed, (d) sea level pressure, (e) precipitation and (f) non-
zero precipitation in Vancouver, BC from 1993 to 2017. A Gaussian distribution
curve has also been fitted to the data. Relative humidity is bounded between 0%
and 100%, and wind speed is non-negative. Since 53.4% of the days in (e) have
no precipitation, the dry days are omitted in (f). [Data source: weatherstats.ca
based on Environment and Climate Change Canada data.]
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plot. Thus, comparing the histogram with the Q–Q plot, the Q–Q plot tends
to be better in revealing the departure of the observations from the theoretical
distribution near the tails, but the histogram tends to be better in showing the
departure away from the tails.
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Figure 2.9 Quantile–quantile plots where quantiles of the daily (a) tempera-
ture, (b) relative humidity and (c) wind speed in Vancouver, BC from 1993 to
2017 are plotted against the quantiles of the standard Gaussian distribution as
indicated by the ‘+’ symbols. If the observed distribution is a perfect Gaus-
sian, the plot will fall on the straight (dot-dashed) line. In (d), the quantiles
of the temperature in Toronto, Ontario are plotted against those from Vancou-
ver. [Data source: weatherstats.ca based on Environment and Climate Change
Canada data.]

Figure 2.9(b) shows the relative humidity to have a shorter tail than the
Gaussian at high values but a longer tail at low values. On the other hand,
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wind speed (Fig. 2.9(c)) has a longer tail than the Gaussian at high values but
a shorter tail at low values.

The Q–Q plot can also be used to assesses whether two sets of observations
have the same distribution. One plots the quantile values for the first dataset
along the x-axis and the corresponding quantile values for the second dataset
along the y-axis. The two datasets can have different numbers of data points,
as a Q–Q plot only plots selected quantiles. If the resulting plot is linear, the
two datasets obey the same distribution. Figure 2.9(d) shows the Q–Q plot of
Toronto’s temperature versus Vancouver’s temperature. Toronto’s temperature,
though having a larger range than Vancouver’s, has relatively shorter tails.

2.12.3 Boxplots A

Tukey (1977) advocated using five numbers to summarize a dataset, that is,
the median, the lower and upper quartiles (i.e. q0.25 and q0.75), and the min-
imum and maximum values. Boxplots (or box-and-whisker plots) arose as a
visualization tool for the five-number summary (Tukey, 1977).

The top and bottom of each ‘box’ are the upper and lower quartiles of the
sample data, respectively, with the distance between the top and bottom indi-
cating the interquartile range (IQR). The horizontal line or ‘waist line’ within
each box is the sample median. Skewness is present if the median is not centred
in the box.

The whiskers are the (dashed) lines extending above and below each box.
The most common convention is to have the whisker above the box extending
from q0.75 to a furthest observation not more than 1.5 IQR above q0.75. Any
observation beyond is considered an outlier and is plotted as a ‘+’ or ‘o’ symbol.
Similarly, the lower whisker extends from q0.25 to a furthest observation not more
than 1.5 IQR below q0.25, with any observation beyond plotted as an outlier.
For a Gaussian distribution, 99.7% of the distribution lies within the interval
[q0.25− 1.5 IQR, q0.75 + 1.5 IQR].

A common variant of the boxplot displays notches on the two sides of the
waistline, that is, ‘>–<’ (Fig. 2.10(a)), with the height of the notches indicating
the uncertainty of the sample median (McGill et al., 1978). The notches extend

± 1.57 IQR/
√
N (2.69)

from the sample median. If the notches from two boxes do not overlap, then
the two sample medians are considered different at the 5% significance level.

Figure 2.10 shows boxplots of weather variables at three Canadian cities,
Vancouver and Victoria in British Columbia on the west coast and Toronto,
Ontario to the east. In (a), there are only 90 data points from Dec. 2016 to Feb.
2017, so the notches are much wider than those in (b), where there are 25 years
of daily data. Toronto is seen to have a much larger temperature range in (b)
and lower relative humidity in (c) than the two west coast cities, while Victoria
is seen to have lower wind speed than the other two cities in (d).
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Figure 2.10 Boxplots for the daily weather at three Canadian cities: (a) temper-
ature during the winter of 2016–2017, and (b) temperature, (c) relative humidity
and (d) wind speed from 1993 to 2017. [Data source: weatherstats.ca based on
Environment and Climate Change Canada data.]

The astute reader may question the notches computed from (2.69) since
there is serial correlation in the weather data. Indeed, if we assume the effective
sample sizeNeff ≈ 8 for Vancouver temperature (winter 2016–2017) as in Section
2.11.2, then replacing N by Neff in (2.69) would make the width of the notches
3.4 times as wide. Unfortunately, common boxplot packages do not provide an
option for replacing N by Neff when computing the notches, leading to notch
widths that are too narrow for serially correlated data. In such situations, it is
best to turn off the option for displaying notches in the boxplot.
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2.13 Mahalanobis Distance A

For a one-dimensional dataset with mean µ and standard deviation σ, and
a particular data point x, the Mahalanobis distance measures the number of
standard deviations between the data point x and the mean µ, that is,

dM =
√

(x− µ)2/σ. (2.70)

For higher-dimensional data, the Mahalanobis distance is defined by

dM =
√

(x− µ)TC−1(x− µ) , (2.71)

where µ is the expectation of x, C is the covariance matrix cov(x) from (2.33)
and C−1 is the inverse of C. Clearly, (2.70) is the special one-dimensional case
of the general formula (2.71), as C reduces to the variance σ2 in 1-D. If C−1 is
the identity matrix, (2.71) reduces to the familiar Euclidean distance.

