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Direct numerical simulations (DNS) of temporally developing turbulent boundary layers
are performed with a wide range of Reynolds numbers based on the momentum
thickness Reθ = 2000–13 000 for investigating the Reynolds number dependence of the
turbulent/non-turbulent interface (TNTI) layer. The grid spacing in the DNS is determined
carefully such that small-scale turbulent motions near the TNTI are well resolved. The
outer edge of the TNTI layer, called the irrotational boundary, is detected with vorticity
magnitude. The mean thicknesses of the TNTI layer, δTNTI , turbulent sublayer, δTSL, and
viscous superlayer, δVSL, are found to be approximately 15ηTI , 10ηTI and 5ηTI , respectively,
where ηTI is the Kolmogorov scale taken in the turbulent region near the TNTI layer.
The mean curvature of the irrotational boundary is also characterized by ηTI . The shear
parameter and the shear-to-vorticity ratio show that the mean shear effects near the TNTI
layer are not significant for both large and small scales. The anisotropy tensors of Reynolds
stress and vorticity suggest that the turbulence under the TNTI layer tends to be isotropic
at high Reθ , for which ηTI/δ ∼ Re−3/4

θ is valid with the boundary layer thickness δ. The
surface area of the irrotational boundary is consistent with the fractal analysis of the
interface, where the fractal dimension Df is found to be 2.14–2.20. The present results
suggest that the mean entrainment rate per unit horizontal area normalized by the friction
velocity varies slowly as Re

(3/4)(Df −2)

θ for Reθ ≥ 4000.
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1. Introduction

A turbulent boundary layer (TBL) plays a significant role in many engineering applications
and atmospheric science. For example, a flow passing through a vehicle can affect the
efficiency of the vehicle; the atmospheric TBL is very important for weather prediction.
Many recent works show that there exists a thin layer with a finite thickness that separates
the turbulent and non-turbulent flows in many turbulent flows, e.g. jet, mixing layer and
boundary layer (da Silva et al. 2014). This thin layer is called the turbulent/non-turbulent
interface (TNTI), whose existence was pointed out by Prandtl (1928) and examined by
Corrsin & Kistler (1955).

With the improvement of experimental technologies and computational resources in
recent years, the TNTI layer has been investigated in free shear flows (da Silva & Pereira
2008; Westerweel et al. 2009; Watanabe et al. 2015) and TBLs (de Silva et al. 2013, 2017;
Chauhan et al. 2014b; Philip et al. 2014; Ishihara, Ogasawara & Hunt 2015; Borrell &
Jiménez 2016; Lee, Sung & Zaki 2017; Zhang, Watanabe & Nagata 2018; Jahanbakhshi
2021). The TNTI layer consists of two sublayers: the outer part bounded to the irrotational
flow is called the viscous superlayer (VSL), where viscous effects dominate the increase
of vorticity magnitude; the turbulent sublayer (TSL), where the inviscid effects become
important, exists as a buffer layer between the VSL and the turbulent core region (da Silva
et al. 2014). Since the TNTI layer separates the turbulent and non-turbulent flow regions,
the flow properties in these two regions are highly different. This layer is significant for
the exchanges of substance, energy and heat between turbulent and non-turbulent flow,
and is related to the development of turbulence (Holzner & Lüthi 2011). The Reynolds
number dependence is one of the most important issues in the study of the TNTI layer; it
represents the essential properties of the TNTI layer, and contributes to the understanding
of flow behaviour near here, and is related to the scaling of the entrainment, which causes
the development of the turbulent region (van Reeuwijk, Vassilicos & Craske 2021). That
can also consequently provide useful information for the modelling and flow control of
turbulence as the entrainment is considered caused by the vorticity structures within the
TNTI layer (Watanabe et al. 2017a; Neamtu-Halic et al. 2020).

In previous literature, the scaling of the mean thickness of the TNTI layer δTNTI has
been argued about extensively. This mean thickness was first measured by Bisset, Hunt
& Rogers (2002) in turbulent wakes and shown to be approximately one order of the
Taylor microscale λ. Other studies also suggested that δTNTI is of the same order as the
Taylor microscale λ in the mixing layer (Attili, Cristancho & Bisetti 2014), jet (Westerweel
et al. 2009) and boundary layer (Chauhan, Philip & Marusic 2014a; Borrell & Jiménez
2016). In contrast, other studies showed that δTNTI is scaled by the Kolmogorov scale
η = ν3/4〈ε〉−1/4 in the jet (Nagata, Watanabe & Nagata 2018; Silva, Zecchetto & da Silva
2018), shear-free turbulence (Holzner et al. 2007; Silva et al. 2018) and mixing layer
(Watanabe et al. 2015), where 〈ε〉 is the turbulent kinetic energy dissipation rate, and ν

is the kinematic viscosity. Also, Jahanbakhshi (2021) suggested that the VSL is scaled by
η in the TBL. Silva et al. (2018) summarized most of the recent studies and investigated
systematically the scaling of δTNTI in the planar jet and shear-free turbulence. They showed
that δTNTI/λ decreases as the Reynolds number increases, while δTNTI/η is independent
of the Reynolds number except for very low Reynolds numbers. However, the scaling of
δTNTI is still an open question, especially in the TBL, where the TNTI layer is less studied
compared with free shear flows.

Other turbulent statistics near and within the TNTI layer in the TBL also need to
be investigated, e.g. turbulent kinetic energy, vorticity and strain distribution, and shear
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effects. How these statistics vary with the Reynolds number is also an important issue. In
particular, the mean shear effect is an important issue for scaling the mean thickness of
the TNTI layer. Hunt et al. (2010) used the Burgers vortex model to explain the scaling
of δTNTI , which is expected to be δTNTI ∼ λ under the strong influence of mean shear,
and δTNTI ∼ η without shear. Even though Watanabe et al. (2017c) showed that the mean
thickness of the TNTI layer is the same in turbulent planar jets and shear-free turbulence,
the mean shear effect still needs to be investigated more carefully in TBLs because the
degree of mean shear effects can be flow-dependent.

The geometry of the TNTI is also important because it is related the entrainment rate,
which depends on the surface area of the TNTI (Holzner & Lüthi 2011). The geometry
of the TNTI is dependent on the turbulent structures under the TNTI, which can be
flow-dependent and may affect the universality of the geometry of the TNTI layer. The
TNTI has a complex shape and exhibits fractal-like properties, as shown in the previous
studies (da Silva et al. 2014). But it is still unclear if the interface geometry has universal
statistical properties that do not depend on flows and Reynolds numbers (da Silva et al.
2014). The entrainment is understood as a process by which an irrotational fluid becomes
a part of the turbulent flow while it passes across the TNTI layer. The irrotational fluid
becomes turbulent near the TNTI layer by the viscous diffusion of vorticity (Holzner
& Lüthi 2011; Mistry et al. 2016), which is called local entrainment. Therefore, the
viscous effects are important for the local entrainment rate, which represents the volume
of entrained fluid per unit interface area and per time. In recent studies (da Silva et al.
2014), the nibbling process (local entrainment) is also shown to be the main contributor to
the entrainment process in the TBL, and the intense vortex structures (worms) close to the
TNTI are dominant in the nearby entrainment velocity. In addition, the total entrainment
rate can be evaluated as an integral of the local entrainment velocity over the interface.
The total entrainment rate depends strongly on the surface area of the interface, which is
also influenced by large-scale motions of the flow. Even some existing studies (Watanabe
et al. 2015; Nagata et al. 2018) show that the entrainment velocity vn is the order of
the Kolmogorov velocity scale vη in shear-free flows. However, the entrainment is a
multiscale process, which means that the large-scale motions are also involved (Mistry
et al. 2016). Some recent studies showed that the large-scale motions do modulate the
entrainment velocity in the TBL (Long, Wang & Pan 2022) and jet (Cimarelli & Boga
2021). Furthermore, the large-scale motions are shown to dominate the mass and energy
transport in the outer region (Adrian, Meinhart & Tomkins 2000) in TBL.

There are several previous studies on the Reynolds number dependence of the TNTI
layer in the TBL: Chauhan et al. (2014a) used the experimental data (Reτ = uτ δν/ν =
1230–14 500) to study the Reynolds number dependence of the TNTI layer in the TBL.
However, the TNTI layer in this study is detected with velocity, where the TNTI layer
is treated as a shear layer. Since the seminal work on the TNTI by Corrsin & Kistler
(1955), it has been known that the TNTI is not well-defined in the profiles of velocity
or kinetic energy. As Corrsin & Kistler (1955) pointed out, rotational motion is the
essential feature of the turbulent flow region, and the TNTI is well-defined only with
the quantities related to vorticity. Therefore, Corrsin & Kistler (1955) had to apply a
complicated post-process on velocity signals obtained with hot-wire anemometry to detect
turbulent regions because the velocity or kinetic energy could not distinguish the turbulent
and non-turbulent regions well. They define the detector function of the TNTI with a time
derivative of velocity, which is related to a velocity gradient. Therefore, their detection
method of the TNTI is closer to the vorticity criterion than the kinetic energy criterion.
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The interfaces defined with enstrophy and kinetic energy were compared in temporally
evolving TBLs in Watanabe, Zhang & Nagata (2018b). It was found that the interfaces
detected with these quantities are very different in terms of both geometry and location.
Small-scale structures are missing on some parts of the interface detected with kinetic
energy (Watanabe et al. 2018b). The conditional statistics calculated for the interfaces of
enstrophy and kinetic energy were also different, except for low-order statistics of velocity,
such as mean velocity and velocity variance. This may be because the pressure diffusion
at large scales transfers the kinetic energy from the turbulent to the non-turbulent region,
while the pressure term does not appear in the enstrophy transport equation. Borrell &
Jiménez (2016) have studied the TNTI detected with vorticity using the direct numerical
simulations (DNS) database of the TBL. However, the Reynolds number range is still
limited for Reθ = UWθ/ν = 2800–6800 (Reτ = 1000–2000) based on the momentum
thickness θ = ∫ ∞

0 〈u〉(UW − 〈u〉)/U2
W dy. These values of Reθ are in the transitional range

of low to moderate Reynolds number, and the scale range of turbulent motions is still small,
so some typical phenomena in TBL are not obvious yet. The higher Reynolds number is
necessary for examining the Reynolds number dependence.

