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O N T H E A S S O C I A T E D L I E R I N G A N D T H E A D J O I N T 
G R O U P O F A R A D I C A L R I N G 

BY 

H A R T M U T L A U E 

ABSTRACT. We investigate connections between the associated 
Lie ring and the adjoint group of a radical ring, studying their upper 
central chains. Part of a conjecture of S. A. Jennings is proved, and 
one of our results improves a theorem of his. 

It was shown by S. A. Jennings [3] that the associated Lie ring of a radical 
ring is nilpotent if and only if its adjoint group is nilpotent. He conjectured the 
nilpotency classes of both structures coincide in this case, and he could prove 
this for a nilpotent algebra of characteristic 0. Studying the upper central chain 
of the Lie ring, we sharpen this result, and prove part of Jennings' conjecture 
(one inequality). Finally we show the first two centers of the adjoint group and 
the associated Lie ring of a radical ring consist of the same elements, which 
hints that Jennings' conjecture might be true even in a sharper form. 

Let (R, + , •) be an associative ring.1 For a,beR let 

a°b = ab-ba (Lie product), 

a*b = a + b + ab (circle composition). 

Then it is well known that (R, + , °) is a Lie ring (called the associated Lie ring 
of (R, + , •), and (R, *) is a semigroup, which is a group (and then called the 
adjoint group of (R, + , •)) if and only if (R, + , •) is a radical ring. In general, let 
Q(R) denote the set of quasi-regular elements of R, i.e. the set of invertible 
elements of (R, *). Then (Q(R), *) is a group which acts by conjugation on the 
ring (R, + , •) (hence a fortiori on (JR, + , °)). One easily checks the formula 

(1) For all aeQ(R),beR â*b*a = b + ba + âb + âba.2 

All characteristic subrings of (R, + , •) (resp. (R, + , °)) are invariant under the 
action of Q(R). In particular this is true for the members of the upper central 
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(1) We do not assume that R contains a unit element. 
(2) â denotes the inverse of a, with respect to *. Clearly a°a = 0. 
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chain of (R, + , °) which are defined as follows: 

Z o = 0, 

and for each ordinal a > 0 

{z\zeR, z°re Z(X^1 for all reR} if a is not a 
. , „ limit ordinal. 

, U Z * else 
l^3<a CISC. 

The Lie ring (1?, + , °) is nilpotent if and only if there is an integer n such that 
Zn = R, in which case the smallest integer n with this property is the class of 
CR, + , °). We have 

(2) For all a,beR, a * b = b * a O a b = 6 a O a ° b = 0, 

whence centralizers with respect to *, °, • are identical. In particular, Zx is the 
center of the semigroup (R, *). We start investigating the upper central chain 
with 

LEMMA 1. Let (R, + , •) be an associative ring. For all ordinals a we have 
(i) (Za, + , •) is a subring of (R, + , •)• 

(ii) Q(ZJ = ZotnQ(R). 

Proof. We have the "semi-Jacobi identity" 

(3) For all a,b,cGR (ab)°c + (ca)°b + (bc)°a =0 

by means of which we prove 
(i') Let (17, +) be a subgroup of (R, +) and 

Z: = {z\ zeR, z°reU for all reR}. 

Then (Z, + , •) is a subring of (R, + , •)• 
We have to show Z is closed under the ring multiplication. For zu z2eZ, 

reR, we have by (3) 

(zxz2)°r = zxo(z2r) + z2°(rzt)e U, 

thus ztz2eZ. This gives (i') which implies (i). Next we claim 
(ii') Let (U, + , o) be a (Lie) ideal of (JR, + , <>) and 

Z: = {z\zeR, z°reU for all reR}. 

Then Q(Z) = ZnQ(R). 
Easy calculations yield the following preparatory identities: 

(4) For all a,b,ceR a°(bc) = (a°b)c + b(a°c). 

(5) For all a,b,ceR (ab)°c = a(b°c) + (a°c)b. 

(6) For all a e Q(R), beR à°b = b°a + â(b °a)4-(b°a)à + â(b°a)â. 
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Be means of (4), we get in the situation of (ii') 

(7) Forall zeZ,z',reR z °z ' = 0^> {z°r)z'e U, 

since (z ° r)z' = (z ° r)z' + r(z ° z') = z ° (rz') G U. NOW we can prove (ii'): By (i'), 
(Z, + , •) is a subring of (R, + , •), and we have Q(Z)çZf ïQCR) . Suppose 
zeZnQ(R). Then by (6) and (7), we have for all reR 

z°r = z(r° z)z = ((r ° z)z)z mod 1/ 

= ( r °z ) (z ) 2 ^0 modi / , 

by (2) and (7). Therefore ZGZ, proving (ii'). 
Now (ii) follows by an easy induction argument: For a=0, (ii) is trivial. Let 

a>0 and suppose (ii) is true for all ordinals <a . Then if a is not a limit 
ordinal, we put (7: = Z a _ 1 and apply (ii'). But if a is a limit ordinal and 
z eZar\Q(R), then there is an ordinal |8 < a such that zeZ^nQ(R), and the 
induction hypothesis yields z eQ(Z(i)^\Jy<0iQ(Zy) = Q(Z0C). Since we also 
have Q(Za) ç Z a Pi Q(R), this gives equality, and the proof of (ii) is complete. 