Figure 2.11 illustrates why the Mahalanobis distance (and not the Euclidean
distance) is the appropriate distance for determining if a data point x is far from
the centre of a dataset. Consider the two points marked by the asterisk and the
star. The Euclidean distance (Fig. 2.11(a)) between the asterisk and the centre
of the dataset is 7.44, versus 4.48 between the star and the centre. However, in
terms of the Mahalanobis distance (Fig. 2.11(d)), the distance from the centre
is 2.48 for the asterisk and 4.46 for the star. Thus the Mahalanobis distance
correctly indicates the star as being much further from the centre than the
asterisk, and should be considered an outlier.

Robust methods have been developed to estimate C when the data is non-
Gaussian. These include the fast-minimum covariance determinant (Fast-MCD)
method (Rousseeuw and van Driessen, 1999), the orthogonalized Gnanadesikan–
Kettenring (OGK) method (Maronna and Zamar, 2002) and the Olive–Hawkins
method (Olive, 2004). Of the three methods, the author’s choice is the OGK
method, based on some limited tests comparing the accuracy and speed of the
three methods.

2.13.1 Mahalanobis Distance and Principal Component
Analysis B

One can compute the Mahalanobis distance from (2.71), using the sample co-
variance matrix for C and the sample mean for µ. However, for the inquisitive
reader, it is illuminating to see how the Mahalanobis distance can be derived
from principal component analysis (PCA) (Section 9.1). From (9.29), one can
write the centred data x− µ (Fig. 2.11(b)) as

x− µ =
∑
i

aiei , (2.72)

where the summation is over all the PCA modes, that is, over all the principal
components (PC) ai multiplied by their corresponding eigenvectors ei. The
eigenvectors satisfy the eigenequation
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Figure 2.11 Mahalanobis distances versus Euclidean distances, as illustrated
by two data points marked by the asterisk and the star. The square marks the
centre (i.e. the mean) of the Gaussian dataset containing 500 points. (a) In the
original data, the line marking the Euclidean distance from the centre is longer
for the asterisk than for the star. (b) Subtracting the mean gives the centred
data. (c) Principal components (a1 and a2) are obtained by rotating the centred
data, so the direction of the maximum variance is along the horizontal axis. (d)
Principal components are normalized to have unit variance in each direction.
The line connecting the centre and the asterisk/star gives the Mahalanobis
distance. Thus in terms of Euclidean distance, the asterisk is further from the
centre than the star, but in terms of Mahalanobis distance, the star is further
from the centre than the asterisk.
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C ei = λiei , (2.73)

where λi are the eigenvalues. The vector e1 points in the direction of maximum
variance of the dataset, while e2 points in the direction of maximum variance
within the space orthogonal to e1. In general, ei points in the direction of
maximum variance within the space orthogonal to e1, . . . , ei−1. The PC a1 is
the coordinate in the e1 direction, while a2 is the coordinate in the e2 direction
(Fig. 2.11(c)). A common convention is to make all eigenvectors of unit length,
then λi is the variance of ai [see (9.37) and (9.39)].

Left multiplying (2.73) by C−1 gives

ei = λiC
−1ei , (2.74)

λ−1
i ei = C−1ei . (2.75)∑

i

aiλ
−1
i ei =

∑
i

aiC
−1ei = C−1

∑
i

aiei = C−1(x− µ) , (2.76)

upon invoking (2.72). Thus,

d2
M = (x− µ)TC−1(x− µ) =

∑
j

∑
i

aje
T
j aiλ

−1
i ei . (2.77)

With orthonormal eigenvectors, eT
j ei = δij (the Kronecker delta function, where

δij = 1 if i = j, and 0 otherwise),

d2
M =

∑
i

a2
i /λi . (2.78)

The Mahalanobis distance squared is simply the sum over the square of the
normalized principal components, as ai/

√
λi can be regarded as the normal-

ized PC. Thus, the distance from the origin in the normalized PC space is the
Mahalanobis distance (Fig. 2.11(d)).