The Reynolds number dependence of the TNTI layer is a significant topic in TNTI
studies. However, this investigation still lacks information, especially for the TBL. If DNS
are used for studying the TNTI layer in the TBL, then the resolution near the TNTI layer
needs to be considered carefully because the smallest length scale of turbulence is different
between the outer and near-wall regions, where the resolution determined based on the
near-wall region can be insufficient for studying the TNTI layer (Watanabe et al. 2018b;
Zhang et al. 2018). In addition, the wall can have a strong influence on the TNTI layer in
the TBL (Lee et al. 2017), but this influence has not been studied well in previous papers.

In this study, we conduct DNS of temporally developing incompressible TBLs for a wide
range of Reynolds numbers Reθ = 2000–13 000 (Reτ = 700–4000). The spatial resolution
of the DNS is determined carefully such that the smallest scale of turbulent motions is
well resolved near the TNTI layer. The detail of the DNS database is presented in § 2.
Section 3 discusses the Reynolds number dependence of the TNTI layer as well as the
mean shear effects on the TNTI layer, the geometrical properties of the TNTI layer, and
the entrainment process. Finally, § 4 presents the conclusion of this study.

2. The DNS of temporally developing turbulent boundary layers

2.1. Temporally developing turbulent boundary layers
A DNS database of incompressible temporally developing TBLs (Watanabe, Zhang &
Nagata 2019b) is used in this study. A temporally evolving TBL is proposed by assuming
that the boundary layer grows so slowly in the streamwise direction that the turbulence can
be treated as approximately homogeneous in this direction (Spalart 1988). This idea has
been adapted to various canonical turbulent shear flows, e.g. TBLs (Martín 2007; Guarini
et al. 2000; Kozul, Chung & Monty 2016), mixing layers (Vreman, Sandham & Luo 1996;
Watanabe et al. 2015) and jets (Hawkes et al. 2007; Nagata et al. 2018; Silva et al. 2018).
These studies have proved that the transverse profile of most statistics is consistent between
spatially and temporally evolving flows. The temporally evolving TBL may be called a
turbulent Rayleigh shear flow, which is equivalent to a spatially evolving TBL at infinite
Reynolds number (Crow 1968). Although the temporal and spatial TBLs are different in
a strict sense at a finite Reynolds number, the vertical profiles of most statistics become
asymptotically equivalent in these flows at a sufficiently large Reynolds number (Reθ �
964 A8-4
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2000) when the Reynolds number based on the diameter of a trip wire D, applied in the
initial condition, is ReD = 2000 (Kozul et al. 2016; Zhang et al. 2018). These studies also
suggest that the mean shear effect caused by the transverse inhomogeneity is well captured
by numerical simulations of temporally evolving TBLs.

The purpose of this study is to investigate the TNTI in wall-bounded shear flows for
a wide range of Reynolds numbers, which is discussed by comparison with previous
studies on the TNTI in turbulent free shear flows. The computational cost is much
lower for temporally evolving flows than spatially evolving ones for the same Reynolds
number. Therefore, the temporal TBL is an appropriate choice because a higher Reynolds
number can be achieved by temporal simulations for a given computational resource. The
governing equations are the three-dimensional incompressible Navier–Stokes equations,
which can be expressed as

∂uj

∂xj
= 0, (2.1)

∂ui

∂t
+ ∂uiuj

∂xj
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂xj ∂xj
. (2.2)

Here, ui is the instantaneous velocity in the i direction; the subscripts i, j = 1, 2, 3 indicate
the x, y and z directions, respectively; ρ is the constant fluid density; and p is the
instantaneous pressure. The velocity components in the x, y and z directions are denoted by
u, v and w, respectively. We consider the TBL developing on a wall moving at a constant
speed UW , where the subscript W refers to a value on the wall. The temporal simulation
uses periodic boundary conditions in the streamwise (x) and spanwise (z) directions, and
the statistics do not vary in the streamwise direction. The wall-normal direction is denoted
by y. A no-slip condition is used on the wall (y = 0), and a slip condition is applied at the
top of the computational domain. Spatial averages denoted by 〈·〉 taken on an x–z plane are
obtained as functions of y and time. Hereafter, the fluctuation from this average is denoted
as f ′ = f − 〈f 〉.

The initial mean streamwise velocity profile approximates the velocity induced by a trip
wire with diameter D installed on the wall (Kozul et al. 2016):

〈u〉 = UW

2
+ UW

2
tanh

[
D

2θsl

(
1 − y

D

)]
, (2.3)

with the initial shear layer thickness θsl = 0.03D, while the mean velocity in other
directions is 0. Velocity fluctuations with root mean square (r.m.s.) value 0.05UW are
also added in the near-wall region of y ≤ D. In this study, the flow is characterized by the
Reynolds number based on the trip wire diameter ReD = UWD/ν = 2000, which is large
enough for turbulent transition to occur (Kozul et al. 2016).

2.2. Computational parameters
The DNS are performed with six different Reynolds numbers, as summarized in table 1,
which also shows the size of the computational domain (Lx, Ly, Lz) and the number of grid
points (Nx, Ny, Nz). In each simulation, time is advanced until Reθ reaches the value shown
in the table. Table 2 summarizes the Reynolds numbers Reδ = UWδ/ν and Reτ = uτ δν/ν,
the computational domain size divided by δ, and the grid size normalized by the viscous
length scale δν or the Kolmogorov scale η at the end of the DNS. Here, uτ = √

τW/ρ

is the friction velocity, τW = −ρν(∂〈u〉/∂y)W is the wall shear stress, and the viscous
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Case Reθ Lx/D Ly/D Lz/D Nx Ny Nz

B02 2000 56 76 28 1024 648 512
B04 4000 120 162 60 1536 864 1024
B06 6000 170 230 85 2048 1152 1536
B08 8000 220 298 110 2916 1728 1458
B10 10 000 276 360 138 3456 2048 2592
B13 13 000 360 480 180 4608 2700 3456

Table 1. Computational parameters of the DNS of a temporally developing TBL.

Case Reθ Reτ Reδ Lx/δ Ly/δ Lz/δ Δ+
x Δ+

y Δ+
z Δx/η Δy/η Δz/η

B02 2000 706 16 517 6.7 9.1 3.4 4.7 0.13 4.7 1.4 1.2 1.4
B04 4000 1312 33 774 7.1 9.6 3.6 6.1 0.19 4.1 1.5 1.3 1.1
B06 6000 1845 49 567 6.9 9.3 3.4 6.2 0.19 4.1 1.4 1.3 0.9
B08 8000 2538 71 175 6.2 8.4 3.1 5.5 0.16 5.5 1.2 1.1 1.2
B10 10 000 3058 85 528 6.5 8.4 3.2 5.7 0.16 3.8 1.2 1.1 0.8
B13 13 000 3980 113 182 6.4 8.5 3.2 5.5 0.16 3.7 1.1 1.0 0.7

Table 2. Reynolds numbers, computational domain size divided by δ, and grid size normalized by the viscous
length scale δν or Kolmogorov scale η at the end of the DNS. Here, Δ+

y and Δi/η are taken on the wall and at
y/δ = 0.5, respectively.

length scale is defined as δν = ν/uτ . The superscript + denotes a quantity normalized
by the wall unit. The Kolmogorov scale η and Δy are taken at y/δ = 0.35 (where δ is
99 % boundary layer thickness based on the mean velocity profile). The computational
domain (Lx, Ly, Lz) in table 1 is determined such that the conditions Lx ≥ 2πδ, Ly > δ

and Lz ≥ πδ are satisfied as in previous studies (Schlatter & Örlü 2010; Lozano-Durán &
Jiménez 2014; Kozul et al. 2016). The number of the grid points is determined based on
the grid size Δi compared with the length scale both near the wall δν and in turbulence
η (y/δ = 0.5). The uniform grid spacing is applied in the x and z directions, while the
vertical location of the grid points is determined by the mapping function as employed
in Zhang et al. (2018) and Watanabe et al. (2018b), where the grid size becomes smaller
near the wall. The present DNS satisfy Δi ≤ 1.5η at y/δ = 0.5 because the present study
investigates the TNTI layer that appears in the outer region. So Δ+

i is smaller than the grid
size widely used in DNS of wall turbulence (Δ+

x < 9.7, Δ+
y < 0.2 and Δ+

z < 4.8; Moser,
Kim & Mansour 1999), especially for the x direction. The grid size in the present DNS is
small enough to study the TNTI layer in the TBL, and further discussion on the effects of
spatial resolution on the TNTI in the TBL can be found in our previous studies (Watanabe
et al. 2018b; Zhang et al. 2018).

