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Abstract
This paper studied the use of eye movement data to form criteria for judging whether pilots perceive emergency
information such as cockpit warnings. In the experiment, 12 subjects randomly encountered different warning infor-
mation while flying a simulated helicopter, and their eye movement data were collected synchronously. Firstly, the
importance of the eye movement features was calculated by ANOVA (analysis of variance). According to the sort-
ing of the importance and the Euclidean distance of each eye movement feature, the warning information samples
with different eye movement features were obtained. Secondly, the residual shrinkage network modules were added
to CNN (convolutional neural network) to construct a DRSN (deep residual shrinkage networks) model. Finally,
the processed warning information samples were used to train and test the DRSN model. In order to verify the
superiority of this method, the DRSN model was compared with three machine learning models, namely SVM
(support vector machine), RF (radom forest) and BPNN (backpropagation neural network). Among the four mod-
els, the DRSN model performed the best. When all eye movement features were selected, this model detected pilot
perception of warning information with an average accuracy of 90.4%, of which the highest detection accuracy
reached 96.4%. Experiments showed that the DRSN model had advantages in detecting pilot perception of warning
information.

Nomenclature
ANOVA analysis of variance
BPNN backpropagation neural network
CNN convolutional neural network
DNN deep neural network
DRN deep residual network
DRSN deep residual shrinking network
LR logistic regression
ReLU rectified linear unit
RF random forest
ROC receiver operating characteristic
SD standard deviation
SVM support vector machine
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1.0 Introduction
With the development of technologies, the systems used for human-computer interaction, environmental
perception, weapon use, countermeasures and flight control are becoming increasingly complex. The
continuous advancement of airborne systems, while providing unprecedented useful information for
pilots, seriously challenges their limited cognitive abilities by bringing about “information overload” in
the brain. This has a negative impact on pilots’ operational behaviours and situational awareness, which
may result in the inability to perceive the existence of warning information, thus endangering flight safety
and even causing accidents. Studies have shown that over 88% of aviation accidents involving human
error were attributed to problems with situation awareness [1, 2]. Therefore, accurately identifying the
pilot perception of warning information is of great significance for realising intelligent flight control,
improving pilots’ control behaviours and maintaining flight safety. This study proposed a method for
detecting pilot perception of warning information using eye movement data based on machine learning
models.

1.1 Display of warning information in an aircraft cockpit
Pilots rely on external information and equipment information to judge the current state of the air-
craft and evaluate the subsequent flight control. Cockpit devices displayed the attitude, speed, altitude,
warnings, and other information [3]. The ability of pilots to interpret the visual-spatial information and
determine the orientation of the aircraft played an important role in flight safety [4]. In the process of per-
ception of aircraft cockpit information, most unintentional behaviours can be attributed to the result of
inappropriate cockpit human-computer interaction [5]. In the research of warning information display,
it was found that there was a correlation between the warning information display of the equipment
and the optimisation of the cockpit design. The significance of the equipment’s warning information
seemed to affect flight performance and attention distribution [6]. For example, different warning infor-
mation designs had certain effects on the pilots’ first gaze and reaction time [7]. At the same time, the
pilots’ rapid perception of warning information in the cockpit played a key role in maintaining situational
awareness [8]. Li compared visual data from two different designs of crew warning systems interacting
with pilots and determined that the different designs of crew warning systems affect pilot situational
awareness [9]. Warning information was designed to help operators understand the situation and pre-
dict future states [10]. Current research mainly focused on the optimisation of cockpit design, and there
were few comparative studies on different coded early warning designs. The main content of this paper
was to compare the accuracy of different algorithm models to detect the pilot perception of warning
information and the influence of different warning information designs on the accuracy of the model.

1.2 Application of eye movement data
The sources of information that pilots relied on were mainly the visual channel and the auditory chan-
nel, of which about 80–90% of the information came from the visual channel [11]. With the continuous
development of aviation technology, the information that pilots need to deal with is also changing. For
example, pilots no longer focus on visual information outside the cockpit as in the early days of avi-
ation, but instead have to pull information from multiple sources (more instruments in the cockpit) to
manage the flight. The manual processing of visual data remained one of the key elements of aviation
safety and effectiveness [12]. Eye-tracking has been widely used in the ergonomics research of aviation
cockpit. Eye tracking has been used to study potential factors affecting pilot attention and situational
awareness in the cockpit since it provides pilot eye movement data [13]. When evaluating the relation-
ship between humans and equipment through eye-tracking devices, eye movement data were used to
analyse human behaviours. This hypothesis was confirmed by many previous researchers [14], such
as mental fatigue [15], cognitive load [16], information acquisition [17], situational awareness [18],
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scanning behaviours [19], attention [20], physiological measurements [21], workload [22, 23], interface
evaluation and human-computer interaction [24, 25].Research on eye movement data that predicted
pilots’ behaviour included how different role assignments influenced decisions in high-risk environ-
ments, and how to predict pilots’ decisions by paying attention to relevant information about pilots’
choices [26]. When using eye movement to predict dangerous situations, Francisco [27] found that sac-
cade, gaze, blink and gaze dispersion in horizontal and vertical dimensions in eye movement features
were more likely to predict the occurrence of dangerous situations.