2.14 Bayes Theorem A

Bayes theorem, named after the Reverend Thomas Bayes (1702–1761), plays
a central role in modern statistics (Jaynes, 2003; N. D. Le and Zidek, 2006).
Historically, it had a major role in the debate around the foundations of statis-
tics, as the traditional ‘frequentist ’ school and the Bayesian school disagreed
on how probabilities should be assigned in applications. Frequentists assign
probabilities to random events according to their frequencies of occurrence or
to subsets of populations as proportions of the whole. In contrast, Bayesians
describe probabilities in terms of beliefs and degrees of uncertainty, similarly
to how the general public uses probability. For instance, a sports fan prior
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to the start of a sports tournament believes that team A, with a stellar his-
torical record, has a probability of 70% for winning a game. However, after
watching several mediocre games, the fan may modify his estimate of the win-
ning probability to 50%. Similarly, to estimate the probability of a hypothesis,
a Bayesian first specifies/guesses some prior probability, then updates it to a
posterior probability by incorporating new data (evidence).

We will use a classification problem to illustrate the Bayes approach. Sup-
pose a meteorologist wants to classify the approaching weather state as either
storm (C1) or non-storm (C2). Assume there is some a priori probability (or
simply prior probability) P (C1) that there is a storm, and some prior probabil-
ity P (C2) that there is no storm. For instance, from the past weather records,
if 15% of the days were found to be stormy during this season, then the me-
teorologist may assign P (C1) = 0.15, and P (C2) = 0.85. Now suppose the
meteorologist has a barometer measuring a pressure x at 6 a.m. The mete-
orologist would like to obtain an a posteriori probability (or simply posterior
probability) P (C1|x), that is, the conditional probability of having a storm on
that day given the 6 a.m. pressure x. In essence, he would like to improve on
his simple prior probability with the new information x.

The joint probability density p(Ci, x) is the probability density that an event
belongs to class Ci and has value x. The joint probability density can be
written as

p(Ci, x) = P (Ci|x)p(x), (2.79)

with p(x) the probability density of x. Alternatively, p(Ci, x) can be written as

p(Ci, x) = p(x|Ci)P (Ci), (2.80)

with p(x|Ci), the conditional probability density of x, given that the event
belongs to class Ci. Equating the right hand sides of these two equations, we
obtain

P (Ci|x) =
p(x|Ci)P (Ci)

p(x)
, (2.81)

which is Bayes theorem. The previous form of Bayes theorem encountered in
(2.8) was for two discrete variables x and y, whereas here we have a discrete
variable C and a continuous variable x. Since p(x) is the probability density of
x without regard to which class, it can be decomposed into

p(x) =
∑
i

p(x|Ci)P (Ci). (2.82)

Substituting this for p(x) in (2.81) yields

P (Ci|x) =
p(x|Ci)P (Ci)∑
i p(x|Ci)P (Ci)

, (2.83)

where the denominator on the right hand side is seen as a normalization factor
for the posterior probabilities to sum to unity. Bayes theorem says that the
posterior probability P (Ci|x) is simply p(x|Ci) (the likelihood of x given the
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event is of class Ci) multiplied by the prior probability P (Ci) and divided by
a normalization factor. The advantage of Bayes theorem is that the posterior
probability is now expressed in terms of quantities that can be estimated. For
instance, to estimate p(x|Ci), the meteorologist can divide the 6 a.m. pressure
record into two classes and estimate p(x|C1) from the pressure distribution for
stormy days, and p(x|C2) from the pressure distribution for non-stormy days.

For the general situation, the scalar x is replaced by a vector x, and the
classes are C1, . . . , Ck; then, Bayes theorem becomes

P (Ci|x) =
p(x|Ci)P (Ci)∑
i p(x|Ci)P (Ci)

, (2.84)

for i = 1, . . . , k.

If instead of the discrete variable Ci, we have a continuous variable w, then
Bayes theorem (2.81) for two continuous variables w and x takes the form

p(w|x) =
p(x|w)p(w)

p(x)
. (2.85)

The scalars x and w can be generalized to the vectors x and w, so Bayes theorem
becomes

p(w|x) =
p(x|w)p(w)

p(x)
. (2.86)

Often a model controlled by some parameters w is used to model the vari-
ables x. The model parameters w are to be estimated using a dataset D contain-
ing the observations x1, . . . ,xN . Given a prior distribution p(w) and p(D|w)
(i.e. the likelihood of observing D given the parameters w), we can obtain a
posterior distribution p(w|D) from Bayes theorem,

p(w|D) =
p(D|w)p(w)

p(D)
, (2.87)

where p(D) is simply a normalization factor,

p(D) =

∫
p(D|w)p(w)dw. (2.88)

The likelihood p(D|w) is treated differently by frequentists, who view the
parameters w as being fixed. The frequentists commonly estimate the value of
w by maximizing the likelihood function (Section 3.5). In contrast, Bayesians
view the observed data D as fixed, but w is given by a distribution p(w|D).

Figure 2.12 illustrates the relation between p(w|D), p(D|w) and p(w) where,
for simplicity, w is reduced to a scalar w. Case (a): Little prior information
is available for w, that is, a very broad and flat p(w). Case (b): More precise
prior information is available from the narrower p(w) distribution.
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Figure 2.12 Relation between p(w|D), p(D|w) and p(w). (a) A broad and flat
distribution of p(w) provides little prior information for estimating w, leading
to the posterior distribution p(w|D) being very similar to the likelihood p(D|w).
(b) A narrow p(w) distribution leads to a larger difference between p(w|D) and
p(D|w). If more data are available, p(D|w) will be narrower and more strongly
peaked than that shown in (b), and the p(w|D) distribution will be pulled more
towards p(D|w). [Follows Cowan (2007)].