The present DNS are initialized with an implicit large eddy simulation (ILES); the
computational parameters of ILES used for initialization and the numerical methods
are shown in Appendix A. Furthermore, Appendix B examines the effects of the
computational domain size, and shows that the main results presented in this paper are
not influenced by the finite domain size used in the present study.

2.3. Comparisons of statistics with experiment and spatial DNS studies
The present DNS results are validated by comparing the statistics with experiments at
similar Reθ and theoretical laws. Figure 1 shows the mean streamwise velocity U+ =
964 A8-6
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20

10

100 101 102 103
0

y+

U+

U+ = y+ Log law

Present DNS:
Reθ = 2000 (Case B02)

Reθ = 4000 (Case B04)

Reθ = 6000 (Case B06)

Reθ = 8000 (Case B08)

Reθ = 10 000 (Case B10)

Reθ = 13 000 (Case B13)

Reθ = 2200 Reθ = 4060

Reθ = 13 000

Experiment: Other DNS:

Figure 1. The mean profiles of streamwise velocity U+ compared with experimental results with Reθ = 2200
(Reτ = 810; Erm & Joubert 1991) and Reθ = 13 000 (Reτ = 4336; De Graaff & Eaton 2000), and previous
spatial DNS results Reθ = 4060 (Reτ = 1271; Schlatter & Örlü 2012). The dashed line represents the log law
U+ = (1/k) ln y+ + A (Pope 2000) with the constants k = 0.39 and A = 4.3 (Marusic et al. 2013).

〈u〉/uτ , which is compared with the experimental data for Reθ = 2200 (Erm & Joubert
1991), Reθ = 13 000 (De Graaff & Eaton 2000), and previous spatial DNS data for Reθ =
4060 (Schlatter & Örlü 2012). Here, all quantities in the plots are normalized with the
viscous scales. Present DNS results follow U+ = y+ for small y+ (y+ � 5), and the results
start to follow the log law for larger y+. We can also see that U+ in the experiments is
similar to the present DNS data at Reθ = 2000 and Reθ = 13 000. Figure 2 shows the
r.m.s. of streamwise and vertical velocity fluctuations (urms =

√
〈u′2〉 and vrms =

√
〈v′2〉)

and Reynolds stress 〈u′v′〉 at the end of the DNS in comparison with experimental studies
(Osaka et al. 1998; De Graaff & Eaton 2000; Carlier & Stanislas 2005) and previous
spatial DNS studies (Schlatter & Örlü 2012; Sillero et al. 2013). It should be noticed that
only Reθ = 2000–6000 are compared with the previous DNS due to the lack of DNS data
for the higher Reynolds number range. For all Reynolds numbers, the DNS results agree
well with experimental data and spatial DNS data with a comparable value of Reθ , and the
present DNS well capture the Reynolds number dependence of the TBL. Reynolds number
dependence of other quantities, e.g. skin friction, spectral shape, and skewness and flatness
of velocity derivative, was further compared with experiments and DNS in Watanabe et al.
(2019b), where the present DNS results were shown to agree well with previous studies of
the TBL.

3. Results and discussions

3.1. Detection of the TNTI layer
Following previous studies (da Silva et al. 2014), an isosurface of vorticity magnitude
ω = ωth is used to detect the outer edge of the TNTI layer, which is called the irrotational
boundary (Watanabe et al. 2015). Obviously, the location of the isosurface changes with
the threshold value ωth. In this method, a fluid point with ω > ωth is denoted as a
turbulent fluid point, while a non-turbulent fluid point has ω < ωth. For determining
an appropriate value of ωth for studying the TNTI layer, the volume of the turbulent
region VT is computed as a function of ωth, as shown in figure 3. The threshold ωth
shown in the figure is normalized as ω̂th = ωth/〈ω〉c, where the subscript c denotes the
value taken at y = 0.5δ, which is located in the turbulent core region. The volume of
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Figure 2. Vertical profiles of r.m.s. values of streamwise and vertical velocity fluctuations and Reynolds
stress in cases (a) B02 (Reθ = 2000), (b) B04 (Reθ = 4000), (c) B06 (Reθ = 6000), (d) B08 (Reθ = 8000),
(e) B10 (Reθ = 10 000), and ( f ) B13 (Reθ = 13 000). The DNS results are compared with: experimental results
(a) Reθ = 2100 (Osaka, Kameda & Mochizuki 1998), (b) Reθ = 4400 (Osaka et al. 1998), (c) Reθ = 6040
(Osaka et al. 1998), (d) Reθ = 8100 (Reτ = 2500; Carlier & Stanislas 2005), (e) Reθ = 11 500 (Reτ = 4000;
Carlier & Stanislas 2005), ( f ) Reθ = 13 000 (Reτ = 4336; De Graaff & Eaton 2000); and previous spatial
DNS results (a) Reθ = 1986 (Reτ = 671; Schlatter & Örlü 2012), (b) Reθ = 2000 (Reτ = 1271; Schlatter &
Örlü 2012), (c) Reθ = 4000 (Reτ = 1848; Sillero, Jiménez & Moser 2013), at similar Reynolds numbers.

the turbulent region is also normalized, as V̂T = VT/(LxLzδ). Figure 3 also shows the
derivative of V̂T , dV̂T/d log(ω̂th). The profile of V̂T is similar to profiles obtained in
previous studies (da Silva et al. 2014; Jahanbakhshi, Vaghefi & Madnia 2015; Watanabe
et al. 2015). The turbulent volume largely increases for ω̂th < 10−4 as ω̂th decreases,
because the non-turbulent region has very small vorticity magnitude, which is often
associated with the numerical error. On the other hand, V̂T hardly changes within the range
10−3 < ω̂th < 10−2, which indicates that the location of the isosurface ω = ωth hardly
changes with ωth within this range. In the present study, ω̂th = 10−2.5 shown as a vertical
dot-dash line in figure 3 is used to detect the irrotational boundary.

This method based on the threshold dependence of the turbulent volume has been used
widely for choosing the isosurface value for studying the TNTI layer (Taveira et al. 2013;
Jahanbakhshi et al. 2015). Statistics near the TNTI layer are often computed as functions
of the distance from the isosurface ω = ωth (Bisset et al. 2002). Previous studies have
shown that the statistics near the TNTI layer hardly change with a small change of ωth if
ωth is chosen based on the ωth dependence of the turbulent volume (Taveira et al. 2013;
Watanabe et al. 2018b; Watanabe, da Silva & Nagata 2019a). We have also tested different
values of ωth within the range 10−3 < ω̂th < 10−2 with the present DNS database, and
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Figure 3. The normalized turbulent volume V̂T plotted against the normalized threshold ω̂th used for detecting
turbulent fluids. Here, dV̂T/d log(ω̂th) is also plotted, with dashed lines. A vertical dot-dash line indicates the
threshold value used in this study to detect the irrotational boundary.

1.5δ0 1.5δ0

x

z

x

z

yIB yIB

(a) (b)

Figure 4. Visualization of an irrotational boundary forming at the outer edge of the TNTI layer for
(a) case B02 (Reθ = 2000), and (b) case B13 (Reθ = 13 000). Colour represents the height of irrotational
boundary yIB.

have found that the detected isosurface location and the statistics near the TNTI layer are
insensitive to the threshold.

Figure 4 visualizes the irrotational boundary coloured by the height of the irrotational
boundary from the wall, yIB, for Reθ = 2000 and 13 000. The irrotational boundary in
the present DNS looks very smooth and similar to those detected in free shear flows
(Watanabe, Riley & Nagata 2017b; Nagata et al. 2018), while some previous DNS of the
TBL with coarser grids (Δ+

x ≈ 9) showed spiky patterns of the irrotational boundary,
as discussed in Zhang et al. (2018) and Watanabe et al. (2018b). A folded shape of the
irrotational boundary can be characterized by a wide range of length scales of turbulent
motions that appear under the TNTI layer. Therefore, the small-scale structures appear in
Reθ = 13 000 rather than in Reθ = 2000. Figure 5 shows a colour contour of enstrophy
ω2/2 and the irrotational boundary on an x–y plane. The geometries of the irrotational
boundary are different for Reθ = 2000 and 13 000, where the irrotational boundary is
more folded for higher Reθ , but flatter for lower Reθ . The mean height of the irrotational
boundary is approximately 0.9δ for all the Reynolds numbers, and the irrotational
boundary appears for 0.4δ ≤ y ≤ 1.4δ, which is consistent with an intermittency factor
profile in spatially developing TBLs (Borrell & Jiménez 2016).
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Figure 5. Two-dimensional snapshots of temporally developing boundary layers on the x–y plane. The colour
represents vorticity magnitude log(ωD/UW ), and the irrotational boundary is visualized with the white line.
The wall is moving in the x direction (from left to right): (a) case B02 (Reθ = 2000), (b) case B13 (Reθ =
13 000).