1.3 Application of machine learning model in eye movement data
Eye movement data can directly reflect pilots’ situational awareness, cognitive load, attention distribu-
tion and decision prediction. At the same time, the eye movement data acquisition technology has been
mature, and more and more algorithms and models based on eye movement data have been studied. In
previous studies, eye movement data were used to train and test SVM and logistic regression (LR) mod-
els to detect pilot distraction. The results showed that the SVM model was superior to the traditional
LR model [28]. Aiming at the multi-classification model of eye movement feature training, the classi-
fication models established by Decision Tree, K-Nearest Neighbour, Bayesian Network and SVM were
compared, and the optimal model finally obtained was the SVM model with linear kernel [29]. In the
user classification for the user’s gaze data, using cross-validation validation and feature selection based
on a hierarchical tree, the classification accuracy of the RF classifier was 0.88 ± (0.11) [30]. A classifi-
cation model of cognitive distraction assessment based on RF was constructed, and the highest accuracy
was obtained by using gaze data, glance data and noise-related features in the model [31]. Cheng estab-
lished a data set of eye movement to train CNN, SVM and BPNN for eye movement recognition. The
results showed that CNN had the highest recognition rate [32].

In this paper, we built DRSNs-based model to identify pilot perception of warning information.
A DRSN can be formed by stacking many basic modules. Each basic module had a sub network for
automatic learning to obtain a set of soft thresholds of the feature map. Thus, each sample had its own
unique set of thresholds. DRSN was used to process the data with a large amount of noise, and high
accuracy was obtained, which verifies the effectiveness of this method [33]. Currently, DRSN was not
used in the field of eye movement data analysis. The eye movement data collected in experiments were
easily disturbed by the external environment, such as light, head shaking, etc., resulting in the data
often containing noises, uncertain factors and incomplete information, so it was more suitable to use the
DRSN model for analysis.

2.0 Methods
2.1 Subjects
Twelve male subjects were recruited to participate in this study. Their mean age was 38.2 years
(SD = 4.1). All subjects had extensive experience in simulated helicopter flying, and the average sim-
ulated flight time was 3,160h (SD = 1126.4). Their binocular vision was normal, and they agreed to
record their eye movement data during the experiment. Subjects were told they could stop the experiment
at any time. The experiment was reviewed and approved by the Nanjing University of Aeronautics &
Astronautics institutional review board. The experiments were carried out according to the Declaration
of Helsinki. All participants provided written informed consent.

2.2 Equipment
The layout of the helicopter cockpit simulation platform was shown in Fig. 1. Flight control and display
devices in the helicopter cockpit simulation platform included a cyclic control stick, a collective pitch
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Figure 1. Overall schematic diagram of helicopter cockpit simulation platform.

stick, pedals, a head-up display and two digital instrument displays. The screen sizes of the visual dis-
play and the digital instrument display were 40 inches and 14 inches respectively, the resolutions were
1,920 × 1,080 and 1,366 × 768, and the refresh rates were both 60Hz. In the experiment, the helicopter
model we selected from the helicopter cockpit simulation platform was Kamov Ka-52.

Eye-tracking used the SMI ETG 2W glasses-type eye-tracking devices. We used eye-tracking devices
that allowed subjects to freely turn their heads and tracked a greater range than desktop fixed eye-tracking
devices. Eye-tracking was accurate to 0.5◦ with a range of 80◦ horizontally and 60◦ vertically. Begaze
SMI software (version 3.5) was used to analyse eye movement data.

2.3 Experimental design
Participants were required to fly the helicopter on the cockpit simulation platform to complete the flight
task of the designated route, as shown in Fig. 2(a). Start at waypoint A, climb to 2,000 feet to start cruis-
ing and then descend to 1,000 feet at waypoint B. Then climb to 3,000 feet to start cruising and descend
to 1,000 feet at waypoint C. Finally, climb to 2,500 feet to start cruising, descend before reaching way-
point A and land at waypoint A. It took about 15min to complete an airline flight. The English warning
information in red font appeared in the lower right corner of the screen on the right side of the digital
instrument display, with the content of “missile approaching”, as shown in Fig. 2(b), and the duration
was 15s. The warning information were divided into the presence or absence of flickering (bright 1s,
dark 0.5s) in terms of vision, and the presence or absence of audible warnings (deep-deep-deep-deep,
ring 0.35s, off 0.35s) in terms of hearing. The displays of warning information were divided into four
encoding forms, as shown in Table 1. During the flight, each coded warning information appeared four
times randomly. When participants noticed the warning information, they were required to report the
occurrence of the warning information to the note-takers.
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Table 1. Details of the four warning coding types

Warning type number

Characteristics of the warning information A1 A2 A3 A4
Static warning information ∗ ∗ ∗ ∗
Sound ∗ ∗
Flicker ∗ ∗

Figure 2. Schematic diagram of the flight route and warning location.

2.4 Procedure
Participants were carefully introduced to the research content and experimental environment. The partic-
ipants then wore and calibrated eye-tracking devices and started flight tasks in sequence. Eye movement
data were recorded by an eye-tracking device. Recording was started when participants started the flight
task and stopped when all tasks were completed. Due to the limited number of personnel with suffi-
cient flight experience, in order to collect sufficient experimental data, each participant repeated four
flight tasks, and each flight had a rest time of 10min. But it should be noted that the type and appear-
ance time of the warning information in each flight task were random. A total of 48 sets of experiments
were conducted and 752 sets of valid eye movement data based on warning information were collected.
Participants were paid after completing all flight tasks.

2.5 Data analysis
After sorting and processing the collected eye movement data, 25 eye movement features were obtained.
According to the meaning of eye movement features, eye movement features were divided into eye
features and visual features, as shown in Table 2. To compare the effect of warning information on
various eye movement feature data, an analysis of variance was used to determine the level of importance
of eye movement features. The ANOVA method ranked the importance of features based on the F value
that is the ratio of the mean square between and the mean square within for each feature. The calculation
formula of F was shown in Equation (1).