2.15 Classification A

Once the posterior probabilities P (Ci|x) have been estimated from (2.84), we
can proceed to classification: Given an input or predictor vector x, called a
feature vector in the ML literature, we choose the class Cj having the highest
posterior probability, that is,

P (Cj |x) > P (Ci|x), for all i 6= j. (2.89)

From (2.84), this is equivalent to

p(x|Cj)P (Cj) > p(x|Ci)P (Ci), for all i 6= j. (2.90)

In the feature space (i.e. the space of the predictor variables x), the pat-
tern classifier has divided the space into decision regions R1, . . . , Rk, so that
if a feature vector lands within Ri, the classifier will assign the class Ci. The
decision region Ri may be composed of several disjoint regions, all of which
are assigned the class Ci. The boundaries between decision regions are called
decision boundaries or decision surfaces.
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To justify the decison rule (2.90), consider the probability Pcorrect of a new
pattern being classified correctly:

Pcorrect =

k∑
j=1

P (x ∈ Rj , Cj), (2.91)

where P (x ∈ Rj , Cj) gives the probability that the pattern that belongs to class
Cj has its feature vector falling within the decision region Rj , thus classified
correctly as belonging to class Cj . Note that Pcorrect can be expressed as

Pcorrect =

k∑
j=1

P (x ∈ Rj |Cj)P (Cj),

=

k∑
j=1

∫
Rj

p(x|Cj)P (Cj)dx. (2.92)

To maximize Pcorrect, one needs to maximize the integrand by choosing the
decision regions so that x is assigned to the class Cj satisfying (2.90).

In general, classification need not be based on probability distribution func-
tions, since in many situations, p(x|Ci) and P (Ci) are not known. The classifi-
cation procedure is then formulated in terms of discriminant functions, which
tell us which class we should assign to the given x. For example, in Fig. 2.13(a),
x = (x1, x2)T, and the two classes are separated by the line x2 = x1.
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Figure 2.13 (a) A linear decision boundary separating two classes of data de-
noted by crosses and circles, respectively. (b) A non-linear decision boundary.
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The discriminant function can be simply y(x) = −x1 +x2, with C2 assigned
when y(x) > 0, and C1 otherwise. Thus, the decision boundary is given by
y(x) = 0.

When there are more than two classes, the discriminant functions are
y1(x), . . ., yk(x), where a feature vector x is assigned to class Cj if

yj(x) > yi(x), for all i 6= j. (2.93)

Equation (2.89) can be viewed as a special case of (2.93). An important prop-
erty of a discriminant function yi(x) is that it can be replaced by f(yi(x)) for
any monotonic function f , since the classification is unchanged as the relative
magnitudes of the discriminant functions are preserved by f . There are many
classical linear discriminant analysis methods (Duda et al., 2001), where the dis-
criminant function is a linear combination of the predictor variables xl, that is,

yi(x) =
∑
l

wilxl + wi0 ≡ wT
i x + wi0, (2.94)

with parameters wi and wi0. Based on (2.93), the decision boundary between
class Cj and Ci is obtained from setting yj(x) = yi(x), yielding a hyperplane5

decision boundary described by

(wj −wi)
Tx + (wj0 − wi0) = 0. (2.95)

Suppose x and x′ both lie within the decision region Rj . Consider any point
x̃ lying on a straight line connecting x and x′, that is,

x̃ = ax + (1− a)x′, (2.96)

with 0 ≤ a ≤ 1. Since x and x′ both lie within Rj , they satisfy yj(x) > yi(x)
and yj(x

′) > yi(x
′) for all i 6= j. Since the discriminant function is linear, we

also have
yj(x̃) = ayj(x) + (1− a)yj(x

′), (2.97)

therefore yj(x̃) > yi(x̃) for all i 6= j. Thus, any point on the straight line joining
x and x′ must also lie within Rj , meaning that the decision region Rj is simply
connected and convex. As we shall see later, with non-linear ML methods such
as neural networks and support vector machines, the decision boundaries can be
curved surfaces (Fig. 2.13(b)) instead of hyperplanes, and the decision regions
need not be simply connected nor convex. Discriminant analysis and other
classification methods are explained in detail in Chapter 12.

2.16 Clustering A

In machine learning, there are two general approaches, supervised learning and
unsupervised learning . An analogy for the former is students in a Spanish class

5 A hyperplane is a subspace where the dimension is one less than that of its ambient space.
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where the teacher demonstrates the correct Spanish pronunciation. An analogy
for the latter is students working on a team project without supervision. In
unsupervised learning, the students are provided with learning rules, but must
rely on self-organization to arrive at a solution, without the benefit of being
able to learn from a teacher’s demonstration.