The TNTI layer can be studied with statistics conditioned on the distance from the
irrotational boundary. The local coordinate yI is defined so that the irrotational boundary
is located at yI = 0, and the direction of yI is normal to the irrotational boundary, pointing
into the non-turbulent region. Here, the normal direction of the irrotational boundary
can be obtained as n = −∇ω2/|∇ω2|, and the non-turbulent and turbulent regions are
represented by yI > 0 and yI < 0, respectively. The conditional statistics are obtained as
functions of yI , where samples of the statistics for yI > 0 and yI < 0 are taken only from
non-turbulent and turbulent flow points, respectively, even though the local coordinate yI
intersects more than one irrotational boundary point. Further details of the computation of
the conditional statistics can be found in our previous papers (Nagata et al. 2018; Watanabe
et al. 2018b, 2019a; Zhang et al. 2018). The average taken on the local coordinate is denoted
by 〈·〉I .

3.2. Mean thickness of the TNTI layer and sublayers
The TNTI layer can be defined as a region where the vorticity magnitude is adjusted
between the turbulent and non-turbulent regions (da Silva et al. 2014). Therefore, the
TNTI layer can be characterized by a large gradient of vorticity magnitude in the TNTI
normal direction. The mean thickness of the TNTI layer is quantified based on the
mean vorticity magnitude 〈ω〉I , as shown in figure 6(a) following our previous studies
(Watanabe et al. 2018a; Zhang et al. 2018). Figure 6(a) also shows the derivative of 〈ω〉I ,
〈ω〉′I = −d〈ω〉I/dyI , where the mean thickness of the TNTI layer, δTNTI , is defined as the
distance from yI = 0 to the location where 〈ω〉′I reaches 20 % of its maximum value. The
mean thickness of the TNTI layer was also quantified by fitting an error function to the
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conditional statistics in the previous study, and both methods result in a similar value of
the mean thickness of the TNTI layer (Watanabe et al. 2018a).

Figure 6(b) shows the conditional profiles of Kolmogorov scale defined as ηI =
ν3/4〈ε〉−1/4

I and Taylor microscale defined as λI = √
10kI/(〈ε〉Iν), where kI is the

turbulent kinetic energy defined as kI = (〈u2
i 〉I − 〈ui〉2

I )/2. The distance from the
irrotational boundary, yI , is normalized by δTNTI . These two scales are quite large in the
non-turbulent region, then decrease rapidly from the non-turbulent region to the turbulent
region, and tend to be constant in the turbulent core region. The turbulent statistics at
yI/δTNTI = −2 shown by the vertical dot-dash line are used as reference quantities for
investigating the TNTI layer. The choice yI/δTNTI = −2 ensures the ‘same’ distance from
the TNTI layer for different Reynolds numbers. Hereafter, the subscript ‘TI’ indicates the
statistics taken at this location. The corresponding turbulent Reynolds number Reλ.TI =
λTI

√
(2/3)kTI/ν near the TNTI layer at yI/δTNTI = −2 is also calculated, and shown in

table 3.
The TNTI layer contains two sublayers, the viscous superlayer (VSL) and the turbulent

sublayer (TSL). These inner structures of the TNTI layer can be distinguished by vorticity
dynamics (van Reeuwijk & Holzner 2014; Taveira & da Silva 2014). The conditional
averages of the production term 〈Pω〉I and the viscous diffusion term 〈Dω〉I in the
enstrophy transport equation can be used for identifying the VSL and TSL (Taveira &
da Silva 2014; Zhang et al. 2018). The enstrophy transport equation is

D(ω2/2)

Dt
= ωiSijωj + ν ∇2(ω2/2) + ν ∇ωi · ∇ωi. (3.1)

The three terms on the right-hand side are the production 〈Pω〉I , viscous diffusion
〈Dω〉I and viscous dissipation 〈εω〉I , respectively. The production term 〈Pω〉I and the
viscous diffusion term 〈Dω〉I are almost 0 at the irrotational boundary (yI = 0), then
they increase from the irrotational boundary towards the turbulent region. The mean
viscous diffusion term is larger than the production term near the irrotational boundary,
where the mean thickness of the VSL, δVSL, can be identified as the region where
〈Dω〉I > 〈Pω〉I near the irrotational boundary (Taveira & da Silva 2014; Jahanbakhshi
et al. 2015; Watanabe et al. 2015; Zhang et al. 2018). Then it is easy to measure the
mean thickness of the TSL, δTSL, which is considered as the buffer region between the
VSL and the turbulent core region. Within the TSL, the inviscid process (production
term) has a larger contribution to the increase of the enstrophy (da Silva et al. 2014).
The mean thicknesses of the TNTI layer (δTNTI), VSL (δVSL) and TSL (δTSL) normalized
by Kolmogorov scale ηTI and Taylor microscale λTI near the TNTI layer are plotted in
figures 7(a) and 7(b), respectively. From figure 7(a), we can see that the average thickness
of δTNTI is approximately 15.7ηTI , δVSL is approximately 4.6ηTI , and δTSL is approximately
11.1ηTI for all the Reynolds numbers. However, δTNTI/λTI , δTSL/λTI and δVSL/λTI all
decrease with the increase of the Reynolds number, as shown in figure 7(b). These results
are consistent with a previous study (Silva et al. 2018), in which the thickness of the TNTI
layer and sublayers normalized by the Kolmogorov scale is almost constant for the different
Reynolds numbers, while the thickness normalized by λ decreases with Re−1/2

λ in jets and
shear-free turbulence. Hereafter, we assume that the mean thicknesses of the TNTI layer
and VSL are approximately 15ηTI and 5ηTI , for convenience. Our result is also consistent
with the results from Jahanbakhshi (2021), where δVSL is approximately 5η, and δTNTI is
of the order of O(10η) at Reτ ≈ 600 in the spatial TBL.
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Figure 6. (a) Conditional mean vorticity and its derivative with respect to yI for case B02. (b) Conditional
profiles of Kolmogorov length scale ηI and Taylor microscale λI defined with conditional averages. The line
colours represent the Reynolds numbers as shown in figure 3. The vertical dot-dash line shows yI/δTNTI = −2,
where the reference scales are taken for studying the TNTI layer.
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Figure 7. The mean thickness of the TNTI layer, the viscous superlayer (VSL), and the turbulent sublayer
(TSL) normalized by (a) Kolmogorov scale ηTI , and (b) Taylor microscale λTI , at yI/δTNTI = −2.

Case B02 B04 B06 B08 B10 B13

Reθ 2000 4000 6000 8000 10 000 13 000
Reλ.TI 64 70 69 87 93 102

Table 3. Turbulent Reynolds number Reλ.TI of the turbulent flow near the TNTI layer at yI/δTNTI = −2.

3.3. The turbulent statistics near and within the TNTI layer
Figure 8(a) shows the conditional mean vorticity magnitude 〈ω〉I normalized by wall
velocity UW and trip wire diameter D with yI normalized by ηTI . The mean vorticity
magnitude in figure 8(a) decreases with the increase of Reynolds number. In the meantime,
the vertical profiles of the average of ω taken only from the turbulent region, 〈ω〉T , in
comparison with the conventional average 〈ω〉, are shown in figure 8(b). Because turbulent
fluids have ω ≥ ωth, 〈ω〉T does not decrease to 0 for large y, unlike 〈ω〉, which decreases
to 0 for large y. In the figure, the location of the mean irrotational boundary height is
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Figure 8. (a) Conditional mean profile of vorticity magnitude normalized by wall velocity UW and trip wire
diameter D plotted with respect to yI/ηTI . (b) Vertical profiles of the mean vorticity magnitude computed only
from turbulent fluids, 〈ω〉T , and the conventional average of ω based on the spatial average on x–z planes, 〈ω〉.
The circle symbols represent the mean irrotational boundary height, and the inset shows 〈ω〉, 〈ω〉T normalized
by the boundary layer thickness δ. The line colours represent the Reynolds numbers as shown in figure 3.

marked by circles. In the intermittent region, where 〈ω〉 differs from 〈ω〉T , 〈ω〉T tends to
be independent of large y+ at high Reynolds numbers. On the other hand, 〈ω〉T in the
intermittent region still rapidly decreases with y+ for low Reynolds numbers. This strong
dependence of 〈ω〉T on y+ can be seen near the wall for all Reynolds numbers. Since
the ratio between y and δν is small in the intermittent region at a low Reynolds number,
the intermittent region can be influenced by the wall, and 〈ω〉T in the intermittent region
depends strongly on y. On the other hand, because y/δν in the intermittent region is large
at high Reynolds numbers, the intermittent region in this case is less influenced by the
strong mean shear near the wall. This results in the weak dependence of 〈ω〉T on y in the
intermittent region.