F = [n1 (x1 − x) + n2 (x2 − x) + · · · + nk (xk − x)]
/
(k − 1)[∑

(x1i − x)2 + ∑
(x2i − x)2 + · · · + ∑

(xki − x)2
]/

(n − k)
(1)

The eye movement features were sorted according to their importance, and each eye movement feature
was classified by Euclidean distance. The above ANOVA and classification were performed using IBM
SPSS Statistics 22 software.

About correlation calculation and heat map generation, we used the Python software. By inputting eye
movement data and running relevant programs, the relevant thermodynamic diagrams of each feature
of eye movement data were obtained.
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Table 2. The serial number, abbreviation and meaning of each eye movement feature

Categories Feature No. Abbreviations Meanings
Eye features 1 CB Category Binocular

2 PSRX Pupil Size Right X
3 PSRY Pupil Size Right Y
4 PDR Pupil Diameter Right
5 PSLX Pupil Size Left X
6 PSLY Pupil Size Left Y
7 PDL Pupil Diameter Left
8 EPRX Eye Position Right X
9 EPRY Eye Position Right Y
10 EPRZ Eye Position Right Z
11 EPLX Eye Position Left X
12 EPLY Eye Position Left Y
13 EPLZ Eye Position Left Z

Visual features 14 PRBX Point of Regard Binocular X
15 PRBY Point of Regard Binocular Y
16 PRRX Point of Regard Right X
17 PRLY Point of Regard Right Y
18 PRLX Point of Regard Left X
19 PRLY Point of Regard Left Y
20 GVRX Gaze Vector Right X
21 GVRY Gaze Vector Right Y
22 GVRZ Gaze Vector Right Z
23 GVLX Gaze Vector Left X
24 GVLY Gaze Vector Left Y
25 GVLZ Gaze Vector Left Z

For a traditional deep learning model, the more layers of the network, the stronger the corresponding
nonlinear expression ability and the more features learned by the model. However, with the increase of
the number of network layers, it was difficult for the nonlinear expression of the traditional multi-layer
network structure to represent the identity mapping, so the model may suffer from network degrada-
tion problem. Noise interference was common in eye movement data, which affected the accuracy of
the model to identify the pilot perception of warning information. To address the above problems, this
paper proposed a method of apply DRSN model to eye movement data. The DRSN model was able to
overcome the difficulty that traditional learning models cannot achieve identity mapping on nonlinear
transformations when training data samples in deep networks. At the same time, the interference of noise
data samples and redundant data samples on feature threshold extraction was suppressed.

When DRSN was based on back-propagation for model training, its loss was not only back-propagated
layer-by-layer through convolutional layers, etc., but also back-propagated more conveniently through
the identity mapping of residual terms. Then, soft threshold was used to denoise the data, and a better
model was obtained [33].

It was assumed that the required solution mapping was H(xl), and this problem was transformed
into the residual mapping function F(xl)=H(xl)-xl for solving the network. Compared with the ReLU
function, the soft threshold was more flexible to set the eigenvalue interval. In the residual shrinkage
network, the threshold was automatically adjusted according to the situation of the sample itself through
the attention mechanism. A Part of the DRSN model was shown in Fig. 3, where the size of the input xl

was C × N, and after passing through the hidden layer 1, the ReLU function was used to obtain xl+1 as
the input of the hidden layer 2. In the hidden layer 2, a small sub-network was constructed to learn a set
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Figure 3. Local frame diagram of DRSN model.

of thresholds γ between 0 and 1, and then the soft thresholding of the features was performed and the
residual term F(xl) was added to obtain the output xl+2. The output of each layer was as follows:

xl+1 = ReLU
(
wl+1xl + bl+1

)

x′ = wl+2ReLU
(
wl+1xl + bl+1

) + bl+2 (2)

In Equation (2), w and b were the weight vector and the bias vector, respectively.
Equation (3) was the soft thresholding result obtained by comparing x′ each dimension with the

corresponding threshold γ.

x′ =

⎧⎪⎨
⎪⎩

x′ − γ x′ > γ

0 −γ ≤ x′ ≤ γ

x′ + γ x′ < −γ

xl+2 = x′ + F
(
xl
)

(3)

At the same time, to compare the superiority of DRSN algorithm model, according to the reading
and induction of literatures, three machine learning algorithm models widely used in eye movement data
were selected for comparison, namely SVM, RF and BPNN. For the four machine learning algorithm
models, when selecting the eye movement data features, they were classified according to the importance
of the eye movement features, and the eye movement features of different importance levels were selected
as the data input of the model. Finally, the best eye movement feature suitable for the model was selected.
The specific architecture and parameters of the four algorithm models were shown in Tables 3 and 4.