In classification, the training dataset consists of predictors or features xi (x
can be made up of continuous and/or discrete and/or categorical variables) and
discrete/categorical response variables Ci, i = 1, . . . , N , N being the number of
observations. Here, Ci serves the role of the teacher or target for the classifica-
tion model output C̃i, that is, C̃i is fitted to the given target data, similar to
students trying to imitate the Spanish accent of their teacher; thus, the learning
is supervised.

For instance, suppose x contains three variables – air temperature, humidity
and pressure, and C can be ‘no precipitation’, ‘rain’ or ‘snow’ a day later. Such
a classification model uses three meteorological inputs to predict whether it will
be ‘no precipitation’, ‘rain’ or ‘snow’ a day later.

Clustering or cluster analysis is the unsupervised version of classification,
that is, we are given the x data but not the C data. The goal of clustering is
to group the x data into a number of subsets or ‘clusters’, such that the data
within a cluster are more closely related to each other than data from other
clusters. After performing clustering on the air temperature, humidity and
pressure data, we may indeed find three main clusters. The first cluster of data
points may occur where humidity is low and pressure is high, corresponding to
days of no precipitation. A second cluster may occur where humidity is high,
pressure is low and temperature is high, corresponding to rainy days, while a
third cluster may be somewhat similar to the second cluster but occurring at
low temperature, corresponding to snowy days. Thus, even without the target
C data, we can learn much from the x data alone.

A simple and popular method for performing clustering is K-means cluster-
ing . First choose K, the number of clusters. Next, start with initial guesses
for the mean positions of the K clusters in the x space (i.e. the position of a
cluster centre, a.k.a. centroid, is simply the mean position of all the data points
belonging to that cluster). Iterate the following two steps until convergence:

(i) For each data point, find the closest centroid [based on the squared Eu-
clidean distance in (10.2)] and assign the data point to be a member of
this cluster.

(ii) For each cluster, reassign the centroid to be the mean position of all data
points belonging to that cluster.

This is known as Lloyd’s algorithm, and is sometimes referred to as ‘naive K-
means’ as there are faster algorithms. The initial choice for theK centroids often
involves randomly picking K data points from the x data. The initialization
can be improved, for example by using the K-means++ method of Arthur and
Vassilvitskii (2007), where the centroids are chosen randomly from the data
points, but with the probability of choosing a data point being proportional
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to its squared distance from the closest centroid (among the centres already
chosen). See Section 10.2.1 for more details on K-means clustering and Chapter
10 for more choices of clustering methods.

Figure 2.14 illustrates K-means clustering with K = 3 clusters for the daily
air pressure and temperature data at Vancouver, BC, Canada during 2013–2017.
As air pressure and temperature have different units, clustering was performed
on the standardized data. The poor initial choice of the centroids did not hinder
the convergence of the clustering algorithm. Upon convergence in Fig. 2.14(d),
the three centroids make physical sense: In the Pacific Northwest region of North
America, summer tends to be sunny while winter has numerous weather systems
passing through, so it makes sense to have one cluster representing summer and
two clusters representing winter. In winter, during high pressure days, the clear
skies increase outgoing long-wave radiation, leading to colder temperatures (as
characterized by the the lower-right centroid) than during low pressure days
where the clouds reduce the outgoing long-wave radiation (lower-left centroid).
As K, the number of clusters, is specified by the user, choosing a different K
will in general lead to very different clusters. It turns out K = 3 is optimal
according to two internal evaluation criteria (see Fig. 10.1).

2.17 Information Theory B

Information theory studies the quantification, storage and communication of
information. The field started in 1948 with the publication of an article in two
parts by Claude E. Shannon (Shannon, 1948a,b), on how best to encode in-
formation for transmission. His theory was based on probability theory, and
the central concept of information entropy, a measure of the uncertainty in a
message, was surprisingly similar to the thermodynamic entropy developed by
the physicists Ludwig Boltzmann and J. Willard Gibbs in the 1870s. Informa-
tion theory has since grown into a large field (Cover and Thomas, 2006) and
is connected to machine learning (MacKay, 2003). Information theory has also
been applied increasingly to the environmental sciences, especially regarding
predictability of dynamical systems (Leung and North, 1990; Kleeman, 2002;
DelSole, 2004; DelSole, 2005; Y. M. Tang et al., 2005; DelSole and Tippett,
2007) and the selection of good predictors from a large pool of available pre-
dictor variables (Sharma, 2000; May, Dandy, et al., 2008; May, Maier, et al.,
2008).

How information is connected to probability can be illustrated by the fol-
lowing example. The statement ‘the sun has risen from the east’ is much less
informative than the statement ‘a magnitude 9.0 earthquake has occurred off
Japan’. The reason is that the first event has probability 1 (so the statement
contains no useful information) while the second event has low probability (so
the statement contains potentially life-saving information). Thus, information
content is low when the probability of the event occurring is high.