Figure 9(a) shows 〈ω〉I normalized by vorticity ωTI at yI = −2δTNTI . The mean vorticity
jump at different Reynolds numbers collapses well within the TNTI layer (yI from 0
to approximately 15ηTI) in figure 9(a). The conditional averages of second invariant of
velocity gradient tensor 〈Q〉I are plotted in figure 9(b). Here, Q is defined as Q = (ijij −
SijSij)/2, with ij = (∂ui/∂xj − ∂uj/∂xi)/2 and Sij = (∂uj/∂xi + ∂ui/∂xj)/2. We also
normalize 〈Q〉I by the mean strain product taken at yI = −2δTNTI , which is denoted as s2

TI .
In this figure, the profiles for different Reynolds numbers also collapse together. In these
profiles, we can see that the vorticity is weaker than strain (Q < 0) within the VSL, and
stronger than strain (Q > 0) within the TSL, as also found in other free shear flows. Here,
figures 9(a) and 9(b) both indicate that the turbulent characteristics taken at yI = −2δTNTI
well characterize the statistics near the TNTI layer. The DNS results for a temporally
developing planar jet with jet Reynolds number 10 000 (Watanabe et al. 2019b) are also
compared in figure 9. The shape and magnitude of the conditional mean vorticity and the
second invariant of velocity gradient tensor are similar between the jet and TBL when they
are normalized by ηTI .

Figure 10(a) shows the conditional mean streamwise velocity 〈u〉I normalized by the
friction velocity uτ . The conditional mean velocity is very small and almost constant
within the VSL, then it increases rapidly in the TSL, and the mean velocity is still
increasing gradually in the turbulent core region. However, the mean streamwise velocity
is flat within the VSL, which indicates that the mean shear is absent within the VSL.
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Figure 9. The normalized conditional mean profiles of (a) mean vorticity magnitude 〈ω〉I/ωTI , and (b) the
second invariant of velocity gradient tensor 〈Q〉I/s2

TI , where ωTI and s2
TI represent 〈ω〉I and 〈SijSij〉I calculated

at yI/δTNTI = −2, respectively. The line colours represent the Reynolds numbers as shown in figure 3. The
circle symbols represent the data of a turbulent planar jet with the jet Reynolds number 10 000 (Watanabe et al.
2019b).

In this study, 〈u〉I is qualitatively different from the result by Eisma et al. (2015), which
is well approximated by their Z-shape model. The Z-shape model is characterized by
sudden changes of the mean velocity gradient at the boundaries among the turbulent core
region, the TNTI layer and the non-turbulent region. The present results confirm that 〈u〉I
increases from the TNTI layer to the turbulent core region without a significant change
of the mean velocity gradient. It seems that this difference is due to different definitions
of the local coordinate used for the conditional statistics. Eisma et al. (2015) considered
the local coordinate taken in the wall-normal direction, while yI in this study is taken in
the interface normal direction. It was also shown that the Z-shape model for 〈u〉I is valid
in a turbulent planar jet if the local coordinate is taken in the transverse direction of the
jet (Watanabe et al. 2014). These results indicate that the conditional mean velocity profile
near the TNTI layer is sensitive to the definition of the local interface coordinate. The inset
of figure 10(a) shows 〈u〉I normalized by urms.TI , which is the r.m.s. of streamwise velocity

urmsI at yI/δTNTI = −2. Here, urmsI is defined as
√

〈u2〉I − 〈u〉2
I . The velocity jump of 〈u〉I

across the TNTI layer is approximately one order of urms.TI . The temporally developing
planar jet with jet Reynolds number 10 000 (Watanabe et al. 2019b) is also compared in
figure 10(a), where the profiles are similar for the jet and TBL when yI is normalized by
ηTI . Even though it seems from figure 10(a) that the mean shear exists within and near the
TNTI layer, how significantly the mean shear affects the TNTI layer is still not clear.

Figure 10(b) shows the conditional mean of vertical velocity, 〈v〉I/uτ , which becomes
positive in the turbulent core region and negative in the non-turbulent region. This profile
is consistent with previous studies on a spatially developing TBL (Eisma et al. 2015)
and a turbulent planar jet (Watanabe et al. 2014). Negative 〈v〉I/uτ in the non-turbulent
region is expected from large-scale motions, such as sweeps (Pope 2000) in TBLs, which
are expected to be related to the engulfment. The engulfment process can draw the
non-turbulent fluids towards the turbulent region directly, where the valley structures
appear on the TNTI with the negative 〈v〉I in the non-turbulent region. The profile of 〈v〉I
is also consistent with experimental results obtained for the interface detected with kinetic
energy (Chauhan et al. 2014a; de Silva et al. 2017). The mean vertical velocity defined
with an average taken on a horizontal plane, 〈v〉, is zero at any locations in the temporally
developing TBLs, unlike in spatially developing TBLs. However, the conditional profile
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Figure 10. (a) Conditional mean streamwise velocity 〈u〉I and (b) conditional mean vertical velocity 〈v〉I ,
normalized by the friction velocity uτ . The inset in (a) shows 〈u〉I normalized by the r.m.s. streamwise velocity
fluctuation urms.TI calculated at yI/δTNTI = −2. The circle symbols represent the data of a turbulent planar jet
with jet Reynolds number 10 000 (Watanabe et al. 2019b).

of 〈v〉I is consistent between temporal and spatial TBLs, and the non-turbulent fluid
motions in the vicinity of the interface are similar in both temporal and spatial TBLs.
These non-turbulent fluid motions are related to a part of the entrainment process, and
the temporal simulation well captures the process by which the non-turbulent fluid is
transferred towards the TNTI in the intermittent region of spatially developing TBLs.
Also, the changes in the conditional mean streamwise and vertical velocities across the
TNTI layer are of the same order as in previous studies (Chauhan et al. 2014a; Eisma et al.
2015).

The conditional r.m.s. values of streamwise velocity urmsI , wall-normal velocity vrmsI
and spanwise velocity wrmsI are shown in figure 11. It should be noticed again that the

conditional r.m.s. of streamwise velocity urmsI is defined as
√

〈u2〉I − 〈u〉2
I ; vrmsI and wrmsI

are calculated in the same way as urmsI . The low Reynolds number case has a larger r.m.s.
value for all velocity components in the turbulent region, but the r.m.s. velocity fluctuations
tend to be independent of the Reynolds number for high Reynolds numbers. This might
be because the production term of the turbulent kinetic energy budget is almost 0 for
large y+ (Smits, McKeon & Marusic 2011). As we mentioned before, the height yIB of the
irrotational boundary is approximately 0.9δ, namely y+

IB ≈ 0.9Reτ , which is why the r.m.s.
fluctuations of the three velocity components are similar to each other for high Reynolds
numbers. The jumps of r.m.s. velocity fluctuations near the TNTI layer in the present DNS
are of the same order in their experimental results (Chauhan et al. 2014a), where the TBLs
are investigated experimentally between Reτ = 1230 and Reτ = 14 500.

3.4. The shear effects near and within the TNTI layer
As shown in figure 10, the mean shear exists within and near the TNTI layer, where
we investigate how significantly the mean shear affects the TNTI layer. Therefore, the
conditional shear parameter defined as S∗

I = 〈∂u/∂y〉I〈k〉I/〈ε〉I based on the conditional
mean streamwise velocity derivative is calculated for evaluating the shear effects on the
energy-containing eddies near the TNTI. The shear parameter is defined as the ratio
between the decay time of energy-containing eddies and the shear deformation time
(Corrsin 1958). Figure 12(a) shows that the conditional shear parameter is approximately
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Figure 11. Conditional r.m.s. velocity fluctuations: (a) streamwise velocity, (b) wall-normal velocity, and
(c) spanwise velocity. The line colours represent the Reynolds numbers as shown in figure 3.

4 in the turbulent core region for all the Reynolds numbers, and the value of S∗
I is within

the typical range (from 3 to 6) in turbulent shear flows (Pope 2000). The conditional shear
parameter decreases from the TSL towards the irrotational boundary (yI from 15 to 0). The
value of the shear parameter indicates that the shear effects do exist near and within the
TNTI layer, but are not very significant on the large-scale eddies. Furthermore, the value
of the shear parameter within the TNTI layer is in the typical range of shear flows (Pope
2000).

The conditional shear-to-vorticity ratio SI/ω
′
I is shown in figure 12(b), where the

conditional mean shear SI is defined as SI = 〈∂u/∂y〉I , and the conditional fluctuation

ω′
I is defined as ω′

I =
√

〈ω2
I 〉 − 〈ωI〉2. This ratio indicates the relative shear effects on the

small-scale motions near the TNTI. If SI/ω
′
I is much smaller than 1, then the small-scale

vortices are decoupled from the mean shear and become roughly isotropic (Jiménez
2013). As shown in figure 12(b), SI/ω

′
I under the TNTI layer is approximately 0.1–0.2.

These values are so small that the mean shear effects on small-scale motions are weak.
The Reynolds number dependence can still be found in this figure: the results with a
higher Reynolds number have a lower value of SI/ω

′
I , which means that the vortices

tend to be more isotropic with the increase of Reynolds number. This observation is
similar to that found by computing conventional average S/ω′ in the outer layer (y = 0.6δ)
(Jiménez 2013). Finally, because the irrotational boundary (yI = 0) is detected by a
vorticity magnitude isosurface, the vorticity fluctuation is close to zero near the irrotational
boundary, which causes the large value of SI/ω

′
I near the irrotational boundary.