3.0 Results
3.1 Importance of eye movement features
To obtain the importance of different eye movement features in warning, the F of 25 eye movement fea-
tures were calculated by ANOVA. The importance of 25 eye movement features were ranked according
to the importance, and the ranking was shown in Fig. 4. According to the classification function in
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Table 3. The architecture of the DRSN model

Number Layer Filter numbers Kernel size Activation
1 Conv2D 25 2 ReLU
2 Soft thresholding – – –
3 Dropout Rate = 0.25 – –
4 Conv2D 25 2 ReLU
5 Conv2D 25 2 ReLU
6 Soft thresholding – – –
7 AveragePooling2D Size = 2 – –
8 BatchNormalisation – – –
9 Dropout Rate = 0.25 – –
10 Dense – 2 Sigmoid

Table 4. Specific parameters of SVM, RF and BPNN models

Model Number Parameter Value
SVM 1 C 1

2 Kernel Sigmoid
3 Probability True

RF 1 n_estimators= 101
2 Max_depth 17
3 Min_samples_split 10
4 Min_samples_leaf 10
5 Max_characteristics 8
6 Criterion Gini

BPNN 1 Activation tanh
2 Hidden_layer_sizes (64, 32, 32)
3 Max_iter 1,000
4 Random_state 1
5 Solver sgd

SPSS software, 25 features were classified according to the Euclidean distance of importance. The
classification obtained five levels of eye movement features. There was a large difference between the
importance of adjacent features indicated by the grey dashed lines. Since the first level only contains
one eye movement feature, it was not feasible in the subsequent algorithm model analysis. After com-
prehensive consideration, the first level and the second level were combined to get the four-level eye
movement features. As shown in Fig. 4, different colours were used to represent different levels of eye
movement features.

3.2 Correlation among eye movement features
We explored the correlation of eye movement feature data and used the Pearson correlation coefficient
method to calculate the correlation between features. Generally speaking, when the correlation coeffi-
cient was regarded as an absolute value, the between 0–0.09 indicated no correlation, 0.1–0.3 indicated
weak correlation, 0.3–0.5 indicated moderate correlation, and 0.5–1.0 indicated strong correlation [34].

As shown in Fig. 5, we found a strong correlation between PSRX, PSRY and PDR in the pupil data of
the right eye, and similar findings were also found in the pupil data of the left eye. These findings were
consistent with the actual situation and verifies the validity of the data. Through the correlation heatmap,
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Figure 4. The eye movement features were sorted according to the importance, and the Euclidean
distance between each eye movement features was calculated to stratify them into four levels, which
were distinguished by different colours.

Figure 5. Heat map of correlation between eye movement features.

there was a strong correlation between the left eye pupil data and PSLX and PSLY corresponding to the
relatively close importance of PSLX, PSLY and PDL in Fig. 4. Figure 5 provided us with the correlation
between different eye movement features and verified the importance ranking of eye movement features.

3.3 Machine learning models
When four machine learning algorithm models were fed with different eye movement feature data, the
recognition accuracy of the models for different coded warnings was studied. The eye movement features
with different importance were divided to obtain four levels of eye movement features, as shown in Fig. 4.
Part I was defined as the eye movement features of the first level, Part II was the eye movement features
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Table 5. Accuracies of the four models under different eye movement features

Features DRSN SVM RF BPNN
Part I 89.2% 79.6% 85.3% 82.9%
Part II 88.9% 81.3% 85.7% 88.1%
Part III 89.3% 80.7% 84.6% 79.8%
Part IV 90.4% 77.5% 85.4% 84.5%

Figure 6. The recognition accuracy of the four models for different coded warning information under
different eye movement features, where the horizontal axis is the accuracy, and the vertical axis is
the warning information (A1, A2, A3 and A4) in different coding forms and information without
warning (A0).

of the first two levels, Part III was the eye movement features of the first three levels and the Part IV was
the eye movement features of all levels. Four machine learning models, RF, SVM, BPNN and DRSN,
were used to detect pilot perception of warning information through data corresponding to different
types of eye movement features. It should be noted that the data included non-warning data and warning
data, in which the category of non-warning data was A0, and the categories of warning data were A1,
A2, A3 and A4.

When the selected eye movement features were different, the accuracy of the four models for different
encoded warnings was shown in Fig. 6. Except for the SVM model, the other three models had high
accuracy in identifying A1 warning information. However, the SVM model was more accurate than
the other three models in recognising A0. Both the DRSN model and the RF model performed well in
the identification process for different coding types of warning information, and there was no situation
where the identification accuracy of one or some types of warning information was significantly lower.
When the BPNN model recognised the A3 warning information, the accuracy rate was low no matter
which Part of the eye movement feature was selected.

ROC curves of the four modes when different eye movement features were selected were shown in
Fig. 7. It was found that the ROC curve of the DRSN model of the four models could reach the optimum
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Figure 7. ROC curves of the four models under different eye movement features.

in the end. However, at the beginning of model training, choosing different eye movement features had
a significant impact on the ROC curve of the DRSN model.

The accuracies of the four models when selecting different eye movement characteristics were shown
in Table 5. We found that the best and worst performing models were the DRSN model and the SVM
model, respectively. The selection of different eye movement features did not have a great impact on the
DRSN, SVM and RF models, but had a greater impact on BPNN.

4.0 Discussion
In this study, we found that the pilot perception of warning information during flight experiments was
better reflected in the data of eye features. When ANOVA was performed on eye movement features,
the importance of each feature was obtained, and the importance of the feature was ranked and clas-
sified according to the size of the value F. Results showed that the importance of eye features was
large and ranked at the top. Because the features of Part I (EPLY, PSLX, PDL, PSLY) and the Part II
(Part I + EPRY, EPRZ) were both eye features, only the visual features were found in the features of the
Part III (Part II + GVRY, EPLX, PRRX, GVRX, GVLX, PSRX, EPRX) and Part IV (Part III + PDR,
EPLZ, PSRY, GVLZ, GVRZ, GVLY, PRRY, PRBY, CB, PRLY, PRLX, PRBX).