First, start with a discrete random variable X, from which we can draw
specific values x. We want to develop a measure of information content, h(x),
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(a)  Iteration = 0
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(b)  Iteration = 1
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(c)  Iteration = 2
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(d)  Final iteration

Figure 2.14 (a) The initial guesses for the three centroids are marked by three
asterisks. The data points are assigned to clusters based on their nearest cen-
troid. In (b), the centroids have been recalculated based on the mean position
of the cluster members in (a), and cluster members in (b) have been reassigned
based on their closeness to the centroids in (b). The location of the centroids
and their associated cluster members are shown after (c) two iterations and (d)
after final convergence of the K-means clustering algorithm.
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where h(x) is a monotonically decreasing function of the probability P (x). If
there are two independent events x and y, the information from observing both
events should be the sum of the two separate events, that is,

h(x, y) = h(x) + h(y). (2.98)

Since the probability of observing two independent events obeys P (x, y) =
P (x)P (y), we can choose h(x) to be

h(x) = − logP (x), (2.99)

so that

h(x, y) = − logP (x, y) = − log[P (x)P (y)] (2.100)

= − logP (x)− logP (y) = h(x) + h(y). (2.101)

The minus sign in (2.99) ensures h(x) ≥ 0 and h is a monotonically decreasing
function of P . One can choose any base for the logarithm function, but the two
most common choices are base 2 and base e, that is, log2 or loge (ln). With
base 2, h(x) has units of bits (from ‘binary digits’), whereas with base e (i.e.
using natural logarithm), h(x) has units of nats.

2.17.1 Entropy B

Since X is a random variable, we are more interested in the average amount
of information transmitted, that is, the expectation of h(x) than h(x) itself.
The expectation of of (2.99) involves summing h(x) weighted by the probability
P (x) over all possible states of x, that is,

H(X) = E[h(x)] = −
∑
x

P (x) logP (x) = −
∑
i

Pi logPi, (2.102)

where H(X) is called the entropy and P at the discrete values of x is also
written as Pi. For any x with P (x) = 0, we will set P logP = 0 since
limP→0 P logP = 0.

Readers familiar with the statistical mechanics of Boltzmann and Gibbs will
recall that the thermodynamic entropy S is given by

S = −kB

∑
i

Pi logPi, (2.103)

where kB is the Boltzmann constant and the summation is over all i states. By
switching to natural units, kB becomes unity, and (2.103) is identical in form to
(2.102).

Next, consider the simple example of X being a binary variable (0 or 1). If
we write P (1) = α and P (0) = 1− α, then (2.102) gives

H(X) = −[P (0) log2 P (0) + P (1) log2 P (1)] (2.104)

= −[(1− α) log2(1− α) + α log2 α]. (2.105)
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The entropy is maximized (Fig. 2.15) when α = 0.5, that is, P (1) = P (0) =
0.5, and minimized (H = 0) when P (1) = 0 or 1. For the coin flip analogy,
P (1) = 0 or 1 means the coin is loaded to always come out ‘head’ (H) or ‘tail’
(T). Since the outcome is certain, more flips of the coin do not provide any
new information, that is, the information content is 0 at H = 0. In contrast,
when α = P (1) = P (0) = 0.5, there is greatest uncertainty since there is equal
probability of getting H or T; thus, information on the outcome of coin tosses
is most valuable.

Figure 2.15 Entropy H as a func-
tion of α. When α = 0.5, the
maximum (H = 1) is attained.

0 0.5 1
0

0.5

1

H

It is straightforward to define entropy for continuous random variables. With
X denoting a random real vector, the entropy is given by

H(X) = −
∫
p(x) log p(x) dx, (2.106)

where the natural logarithm is commonly used and the summation in (2.102)
is replaced by an integration over the entire domain of x. However, when com-
puting with sampled data, continuous variables are commonly discretized or
quantized, that is, dividing the domain of each variable into bins and counting
how many data points fall within each bin to obtain a histogram and, thereby, a
sample discrete probability distribution. We will continue our discussion using
the discrete variable formulation.

2.17.2 Joint Entropy and Conditional Entropy B

Suppose there are two random variables X and Y from which we can draw
specific values x and y with joint probability P (x, y). The joint entropy between
the two random variables is

H(X,Y ) = E[− logP (x, y)] = −
∑
x

∑
y

P (x, y) logP (x, y). (2.107)

If the value of x is already known, then the additional information needed to
specify y is − logP (y|x). The average additional information needed to specify
y is the conditional entropy

H(Y |X) = E[− logP (y|x)] = −
∑
x

∑
y

P (x, y) logP (y|x). (2.108)
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Using (2.6), it can easily be shown that

H(X,Y ) = H(X) +H(Y |X), (2.109)

that is, the information needed to describe both X and Y is the information
needed to describe X plus the additional information needed to describe Y after
X is known.