In general, the boundary layer thickness δ represents the characteristic length scale of
large-scale motions (Pope 2000), and ηTI indicates the smallest scale of the turbulence
near the TNTI layer. Figure 13(a) shows the ratio between ηTI and δ against the Reynolds
number Reθ . The red dot-dash line represents C1 Re−3/4

θ , where C1 = 2.3 is a constant
obtained from the present DNS data with Reθ ≥ 4000. It is a scaling law for homogeneous
isotropic turbulence (HIT), η/l0 ∼ Re−3/4, where l0 is the integral length scale that
represents the length scale of large-scale motions for homogeneous isotropic turbulence
(Pope 2000). It can be seen clearly that the results at relatively high Reynolds numbers
(Reθ = 6000–13 000) agree well with the red dot-dash line. However, the results for
Reθ = 2000 and 4000 are lower than this line, especially for Reθ = 2000. It is expected
that the wall has more significant influences on the TNTI layer at lower Reynolds numbers,
which might explain the departure from η/δ ∼ Re−3/4

θ .
Figure 13(b) shows the second invariants of the anisotropy tensors of the Reynolds stress

and vorticity in the turbulent region near the TNTI, B2TI and V2TI . These invariants are
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Figure 12. (a) Conditional shear parameter defined as S∗
I = 〈∂u/∂y〉I〈k〉I/〈ε〉I near the TNTI layer.

(b) Conditional shear-to-vorticity ratio SI/ω
′
I near the TNTI layer. The line colours represent the Reynolds

numbers as shown in figure 3.
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Figure 13. (a) The Reθ dependence of the length scale ratio between the Kolmogorov scale ηTI and boundary
layer thickness δ at yI/δTNTI = −2. The inset shows the corresponding plot with a linear scale. (b) The second
invariants of the anisotropy tensor of Reynolds stress and vorticity for turbulence near the TNTI, which are
denoted B2TI and V2TI , respectively.

defined as B2TI = (3〈bij〉TI〈bij〉TI/2)1/2 and V2TI = (3〈v ij〉TI〈v ij〉TI/2)1/2, respectively,
with the anisotropy tensors of the Reynolds stress and vorticity:

〈bij〉TI = 〈uiuj〉TI − 〈ui〉TI〈uj〉TI

〈ukuk〉TI − 〈uk〉TI〈uk〉TI
− 1

3
ij, (3.2)

〈v ij〉TI = 〈ωiωj〉TI

〈ωkωk〉TI
− 1

3
ij. (3.3)

Here, δij is Kronecker’s delta. The values of B2TI and V2TI indicate the anisotropy
related to the large- and small-scale turbulent motions under the TNTI, respectively. The
invariants are equal to 1 and 0 for complete anisotropy and isotropy, respectively. In the
figure, B2TI is larger than V2TI , indicating that large-scale motions are more anisotropic
compared with small-scale ones. Higher isotropy for smaller scales is related to the weak
mean shear effects for small-scale motions as examined with SI/ω

′
I in figure 12(b). As

expected from the above discussion, both invariants decrease with the Reynolds number,
and the flow under the TNTI becomes close to isotropic turbulence. This behaviour is
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Figure 14. The p.d.f.s of the mean curvature of the irrotational boundary normalized by (a) Kolmogorov
length scale ηTI , and (b) Taylor microscale λTI . The line colours represent the Reynolds numbers as shown
in figure 3. The circle symbols represent the data of a turbulent planar jet with jet Reynolds number 10 000
(Watanabe et al. 2019b).

related to the departure from the scaling law for HIT at the low Reynolds numbers as shown
in figure 13(a). A similar observation was made by Jiménez (2013), where the turbulence
motions in the outer layer become more isotropic with the increase of Reynolds number in
channel flow.

3.5. The geometry of the irrotational boundary
The probability density function (p.d.f.) of the mean curvature H = (1/2)∇ · n of the
irrotational boundary is shown in figure 14, where the p.d.f. is normalized by the
Kolmogorov length scale ηTI in figure 14(a), and by the Taylor microscale λTI in
figure 14(b). The positive/negative value of H indicates the concave/convex region in the
top view of the TBL shown in figure 4. The profiles of p.d.f.s normalized by ηTI are
similar with different Reynolds numbers (Reθ = 2000–13 000); in particular, the locations
and values of peaks in the p.d.f.s collapse together for all the Reynolds numbers. The p.d.f.
normalized by λTI depends strongly on the Reynolds number, as confirmed by the variation
of the peak value and location of the p.d.f. with the Reynolds number. Therefore, the mean
curvature of the irrotational boundary is well characterized by the Kolmogorov scale ηTI .
The DNS results for a temporally developing planar jet with jet Reynolds number 10 000,
(Reλ = 97) (Watanabe et al. 2019b) are also compared in figure 14(a). The p.d.f. of the
mean curvature hardly differs for the jet and TBL when they are normalized by ηTI . The
p.d.f. has a peak at HηTI ≈ −0.025, which indicates that a large part of the irrotational
boundary has curvature radius approximately 40ηTI . The length 40ηTI is the typical length
scale of velocity gradients in the outer logarithmic layer or outer layer (Jiménez 2013).
On the other hand, the mean curvature p.d.f. normalized by λTI for the jet (Reλ = 97)
collapses with Reθ = 10 000 (Reλ.TI = 90) for the TBL but differs for lower Reynolds
numbers, which also indicates that the p.d.f. normalized by λTI depends on the Reynolds
number. With flow visualization, previous studies observed small-scale vortex tubes within
the TNTI layer, and the interface forms around them (da Silva, Dos Reis & Pereira 2011).
The curvature of the TNTI is expected to be related to the diameter of the vortices or
the curvature radius of the vortex axis since both the curvature radius of the TNTI and
the length scale of vortex tubes scale with the Kolmogorov scale. This is geometrical
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Figure 15. The Reθ dependence of surface area of the irrotational boundary AIB.

information about the irrotational boundary, which is expected to be related to the turbulent
structure with a similar length scale beneath the irrotational boundary.

Figure 15 shows the surface area of irrotational boundary AIB normalized by LxLz.
Here, AIB/(LxLz) is around 2–4 and increases with the Reynolds number because of the
complex shape of the irrotational boundary at high Reθ , as shown in figure 4. The previous
study (Meneveau & Sreenivasan 1990) suggested that the surface area is related to the
fractal dimension of the irrotational boundary because the complex shape is caused by the
multiscale turbulent motions under the TNTI. Here, the box-counting analysis is conducted
to investigate the fractal characteristics of the TNTI (Prasad & Sreenivasan 1996). The
three-dimensional box-counting algorithm is applied to the irrotational boundary. First,
we divide the three-dimensional space into cubic boxes with size rbox, and then we count
the minimum number of boxes N(rbox) needed to contain the whole irrotational boundary.
The fractal dimension can be estimated with a power law N ∼ r

−Df
box , where Df is the

three-dimensional fractal dimension. Figure 16(a) plots N/(Lx/δ) against rbox/δ. The

power law N ∼ r
−Df
box is observed for a wide range of scales, suggesting that the irrotational

boundary is characterized by a fractal shape. Even though the results are similar for all Reθ ,
there are small variations with the increase of Reθ . The fractal dimension Df estimated
from N(rbox) with range 15ηTI < rbox < 0.5δ is plotted in figure 16(b). As the Reynolds
number increases, Df also increases. These values of the fractal dimension are slightly
smaller than Df ≈ 7/3 found in previous studies (de Silva et al. 2013; Zhuang et al. 2018)
for Reynolds numbers higher than in the present DNS, namely Reθ  13 000. However,
Wu et al. (2020) have reported Df ≈ 2.2 at a low Reynolds number (Reτ = 483), and
Borrell & Jiménez (2016) also showed that the fractal dimension is approximately 2.1–2.2
for Reτ = 1000–2000. Although Df tends to increase with Reθ , Df is not expected to
increase monotonically up to an infinite value with the Reynolds number. The increasing
trend of Df is possibly limited for small to moderately large Reynolds numbers.

The previous study (Meneveau & Sreenivasan 1990) suggested that the surface area can
be estimated based on the fractal dimension assumption A ∼ L2(η/L)2−Df . This can be
applied in the area of the irrotational boundary in TBLs as AIB ∼ δ2(ηTI/δ)

2−Df . Here,
L can be replaced by δ, which represents the large-scale length in TBLs. The scaling law
AIB ∼ δ2(ηTI/δ)

2−Df is also examined by plotting δ2(ηTI/δ)
2−Df /(AIBδ2/(LxLz)) against

Reθ in figure 17. The three-dimensional fractal dimension Df used here is obtained
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Figure 16. (a) Plots of N/(Lx/δ) against rbox/δ, where rbox is a box size, and N is the minimum number
of boxes with size rbox for covering the whole irrotational boundary. The red dashed line denotes 15ηTI for
Reθ = 13 000. (b) The Reynolds number dependence of the values of three-dimensional box-counting fractal
dimension Df .

from the three-dimensional box-counting method shown above, and AIBδ2/(LxLz)

represents the surface area of the irrotational boundary per δ2. From the figure,
δ2(ηTI/δ)

2−Df /(AIBδ2/(LxLz)) is approximately 1 and independent of the Reynolds
number; the surface area of the irrotational boundary also follows the fractal argument
of the interface. This result also indicates that the Df value obtained from figure 16(a)
expresses accurately the fractal dimension of the irrotational boundary even though it
is smaller than the 7/3 suggested in Sreenivasan, Ramshankar & Meneveau (1989) for
turbulent flows (TBL, jet, mixing layer, etc.). These results also indicate that the boundary
layer thickness and the Kolmogorov scale taken near the TNTI layer (yI/δTNTI = −2) are
the largest and smallest length scales relevant to the geometry of the irrotational boundary.