This study used machine learning model to analyse eye movement data to determine whether pilots
were aware of warning information, and to identify different encoded forms of perception warnings
through eye movement data. Four algorithm models were used to analyse eye movement data with dif-
ferent eye movement features, and the feasibility of method was judged by the accuracy of the models.
The recognition accuracy of the four algorithm models when using eye movement data with different eye
movement feature was shown in Fig. 6. Among the features of the Part IV, the SVM model had higher
recognition accuracy for the warning information in the form of A2 encoding. In contrast, the SVM
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model had the lowest warning recognition accuracy for the A1 coding form, and the warning informa-
tion recognition accuracy for the A2 and A3 coding forms was about 80%. When the Part II and Part IV
features were selected, the model of the SVM algorithm had the highest recognition accuracy for the
warning information in the form of A2 encoding, reaching 94.3%. When selecting Part I and Part II fea-
tures, there was a problem that the SVM model had low recognition accuracy for other types of warning
information. However, this problem was improved when selecting Part III and Part IV features.

According to the information in Fig. 6, it was concluded that the recognition accuracy of RF model
was significantly better than that of SVM model. The recognition accuracy of BPNN model in select-
ing Part II feature was higher than that of selecting Part III feature, which was contrary to the result of
SVM model. The recognition accuracy of the BPNN algorithm model and the RF algorithm model for
the A1 coding form was higher than that of the other three coding forms. These two models had the
highest accuracy in selecting the features of the Part II, with 94.2% and 95.0%, respectively. However,
the two models were easy to misidentify A0 data without warning information as warning informa-
tion. Compared with the other three encoding forms, when the DRSN model selected the features of the
Part IV, the model had a good performance in the recognition accuracy of the warning information in dif-
ferent coding forms. The DRSN model had higher warning information recognition accuracy for the A1
encoding form. When selecting Part IV features, the DRSN model had the highest recognition accuracy,
reaching 96.4%. However, the model was also prone to misidentify A0 data as warning information. The
warning information in the form of an A1 code was static warning information displayed on the screen,
but there was no flashing and warning sound. A possible explanation was that A1 coded warning infor-
mation requires more visual attention from the pilot. This was consistent with previous research finding
that degraded, blurred, dark or other harder-to-see stimuli would require more viewing time [35].

From the accuracy of the four models in Table 5 and the ROC curves of the four models in Fig. 7,
we found that when the SVM model and BPNN model selected the Part II features, the two models had
the highest recognition accuracy for warning information. The accuracy rates were 81.3% and 88.1%,
respectively. Increasing the number of features did not constantly enhance the accuracy of the model.
Adding more features from the Part III to the SVM model and BPNN model, compared with using the
Part II features, the accuracy of these two models decreased by about 0.6% and 8.3%. Furthermore,
adding all features to the SVM algorithm model and BPNN algorithm model, compared with using the
Part II features, the accuracy of these two models decreased by about 3.8% and 3.6%. This phenomenon
had also been confirmed by Lou Y [36] and Destyanto [37]. These results may have been caused by
the following reasons. One possible explanation was due to a phenomenon called the peak or “Hughes
effect”, which meant that the accuracy of a model did not increase continuously with the number of
features. The Hughes effect was that, given a fixed dataset size, recognition accuracy initially increased
with the number of features, but decreased when the number of features was higher than optimal [38, 39].
Therefore, a good model could be built using correlated features determined by model accuracy. Another
possible explanation was that the Part II features were all eye features, which were more important in
detecting pilot perception of warning information using SVM and BPNN models. In the RF model,
when the model selects the Part IV feature, the recognition accuracy of the warning information was
the highest, reaching 85.4%. At the same time, we found that the selection of different eye movement
features had no significant effect on the accuracy of the RF model, and the accuracy rates were all
between 84% and 86%. Previous studies had demonstrated differences in the importance of different
eye movement features in machine learning models [40]. Thus, the possible reason why the accuracy of
RF models did not change significantly was that RF algorithm models retained important features and
deleted unimportant features.

In the DRSN model, when the Part IV was selected, the recognition accuracy of warning information
was the highest, reaching 90.4%, which was better than SVM, RF and BPNN models. When the features
of the Part I, Part II and Part III were selected, the accuracy of the model to identify the warning infor-
mation reached 89%. In previous studies, the research methods for judging human perception based on
physiological features include statistical analysis and machine learning, and the accuracy ranges from
50% to 82% [41–44]. In contrast, the method proposed in this paper had a certain degree of improvement
in accuracy. It was found from Table 5 that the more features of eye movement data in the DRSN model,
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the higher the corresponding accuracy. Because DRSN model was a new upgraded version of DRN
model, which was a distributed reference network that deeply integrates attention mechanisms and soft
thresholding. In the algorithm, the attention mechanism was able to notice unimportant features and then
set them to zero through a soft threshold, and important features were noticed and kept by an attention
mechanism. The ability of DRN model to extract useful information from noisy data has been enhanced.
In this way, the higher the number of features in the eye-tracking data, the more useful features or feature
combinations were extracted. To the best of our knowledge, our proposed model to assess pilot warn-
ing information perception based on eye movement data was the first to integrate and discuss all eye
movement features, and it was also the first time that a DRSN model was used to predict the risk of
insufficient information perception in a flight task.