2.17.3 Relative Entropy B

Suppose the unknown true probability distribution is P (x) and we have obtained
Q(x), an approximation of the true distribution. A measure of the dissimilarity
between the two distributions is the relative entropy, also known as the Kullback–
Leibler (KL) divergence, where

DKL(P ||Q) = E

[
log

P (x)

Q(x)

]
=
∑
x

P (x) log
P (x)

Q(x)
. (2.110)

This quantity is referred to as a divergence instead of a distance as it is asym-
metric, that is, DKL(P ||Q) 6= DKL(Q||P ) in general.

DKL(P ||Q) = −
∑
x

P (x) logQ(x) +
∑
x

P (x) logP (x) = Hc(P,Q)−H(P ),

(2.111)
where Hc(P,Q) is called the cross-entropy , with

Hc(P,Q) = −
∑
x

P (x) logQ(x). (2.112)

It can be proven that DKL(P ||Q) ≥ 0, and DKL(P ||Q) = 0 if, and only if,
P = Q (Cover and Thomas, 2006). In coding theory (Cover and Thomas, 2006),
the cross-entropy Hc(P,Q) is the expected number of bits needed to encode data
from a source with distribution P while we use model Q to define our codebook.
The entropy H(P ) is the expected number of bits if we use the true model; thus,
the relative entropy DKL(P ||Q) can be interpreted as the expected number of
extra bits that must be communicated if a code that is optimal for the incorrect
distribution Q is used instead of using a code based on the true distribution P .

Relative entropy has been used in studies of predictability of dynamical
systems (Kleeman, 2002; DelSole, 2004), including the predictability of the El
Niño-Southern Oscillation (ENSO) (see Section 9.1.5), the dominant mode of
interannual climate variability in the equatorial Pacific, with global implications
(Y. M. Tang et al., 2005). For instance, Q can be the distribution from clima-
tology (i.e. the expected behaviour from historical observed data) while P can
be the distribution from the predictions by a numerical model. The relative
entropy DKL(P ||Q) is a measure of the additional information provided by the
prediction model over the information from climatology (Kleeman, 2002).
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2.17.4 Mutual Information B

Given two random variables X and Y , if we want to detect any linear relation
between the two, we can compute the correlation (Section 2.11). But what if
the relation is non-linear? Correlation can completely miss a strong non-linear
relation. To detect linear and non-linear relations, one can turn to mutual
information (MI), which determines, via the KL divergence, how dissimilar the
joint distribution P (X,Y ) is to P (X)P (Y ), that is, MI is given by

I(X,Y ) = DKL(P (X,Y )||P (X)P (Y )) =
∑
x

∑
y

P (x, y) log
P (x, y)

P (x)P (y)
.

(2.113)
AsDKL is non-negative, I(X,Y ) ≥ 0. WhenX and Y are independent variables,
P (X,Y ) = P (X)P (Y ). The logarithm term in (2.113) becomes log 1 = 0, giving
I(X,Y ) = 0. Thus, the minimum MI occurs when X and Y are independent.
As X and Y become more dependent, MI increases.

From (2.5), we can substitute P (x, y) = P (y|x)P (x) into (2.113), giving

I(X,Y ) = −
∑
x

∑
y

P (x, y) logP (y) +
∑
x

∑
y

P (x, y) logP (y|x) (2.114)

= −
∑
y

P (y) logP (y) +
∑
x

∑
y

P (x, y) logP (y|x), (2.115)

that is,
I(X,Y ) = H(Y )−H(Y |X), (2.116)

with H(Y |X) being the conditional entropy. Thus, MI can be viewed as the
reduction in the uncertainty in Y when the value of X is known. Similarly,

I(X,Y ) = H(X)−H(X|Y ). (2.117)

A problem with applying the information theory approach to continuous
variables is that it is difficult to estimate continuous probability density distri-
butions. When computing with sampled data, continuous variables are often
discretized or quantized, that is, dividing the domain of each variable into bins
and counting how many data points fall within each bin to obtain a histogram
as a discrete approximation of the probability density distribution. The final
result unfortunately depends on the choice of the bin width – having a wide bin
width gives a crude approximation of a continuous distribution, while having
a narrow bin width means there are few data points within each bin, thus a
noisy histogram. Reshef et al. (2011) has proposed a way to deal with the bin
width problem. An alternative approach is to use kernel density estimation (see
Section 3.13) to estimate the distribution, but instead of the bin width there
is now an adjustable width parameter of the kernel function. A more recent
approach using K-nearest neighbour distances to estimate MI (Kraskov et al.,
2004) has seen increasing usage.

When there are many available predictors or features, one may want to select
the most relevant predictors before building a prediction model. Traditionally, a

https://doi.org/10.1017/9781107588493.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781107588493.003


62 2 Basics

common approach is to compute the correlation between a predictor variable and
the response variable and select the predictors with high correlation. However,
predictors non-linearly related to the response variable may be missed using this
selection procedure. MI has been proposed as a better measure for predictor
selection, as it is not restricted to detecting linear relations (H. C. Peng et al.,
2005). In environmental sciences, MI has been proposed for predictor selection
in hydrological studies (Sharma, 2000; May, Maier, et al., 2008; May, Dandy, et
al., 2008).