3.6. The entrainment process
The entrainment is often explained by the combination of the local transition from
non-turbulent to turbulent fluid near the TNTI and the non-turbulent fluid motions drawn
directly towards the turbulent region, which are often called nibbling and engulfment,
respectively (da Silva et al. 2014). Nibbling is also called local entrainment, which is
represented as the propagation of irrotational boundary. Engulfment is caused by the
large-scale motions in the flow, which draws directly the non-turbulent fluids towards the
turbulent region without gain of vorticity. Previous studies (da Silva et al. 2014) also show
that the growth of turbulence is caused mainly by the local entrainment in most types of
flow. In the present study, we analyse the entrainment with a focus on nibbling.

The velocity of the irrotational boundary (enstrophy isosurface) movement uI can be
written as a sum of fluid velocity u and the propagation velocity vP, i.e. uI = u + vP,
where vP = vnn is expressed with the local entrainment velocity vn and the interface
normal direction n. By the propagation of the irrotational boundary to the non-turbulent
region, non-turbulent fluids pass through the irrotational boundary to the turbulent region,
and this local entrainment velocity can be derived with the enstrophy transport equation
(Holzner & Lüthi 2011)

vn = D(ω2/2)/Dt
|∇(ω2/2)| . (3.4)
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Figure 17. The scaling of the surface area of the irrotational boundary AIB: δ2(ηTI/δ)
2−Df /(AIBδ2/(LxLz)).
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Figure 18. The p.d.f.s of the local entrainment velocity vn normalized by (a) Kolmogorov velocity length
scale uηTI , and (b) friction velocity uτ . The line colours represent the Reynolds numbers as shown in figure 3.

The p.d.f.s of the local entrainment velocity vn normalized by the Kolmogorov
velocity uηTI = (〈ε〉Iν)1/4 and friction velocity uτ are shown in figures 18(a) and 18(b),
respectively. Here, the positive value of vn indicates that the irrotational boundary
propagates into the non-turbulent region, and vice versa. Large probability appears
for vn > 0, indicating that the irrotational boundary frequently propagates towards the
non-turbulent region, which is similar to that found in Jahanbakhshi (2021) in the spatial
TBL (Reτ ≈ 500). For the p.d.f.s of vn normalized by uηTI , their shapes and peaks differ
depending on the Reynolds number. However, when vn is normalized by the friction
velocity uτ , the p.d.f.s for Reθ ≥ 4000 have a very similar shape although the profile is
different for Reθ = 2000. The local entrainment process is often considered to be caused
by the intense vorticity structures (worms) near the TNTI (da Silva et al. 2014). The intense
vorticity structures are found to have radius approximately 4η and length approximately 3l
(where l is the integral length scale) in HIT with Reynolds number range Reλ = 35–170
(Jiménez et al. 1993). For the present DNS, 3lTI satisfies 3lTI � δ according to the Reλ.TI
in table 3 and ηTI/δ in figure 13(a). Furthermore, Marusic, Mathis & Hutchins (2010)
showed that the small-scale component of u2 with streamwise length lx < δ in the outer
layer is also Reynolds-number-independent for moderate and high Reynolds numbers if it
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Figure 19. Normalized mean mass entrainment rate per unit horizontal area.

is normalized by the wall unit. In summary, the friction velocity is a reasonable velocity
scale that characterizes the local entrainment velocity as long as the Reynolds number is
not too small. Although the thickness of the TNTI layer scales with the Kolmogorov length
scale, the local entrainment velocity is not well characterized by the Kolmogorov velocity
scales. Previous studies on vortical structures within the TNTI layer have found that the
characteristics of the TNTI layer are explained reasonably by the flow around small-scale
vortex tubes (Watanabe et al. 2017a). As also observed for the TNTI layers in this study,
the length and velocity of vortex tubes have different scalings: the vortex diameter scales
with the Kolmogorov length scale while the velocity around vortices does not scale with
the Kolmogorov velocity (Kang, Tanahashi & Miyauchi 2007; Mouri, Hori & Kawashima
2007; da Silva et al. 2011). These scalings of the vortices may appear as different scalings
of the length and velocity scales of the TNTI layer.

The mean mass entrainment rate Em per unit horizontal area is calculated as Em ≈
〈vn〉AIB/LxLy, where the density is a constant due to the incompressibility. Figure 19
shows Em/uηTI and Em/uτ as functions of Reθ . The fractal analysis has suggested that
δ2(ηTI/δ)

2−Df /(AIBδ2/(LxLy)) ≈ 1, which yields AIB/(LxLy) ≈ (ηTI/δ)
2−Df . In addition,

the scaling law for isotropic turbulence ηTI/δ ∼ Re−3/4
θ can be used to obtain AIB/LxLy ≈

Re(3/4)(Df −2). Also, the p.d.f. of vn has suggested that 〈vn〉 scales with uτ . These relations
yield the scaling law for the mean entrainment rate as Em/uτ ∼ Re(3/4)(Df −2), which is
also compared with the DNS results in figure 19 as the dot-dash line. Here, Df = 2.15,
which is an average of all Reynolds numbers, is used. In the present DNS, the mean
entrainment rate Em normalized by uτ tends to follow this scaling law for Reθ ≥ 4000.
The departure from the scaling law for Reθ = 2000 is explained by two points: the
turbulence under the TNTI becomes far from an isotropic state at low Reθ , as in the
results for ηTI/δ in figure 13(a); the entrainment velocity 〈vn〉/uτ at Reθ = 2000 has a
different profile from higher Reynolds numbers, as shown in figure 18(b). These can be
explained in the following physical view: y/δν or y+ corresponding to the intermittent
region is very small for a low Reynolds number. Therefore, the small-scale turbulent
motions in the intermittent region are affected strongly by the viscous effects from the
wall, which result in a large viscous dissipation ratio for turbulent kinetic energy εTI ,
namely, a small Kolmogorov length scale ηTI . Similarly, the enhanced viscous effects
near the TNTI result in a large local entrainment velocity, which is dominated by the
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viscous effects on vorticity. However, the direct wall effects on the small-scale motions
in the intermittent region become weaker with the increase of the Reynolds number. On
the other hand, the large-scale motions in the intermittent region also become prominent
with the increase of the Reynolds number. Consequently, a larger proportion of small-scale
motions is generated from the large-scale motions by the scale-by-scale interaction in the
intermittent region at a higher Reynolds number. Therefore, the flow tends to be closer to
isotropic turbulence at a higher Reynolds number.

4. Conclusion

We performed DNS of the temporally developing TBL with a wide range of Reynolds
numbers Reθ from 2000 to 13 000 to investigate the Reynolds number dependence of
the TNTI layer. The grid spacing is determined so that the small-scale turbulent motions
near the TNTI layer are well resolved. The outer edge of the TNTI layer (the irrotational
boundary) detected as an isosurface of vorticity magnitude is smooth and looks similar
to those in free shear flows. The mean thicknesses of the TNTI layer (δTNTI), TSL (δTSL)
and VSL (δVSL) defined with the gradient of the conditional mean vorticity magnitude and
vorticity dynamics are approximately 15, 10 and 5 times Kolmogorov scale ηTI , where ηTI
is taken from the turbulent region near the TNTI layer. On the other hand, δTNTI , δTSL and
δVSL normalized by the Taylor microscale decrease with the Reynolds number. The profiles
of the conditional mean vorticity and the second invariant of the velocity gradient tensor
at different Reθ also collapse well when they are normalized by statistics taken near the
TNTI layer and the distance from the irrotational boundary is normalized by ηTI .

The conditional mean streamwise velocity 〈u〉I is almost constant within the VSL, while
〈u〉I increases rapidly towards the turbulent core region existing within the TSL. The mean
velocity jump across the TSL is the order of the r.m.s. streamwise velocity fluctuation near
the TNTI layer. The effects of the mean shear near the TNTI layer are evaluated with the
conditional shear parameter S∗

I , defined as the time scale ratio of the large-scale turbulent
motions to the mean shear, and the shear-to-vorticity ratio SI/ω

′
I . S∗

I is approximately 4
near the TNTI layer for all Reynolds numbers, indicating that the mean shear effects are
not significant on large-scale eddies. Here, SI/ω

′
I is approximately 0.1–0.2 and decreases

with the Reynolds number, which implies that the shear effects on the small-scale turbulent
motions are weak and tend to be isotropic with the increase of the Reynolds number.
The ratio between the smallest and largest scales of turbulent motion near the TNTI layer
exhibits the relation ηTI/δ ∼ Re−3/4

θ , except for the low Reynolds number case. Higher
isotropy near the TNTI at a larger Reynolds number has also been confirmed with the
second invariants of anisotropy tensors of Reynolds stress and vorticity.