5.0 Conclusions
This paper proposed an analysis method of eye movement data based on DRSNs. The effectiveness of the
method was verified by conducting experiments, collecting and processing data, and training and testing
models. In terms of experiments, different coding types of warning information were designed, includ-
ing the presence or absence of flickering and the presence or absence of sound. The subjects piloted
the helicopter in the simulation cockpit to complete the designated route. During the flight, warning
information appeared randomly, and eye movement data of the subjects were collected. In terms of data
processing, the collected eye movement data was divided according to the time when the warning infor-
mation appeared, and an eye movement data sample based on the warning information were constructed.
According to ANOVA, the importance of the eye movement features was calculated. The eye movement
features were sorted and classified according to the importance. Thereby, the eye movement features con-
tained in the eye movement data samples were further studied. In terms of models, a residual network
was built and added to the CNN to build a DRSN model. The addition of the residual network solved
the degradation problem of CNN, and the soft threshold realised the noise reduction of eye movement
data samples. Eye movement data samples containing different eye movement features were used to train
and test the DRSN model. In terms of model superiority, the DRSN model was compared with three
machine learning models, namely SVM, RF and BPNN. Among the four models, DRSN performed
the best, followed by RF and BPNN, and SVM performed the worst. When all eye movement features
were selected, the DRSN model detected an average accuracy of 90.4% for pilots’ perception of warn-
ing information, and the detection accuracy for A1-coded type of warning information reached 96.4%.
Experiments showed that the DRSN model had advantages in detecting pilot perception of warning
information.

Further exploration will be required in future work. For example, flight scenarios will be expanded
for testing the proposed model in high-fidelity flight simulators. It is also necessary to determine that
how realistic the use of eye trackers will be on long-haul flights, and whether the technology can be
integrated into future intelligent cockpits.

Acknowledgment. The authors are grateful to the authors of the cited papers.

Funding. This work was supported by Joint Fund of National Natural Science Foundation of China and Civil Aviation
Administration of China (U2033202 & U1333119), National Natural Science Foundation of China (No. 52172387), and Nanjing
University of Aeronautics and Astronautics School Innovation Program Project (xcxjh20210701).

Declaration of Competing Interest. The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References
[1] Wang, H., Jiang, N., Pan, T., Si, H. and Zou, W. Cognitive load identification of pilots based on physiological-psychological

characteristics in complex environments, J Adv Transport, 2020. (l), pp 1–16. https://doi.org/10.1155/2020/5640784.
[2] Endsley, M.R. Design and evaluation for situation awareness enhancement, Proc Human Factors Soc Ann Meet, 1988, 32,

(2), pp 97–101. https://doi.org/10.1177/154193128803200221.

https://doi.org/10.1017/aer.2022.101 Published online by Cambridge University Press

https://doi.org/10.1155/2020/5640784
https://doi.org/10.1177/154193128803200221
https://doi.org/10.1017/aer.2022.101


1232 Yan et al.

[3] Sterling, R.D. Defense, security, and cockpit displays, Proceedings of SPIE - The International Society for Optical
Engineering, 2004, p 5443.

[4] Liggett, K.K. and Gallimore, J.J. An analysis of control reversal errors during unusual attitude recoveries using helmet-
mounted display symbology, Aviat Space Environ Med, 2002, 73, (2), pp 102–111.

[5] Sherry, L., Fennell, K., Feary, M. and Polson, P. Human-computer interaction analysis of flight management system
messages, J Aircr, 2012, 43, (5), pp 1372–1376.

[6] Su, H., Liu, Z., Cao, L., Dai, S. and Lou, Z. Effects of visuospatial working memory capacity on tasks of fighter aircraft
instrument reading. Space Med Med Eng, 2012, 25, (06), pp 412–416.

[7] Li, W.C., Cao, J., Lin, J.H., Braithwaite, G. and Greaves, M. The evaluation of pilot’s first fixation and response time to
different design of alerting messages, 14th International Conference on Engineering Psychology and Cognitive Ergonomics,
2017, pp 21–31.

[8] Endsley, M.R. and Garland, D.J. Situation Awareness Analysis and Measurement. CRC Press, Boca Raton, USA, 2000.
[9] Li, W.C., Zhang, J., Minh, T.L., Cao, J. and Wang, L. Visual scan patterns reflect to human-computer inter-

actions on processing different types of messages in the flight deck, Int J Ind Ergon, 2019, 72, pp 54–60.
https://doi.org/10.1016/j.ergon.2019.04.003.

[10] Kearney, P., Li, W.C. and Lin, J. The impact of alerting design on air traffic controllers’ response to conflict detection and
resolution, Int J Ind Ergon, 2016, 56, pp 51–58. https://doi.org/10.1016/j.ergon.2016.09.002.

[11] Wang, W.H., Hou, S.Y. and Jiang, XB. Application evaluation of self-explaining intersections based on visual infor-
mation, International Conference on Transportation and Development 2020: Transportation Safety, 2020, pp 83–94.
https://doi.org/10.1061/9780784483145.008

[12] Vidulich, M.A., Wickens, C.D., Tsang, P.S. and Flach, J.M. Information processing in aviation. In E. Salas and
D. Maurino (Eds.), Human Factors in Aviation, London, UK: Elsevier, 2010, pp 175–207. https://doi.org/10.1016/
B978-0-12-374518-7.00007-9.

[13] Robinski, M. and Stein, M. Tracking visual scanning techniques in training simulation for helicopter landing, Journal of
Eye Movement Research, 2013, 6, (2).

[14] Vsevolod, I.D., Lefrançois, O., Dehais, F. and Causse, M. The neuroergonomics of aircraft cockpits: the four stages of
eye-tracking integration to enhance flight safety, Safety, 2018, 4, (1), p 8. https://doi.org/10.3390/safety4010008.