Exercises

Some exercises involve working with data files, which are downloadable from our
book website (web link given in the Preface).

2.1
In a tropical Atlantic region, the number of occurrences when the daily

sea surface temperature condition is cool, normal or warm and when the wind
condition is calm or stormy have been recorded in the table below. What is
the probability of a day being (a) warm and stormy and (b) cool and stormy?
What is the probability of the day being (c) stormy if it is a warm day and (d)
stormy if it is a cool day?

cool normal warm
calm 1805 3661 2012

stormy 32 125 228

2.2
A variable y is measured by two instruments placed 50 km apart in the east–

west direction. Values are recorded daily for 100 days. The autocorrelation
function of y shows the first zero crossing (i.e. the smallest lag at which the
autocorrelation is zero) occurring at six days (for both stations). Furthermore,
y at one station is correlated with the y at the second station, with the second
time series shifted in time by various lags. The maximum correlation occurred
with y from the eastern station lagging y from the western station by two days.
Assuming a sinusoidal wave is propagating between the two stations, estimate
the period, wavelength, and the speed and direction of propagation.

2.3
Prove that the expectation of the sample mean in (2.25) equals the popula-

tion mean.

2.4
Given two variables x and y with zero population means: (a) Show that the

population covariance cov(x, y) = E[xy] is zero if x and y are independent. (b)
However, the converse is not true in general. Given x uniformly distributed in
[−1, 1] and y = x2, show that cov(x, y) is zero even though x and y are not
independent.
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2.5
Using the data file provided on the book website, compare the Pearson cor-

relation with the Spearman and Kendall rank correlations for the time series x
and y (each with 40 observations). Repeat the comparison for the time series
x2 and y2 (from the same data file as above), where x2 and y2 are the same
as x and y, except that the fifth data point in y is replaced by an outlier in
y2. Repeat the comparison for the time series x3 and y3, where x3 and y3 are
the same as x and y, except that the fifth data point in x and y is replaced by
an outlier in x3 and y3. Make scatterplots of the data points in the x–y space,
the x2–y2 space and the x3–y3 space. Also plot the linear regression line in the
scatterplots.

2.6
Analyse the monthly sea surface temperature anomalies (i.e. deviations from

the mean) for the Niño1+2 region in the eastern equatorial Pacific (0◦–10◦S,
80◦W–90◦W) and the Niño 3.4 region in the central equatorial Pacific (5◦S–
5◦N, 170◦W–120◦W) (shown in Fig. 9.3 and data downloadable from our book
website):
(a) For each variable, compute the histogram and compare to the Gaussian dis-
tribution fit to the data. (b) For each variable, compute the quantile–quantile
plot relative to the standard Gaussian distribution. (c) Compute the quantile–
quantile plot between Niño1+2 and Niño3.4 anomalies. (d) Compute the box-
plot for the two variables. [Data source: Climatic Research Unit, University of
East Anglia]

2.7
In addition to the Niño1+2 and Niño3.4 sea surface temperature anomalies,

analyse the Southern Oscillation Index (SOI) (Tahiti pressure minus Darwin
pressure, standardized to zero mean and unit standard deviation): (a) For each
of the three time series, plot the Pearson autocorrelation function. (b) Com-
pute the Pearson correlation and the Spearman and Kendall rank correlations
between Niño1+2 and Niño3.4 anomalies. (c) Compute the Pearson correla-
tion and the Spearman and Kendall rank correlations between Niño1+2 and
SOI. (d) Compute the Pearson correlation and the Spearman and Kendall rank
correlations between Niño3.4 and SOI. [Data source: Climatic Research Unit,
University of East Anglia]

2.8
Suppose a test for the presence of a toxic chemical in a lake gives the following

results: if a lake has the toxin, the test returns a positive result 99% of the time;
if a lake does not have the toxin, the test still returns a positive result 2% of the
time. Suppose only 5% of the lakes contain the toxin. What is the probability
that a positive test result for a lake turns out to be a false positive?

2.9
Use K-means clustering to analyse the dataset containing air temperature

and humidity at Vancouver, BC, Canada from 2013–2017. Try K = 2 and 3,
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and try to explain what the clusters represent. [Data source: weatherstats.ca
based on Environment and Climate Change Canada data]

2.10
A biological oceanographer collected 100 water samples at various locations,

from which the water temperature (T ), the nitrate concentration (N), the sil-
icate concentration (S) and the concentration of a marine microorganism (M)
were measured. The measurements were discretized into ‘below normal’, ‘nor-
mal’ and ‘above normal’, that is, 1, 2 and 3, respectively. The observed number
of occurrences are given in the table below. Which of the three environmental
variables has the strongest relation with M? Try to determine this using mutual
information and using Pearson and Spearman correlation.

M\T 1 2 3 M\N 1 2 3 M\S 1 2 3
1 2 38 3 1 13 9 3 1 3 7 5
2 5 8 5 2 8 33 7 2 13 26 12
3 18 4 17 3 4 8 15 3 9 17 8
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