The geometry of the irrotational boundary was also studied in terms of the mean
curvature and the surface area. A peak in the p.d.f. of the mean curvature normalized
by ηTI hardly changes with the Reynolds number, where most of the irrotational boundary
has curvature radius approximately 40ηTI , which is the typical length scale of velocity
gradients in the outer logarithmic layer and outer layer (Jiménez 2013). With flow
visualization, previous studies observed small-scale vortex tubes within the TNTI layer,
and the interface forms around them. The curvature of the TNTI is expected to be
related to the diameter of the vortices or the curvature radius of the vortex axis since
both the curvature radius of the TNTI and the length scale of vortex tubes scale with
the Kolmogorov scale. The surface area of the irrotational boundary increases with the
Reynolds number, where the Reynolds number dependence is consistent with the fractal
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analysis of the interface. The fractal dimension is measured as 2.14–2.20 and increases
slowly with the Reynolds number.

The entrainment process related to nibbling is investigated with the local entrainment
velocity and the mean entrainment rate. The p.d.f. of local entrainment velocity vn shows
that the friction velocity uτ is a reasonable velocity scale that characterizes the local
entrainment velocity vn. The mean entrainment rate per unit horizontal area Em normalized
by uτ follows the scaling law Em/uτ ∼ Re3/4(Df −2) for Reθ ≥ 4000.
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Appendix A. Numerical methods

The numerical code used in the present DNS is based on the fractional step method
with staggered grids as used in Watanabe et al. (2018b). The fully conservative central
difference schemes (Morinishi et al. 1998) are applied for spatial discretization, where the
accuracy is fourth order in the x and z directions, and second order in the y direction. The
third-order Runge–Kutta method is used for temporal advancement, while the biconjugate
gradient stabilized (Bi-CGSTAB) method (Van der Vorst 1992) is used to solve the Poisson
equation for pressure.

An early time period of the flow is simulated by using an implicit large eddy simulation
(ILES) like the one conducted in our previous study (Tanaka, Watanabe & Nagata 2019),
where the effects of subgrid scales are modelled implicitly by a tenth-order low-pass filter
presented in Kennedy & Carpenter (1994), while other numerical schemes are the same as
in the DNS. After the TBL fully develops in the ILES, the ILES results are used to initialize
the DNS. Here, the ILES is assumed to resolve most length scales of the flow (at least
scales greater than 20 times Kolmogorov scale) to fully recover the small-scale velocity
fluctuations in the DNS (Lalescu, Meneveau & Eyink 2013). The number of the grid points
used in the ILES (NxLES, NyLES, NzLES) for different Reynolds numbers is summarized in
table 4, which gives the grid sizes Δx ≤ 12η, Δy ≤ 3η and Δy ≤ 6η during the simulation.
Therefore, most length scales of turbulence in the TBL are resolved in the ILES. After the
DNS are switched from the ILES, time is advanced longer than the integral time scale. It
was confirmed that the present DNS at the end of the simulations reproduces well-known
small-scale characteristics of turbulence, and the details can be found in our previous study
(Watanabe et al. 2019b).
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Case Reθ NxLES NyLES NzLES

B02 2000 288 300 288
B04 4000 648 648 648
B06 6000 864 864 864
B08 8000 1152 1152 1152
B10 10 000 1458 1458 1458
B13 13 000 1728 1944 1728

Table 4. The number of grid points for LES used to initialize the DNS of the temporally developing TBL.

Appendix B. The effects of the computational domain size on the TNTI
characteristics

This appendix examines the effects of the finite computational domain size on the
characteristics of the TNTI layer because the large-scale structures in the streamwise
direction develop in the TBL. We have conducted additional DNS with a large
computational size in the streamwise direction Lx = 13.4δ at Reθ = 2000 (case LB02).
The initial conditions and numerical methods are the same as for the other simulations in
the present study. The computational parameters are displayed in table 5, where δ is taken
at the end of the simulation. Although the length of large-scale motions increases with the
Reynolds number, their length normalized by δ hardly increases with the Reynolds number
as investigated in previous studies (Lozano-Durán & Jiménez 2014; Sillero, Jiménez &
Moser 2014; Lee et al. 2017). Therefore, the comparison between B02 and LB02 is still
useful to assess the domain size effects on the TNTI for large-scale motions at higher
Reynolds numbers.

The statistics of the TNTI layer are compared between B02 and LB02. For both
cases, the same threshold ω̂th = 102.5 is used to detect the irrotational boundary. The
conditional profiles of mean vorticity 〈ω〉I and its derivative 〈ω〉′I = −d〈ω〉I/dyI with yI
are compared in figure 20(a), which is used to determine the mean thickness of the TNTI
layer. The difference between the two cases is very small and is expected to be caused by a
different level of statistical convergence because more samples are available in LB02. The
conditional profiles of Kolmogorov length scale ηI are shown in figure 20(b), where yI is
normalized by the mean thickness of the TNTI layer, δTNTI . The conditional profile of ηI
hardly differs between B02 and LB02. These results indicate that the conditional statistics
of small-scale quantities hardly depend on the domain size larger than 2πδ, which is used
in B02.

The domain size effect should also be examined for large-scale characteristics of the
TNTI layer. The large-scale properties of the TNTI layer assessed in the present work
are fractal dimension D and surface area AIB, which are examined by comparing B02
and LB02 in figure 21. Here, figure 21(a) shows the number of boxes needed to cover
the irrotational boundary. The results for B02 and LB02 are almost identical, and the
fractal dimension is evaluated accurately in B02. Figure 21(b) compares the surface area
AIB between LB02 and other DNS. The figure also includes DNS results of spatially
developing TBL by Borrell et al. (2013). The surface area is also hardly influenced by
the domain size. The present DNS results also agree with the spatial TBLs, which are
simulated with a large domain size in the streamwise direction. Therefore, the large-scale
properties of the TNTI layer in the present study are well resolved within the DNS with
Lx ≈ 2πδ.
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Figure 20. (a) Conditional mean vorticity and its derivative with respect to yI . (b) Conditional profiles of
Kolmogorov length scale ηI . The different colours of the lines represent cases B02 and LB02.
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Figure 21. The domain size effects on the fractal analysis and the surface area of the irrotational boundary.
(a) Plot of N/(Lx/δ) against rbox/δ, where rbox is a box size and N is the minimum number of boxes with size
rbox for covering the whole irrotational boundary. (b) The surface area of irrotational boundary AIB plotted
against Reθ . The green triangles represent the results of LB02 (Lx = 13.4δ), while the orange crosses represent
the DNS results of spatial TBLs in Borrell, Sillero & Jiménez (2013).

Case Reθ Nx Ny Nz Lx/D Ly/D Lz/D Lx/δ Ly/δ Lz/δ

LB02 2000 2048 648 512 112 76 28 13.4 9.1 3.4

Table 5. Computational parameters and computational domain size at the end of the simulation for case
LB02.

The influence of the domain size in the direction for which periodicity is assumed
has also been discussed in previous studies for channel flow (Lozano-Durán & Jiménez
2014; Abe, Antonia & Toh 2018). Their results show that the computational domain with
Lx = 2πh is large enough to reproduce the one-point statistics of DNS with Lx = 4πh or
Lx = 8πh, where h is the half-width of the channel. Also, Lozano-Durán & Jiménez (2014)
observed that the one-dimensional energy spectra in the streamwise direction computed
from the medium domain (Lx = 2πh) agree with those from the larger domain (Lx = 4πh)

964 A8-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

32
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.329


Re dependence of the TNTI in temporal TBLs

until they are truncated at the maximum wavelengths fitting in the domain. This has also
been confirmed with the two-dimensional spectrum (Lozano-Durán & Jiménez 2014),
which has been compared between Lx = 4πh and Lx = 8πh. del Álamo et al. (2004) also
observed that the resolved part of the velocity spectrum is not strongly affected by the
size of the domain. Lozano-Durán & Jiménez (2014) found that even the identified uv

structures with length close to the box size (lx > 3h, Lx = 2πh) are strongly affected by
the box size, which is caused by the accumulation of structures that are longer than the box
size Lx, but the uv structures with smaller length are not affected by the domain size. Based
on these observations, Lozano-Durán & Jiménez (2014) argued that even though the large
structures with lx > Lx are essentially infinitely long in a small computational domain with
Lx ≈ 2πh with the periodic boundary conditions, their interaction with the well-resolved
scales is represented correctly. This argument was also confirmed by a comparison of
two-point correlations between different domain sizes in channel flow, which was also
found to be Reynolds-number-independent (Sillero et al. 2014). These results are also
related to the negligible influences of the domain size on the characteristics of the TNTI
layer.

In conclusion, the small-scale motions and large-scale properties related to the TNTI in
the present work are all well replicated in our present DNS with domain size Lx = 2πδ.
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