[15] Zhang, L., Zhou, Q., Yin, Q. and Liu, Z. Assessment of pilots mental fatigue status with the eye move-
ment features, International Conference on Applied Human Factors and Ergonomics, 2019, pp 146–155.
https://doi.org/10.1007/978-3-319-94334-3_16.

[16] Mohan, D.B., Jeevitha, S., Prabhakar, G., Saluja, K.S. and Biswas, P. Estimating pilots’ cognitive load from ocular
parameters through simulation and in-flight studies, J Eye Movem Res, 2019, 12, (3).

[17] Feng, S.A., Tl, B., Xw, A., Zl, C., Yz, A. and Xl, A. The influence of pilot’s attention allocation on
instrument reading during take-off: the mediating effect of attention span. Appl Ergon, 2020, 90, p 103245.
https://doi.org/10.1016/j.apergo.2020.103245.

[18] De Winter, J.C.F., Eisma, Y.B., Cabrall, C.D.D., et al. Situation awareness based on eye movements in relation to the task
environment. Cogn Tech Work, 2019, 21, pp 99–111. https://doi.org/10.1007/s10111-018-0527-6.

[19] Allsop, J. and Gray, R. Flying under pressure: effects of anxiety on attention and gaze behavior in aviation, J Appl Res Mem
Cognit, 2015, 3, (2), pp 63–71. https://doi.org/10.1016/j.jarmac.2014.04.010.

[20] Bałaj, B., Lewkowicz, R., Francuz, P., et al. Spatial disorientation cue effects on gaze behaviour in pilots and non-pilots,
Cogn Tech Work, 2019, 21, pp 473–486. https://doi.org/10.1007/s10111-018-0534-7.

[21] Tichon, J.G., Wallis, G., Riek, S., et al. Physiological measurement of anxiety to evaluate performance in simulation training,
Cogn Tech Work, 2014, 16, pp 203–210. https://doi.org/10.1007/s10111-013-0257-8.

[22] Korek, W.T., Mendez, A., Asad, H.U., Li, W.C. and Lone, M. Understanding human behaviour in flight operation using
eye-tracking technology. Eng Psychol Cognit Ergon, 2020, pp 304–320.

[23] Friedrich, M., Lee, S.Y., Bates, P., et al. The influence of training level on manual flight in connection to performance, scan
pattern, and task load, Cogn Tech Work, 2021, 23, pp 715–730. https://doi.org/10.1007/s10111-020-00663-8.

[24] Shen, Z., Zhang, L., Li, R., Hou, J., Liu, C. and Hu, W. The effects of color combinations, luminance contrast, and area ratio
on icon visual search performance - sciencedirect. Displays, 2021, 67. https://doi.org/10.1016/j.displa.2021.101999.

[25] Yu, C., Wang, E.M., Li, W. and Braithwaite, G. Pilots’ visual scan patterns and situation awareness in flight operations,
Aviat Space Environ Med, 2014, 85, (7), pp 708–714. https://doi.org/10.3357/asem.3847.2014.

[26] Behrend, J. and Dehais, F. How role assignment impacts decision-making in high-risk environments: evidence from eye-
tracking in aviation, Saf Sci, 2020, 127, p 104738. https://doi.org/10.1016/j.ssci.2020.104738.

[27] Costela, F.M. and Castro-Torres, J.J. Risk prediction model using eye movements during simulated driving
with logistic regressions and neural networks, Transport Res F: Traf Psychol Behav, 2020, 74, pp 511–521.
https://doi.org/10.1016/j.trf.2020.09.003.

[28] Liang, Y., Reyes, M.L. and Lee, J.D. Real-time detection of driver cognitive distraction using support vector machines, IEEE
Trans Intell Transp Syst, 2007, 8, (2), pp 340–350.

[29] Nguyen, V.C., Vu, D., Lam, S.T.H. Mel-frequency cepstral coefficients for eye movement identification, Proceedings of
the 2012 IEEE 24th International Conference on Tools with Artificial Intelligence (ICTAI), vol. 1, 2012, pp 253–260.
https://doi.org/10.1109/ICTAI.2012.42.

[30] Frutos-Pascual, M. and Garcia-Zapirain, B. Assessing visual attention using eye tracking sensors in intelligent cognitive
therapies based on serious games, Sensors, 2021, 15, (5), pp 11092–11117. https://doi.org/10.3390/s150511092.

https://doi.org/10.1017/aer.2022.101 Published online by Cambridge University Press

https://doi.org/10.1016/j.ergon.2019.04.003
https://doi.org/10.1016/j.ergon.2016.09.002
https://doi.org/10.1061/9780784483145.008
https://doi.org/10.1016/B978-0-12-374518-7.00007-9
https://doi.org/10.1016/B978-0-12-374518-7.00007-9
https://doi.org/10.3390/safety4010008
https://doi.org/10.1007/978-3-319-94334-3_16
https://doi.org/10.1016/j.apergo.2020.103245
https://doi.org/10.1007/s10111-018-0527-6
https://doi.org/10.1016/j.jarmac.2014.04.010
https://doi.org/10.1007/s10111-018-0534-7
https://doi.org/10.1007/s10111-013-0257-8
https://doi.org/10.1007/s10111-020-00663-8
https://doi.org/10.1016/j.displa.2021.101999
https://doi.org/10.3357/asem.3847.2014
https://doi.org/10.1016/j.ssci.2020.104738
https://doi.org/10.1016/j.trf.2020.09.003
https://doi.org/10.1109/ICTAI.2012.42
https://doi.org/10.3390/s150511092
https://doi.org/10.1017/aer.2022.101


The Aeronautical Journal 1233

[31] Taku, H., Hirotoshi, I., Akira, Y. and Hiroaki, K. Detecting cognitive distraction using random forest by considering eye
movement type, Int J Cognit Inform Nat Intell, 2017, 11, (1), pp 16–28. https://doi.org/10.4018/IJCINI.2017010102.

[32] Cheng, B., Zhang, C., Ding, X. and Wu, X. Convolutional neural network implementation for eye movement recogni-
tion based on video, 2018 33rd Youth Academic Annual Conference of Chinese Association of Automation, pp 179–184.
https://doi.org/10.1109/YAC.2018.8406368.

[33] Zhao, M., Zhong, S., Fu, X., Tang, B. and Pecht, M. Deep residual shrinkage networks for fault diagnosis, IEEE Trans Ind
Inf, 2020, 16, (7), pp 4681–4690. https://doi.org/10.1109/TII.2019.2943898.

[34] Cohen, J. Statistical power analysis for the behavioral sciences, Comput Environ Urban Syst, 1988, 14, (1), p 71.
https://doi.org/10.4324/9780203771587.

[35] Henderson, J.M. an dLuke, S.G. Stable individual differences in saccadic eye movements during reading, pseu-
doreading, scene viewing, and scene search, J Exp Psychol Human Percep Perform, 2014, 40, (4), pp 1390–1400.
https://doi.org/10.1037/a0036330.

[36] Lou, Y., Liu, Y., Kaakinen, J.K., et al. Using support vector machines to identify literacy skills: Evidence from eye
movements. Behav Res, 2017, 49, pp 887–895. https://doi.org/10.3758/s13428-016-0748-7.

[37] Destyanto, T. and Lin, R.F. Detecting computer activities using eye-movement features, J Ambient Intell Hum Comput, 2020,
4, pp 1–11. https://doi.org/10.1007/s12652-020-02683-8.

[38] Bruzzone, L. and Serpico, S.B. A technique for feature selection in multiclass problems, Int J Remote Sens, 2000, 21, (3),
pp 549–563. https://doi.org/10.1080/014311600210740.

[39] Hughes, G. On the mean accuracy of statistical pattern recognizers, IEEE Trans Inf Theory, 1968, 14, (1), pp 55–63.
https://doi.org/10.1109/TIT.1968.1054102.

[40] Liao, H., Dong, WH., Huang, HS., et al. Inferring user tasks in pedestrian navigation from eye movement data in real-world
environments, Int J Geograph Inform Sci, 2019, 33, (4), pp 739–763. https://doi.org/10.1080/13658816.2018.1482554.

[41] Kim, N., Kim, J. and Ahn, C.R. Predicting workers’ inattentiveness to struck-by hazards by monitoring biosignals during a
construction task: A virtual reality experiment, Adv Eng Inf, 2021, 49, p 101359. https://doi.org/10.1016/j.aei.2021.101359.

[42] Charlton, S.G., Starkey, N.J., et al. What’s the risk? A comparison of actual and perceived driving risk, Transport Res F:
Traf Psychol Behav, 2014, 25, Part A, pp 50–64. https://doi.org/10.1016/j.trf.2014.05.003.

[43] Daley, M.S., Gever, D., Posada-Quintero, H.F., et al. Machine learning models for the classification of sleep deprivation
induced performance impairment during a psychomotor vigilance task using indices of eye and face tracking, Front Artif
Intell, 2020, 3, p 17. https://doi.org/10.3389/frai.2020.00017.

[44] Abdelrahman, Y., Khan, A.A., Newn, J., et al. Classifying attention types with thermal imaging and eye tracking, Proc ACM
Interact Mob Wearable Ubiquitous Technol, 2019, 3, (3), pp 1–27. https://doi.org/10.1145/3351227.

Cite this article: Yan C.-Q., Sun Y.-C., Zhang X., Mao H.-Y. and Jiang J.-Y. (2023). A methodology to detect pilot perception of
warning information by eye movement data and deep residual shrinkage networks. The Aeronautical Journal, 127, 1219–1233.
https://doi.org/10.1017/aer.2022.101

https://doi.org/10.1017/aer.2022.101 Published online by Cambridge University Press

https://doi.org/10.4018/IJCINI.2017010102
https://doi.org/10.1109/YAC.2018.8406368
https://doi.org/10.1109/TII.2019.2943898
https://doi.org/10.4324/9780203771587
https://doi.org/10.1037/a0036330
https://doi.org/10.3758/s13428-016-0748-7
https://doi.org/10.1007/s12652-020-02683-8
https://doi.org/10.1080/014311600210740
https://doi.org/10.1109/TIT.1968.1054102
https://doi.org/10.1080/13658816.2018.1482554
https://doi.org/10.1016/j.aei.2021.101359
https://doi.org/10.1016/j.trf.2014.05.003
https://doi.org/10.3389/frai.2020.00017
https://doi.org/10.1145/3351227
https://doi.org/10.1017/aer.2022.101
https://doi.org/10.1017/aer.2022.101

	Nomenclature
	Introduction
	Display of warning information in an aircraft cockpit
	Application of eye movement data
	Application of machine learning model in eye movement data

	Methods
	Subjects
	Equipment
	Experimental design
	Procedure
	Data analysis

	Results
	Importance of eye movement features
	Correlation among eye movement features
	Machine learning models

	Discussion
	Conclusions