We now show that Q(R) not only normalizes the members of the upper 
central chain but also centralizes the factor groups (Zn/Zn_1? +), for all natural 
numbers n: 

LEMMA 2. Let (R, +, •) be an associative ring and n a natural number. 
Then for all z G Zn, a G Q(R) we have â*z*a-ze Zn_1. 

Proof. We show by induction on n 

(8) Forall zeZn,a,a'GR a°a'= 0^ a(z°a')eZn^1. 

For n = l, this is clear. Let n > l , and assume for all y e Z n _ 1 and for all a, 
a'eR such that a ° a ' = 0 we have a(y°a')eZn_2. Suppose zeZn, a, a'eR 
such that a o a ' = 0, and frejR. Then by (4) and (5) 

(z o (ba')) oa = ((z°b)a' + b(z ° a')) ° a 

= ((z °fc)°a)a' + (b°a)(z °a') + M U ° a') ° a) 

= a'((z ° fc ) o a) - (a (z° a')) ° b + (z ° a') ° (ba) 

- ((z °a')ob)°a + ((z °b)°a)° a'. 

Since z°beZn_1, our induction hypothesis yields (a(z °a ' ) ) °6eZ n _ 2 , whence 
we conclude a f z o a l e ^ , i.e. (8). 

Now if z G Zn, a G O(JR) , we have by (1) 

â*z*a — z = za + âz + âza 

= z°a + â(z°a) 

due to (8). This proves our lemma. 
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As a corollary, we have the following theorem which is half of Jennings' 
conjecture on the nilpotency classes of (R, + , °) and (JR, *): 

THEOREM 1. Let (R, + ,-) be a radical ring, and suppose the associated Lie 
ring (R, + , °) is nilpotent. Then the group (R, *) is nilpotent, and cl(JR, * ) ^ 
c\(R, + , ° ) . 

Proof. Put I : = c\(R, +, °). The group (R/Z(R), *) acts faithfully on (R, + ) 
and, by Lemma 2, stabilizes the chain 

0 = ZQ<Z1<- • <Zi=JR. 

By a theorem of Kaloujnine [4], this implies (R/Z(R), *) is a nilpotent group, 
and its class is strictly smaller than the length of the stabilized chain, i.e. 
cl(R/Z(R),*)<L Hence (R, *) is nilpotent as well, and cl(jR, *) = '. The 
proof is complete. 

Assuming (JR, + , •) is a nil algebra over a field of characteristic 0 such that 
(JR, + , °) is nilpotent, Jennings [3] proved the equality c\(R, *) = cl(R, + , °). In 
fact, under these assumptions a stronger result holds: 

THEOREM 2. Let (R, +, •) be a nil algebra over a field F of characteristic p. 
Suppose p = 0 or Rp =0, and assume (R, + , °) is nilpotent. For every nonnega-
tive integer n, let (Yn, *) denote the nth member of the upper central chain of the 
nilpotent group (R, *). Then Yn = Zn. 

Proof. For every finite subset T of R and for each integer d>\T\ we write 
T (d ) for the Lie sub algebra of (R, + , °) which is generated by the elements 
(• • • (a0 ° at) ° • • • ) ° ak such that k +1. > d and T = {a0, a 1 ? . . . , ak}. Since the 
factors in such a Lie product run through all of T, we have 

(9) T H Z d t 0 4>T ( d + 1 ) -O forall d > | T | . 

Let N be the set of all natural numbers if p = 0, resp. the set of all natural 
numbers < p if p^O. Let ' "^ be the unique nontrivial homomorphism of the 
ring of integers into F, and put 

e:R-*R,a^ X (Vkl)ak. 

(This sum is finite even if p = 0, since R is nil.) If p = 2, our theorem is trivial. 
We thus assume p=|r2, in which case the Campbell-Hausdorff formula [1, III, 
5.] yields 

(10) For all a,beR there exists an element ce{a, b}(3) such that 
e(a) * e(b) = e(a + b + \a ° b + c). 

(The reader will readily verify that under the hypotheses of our theorem, the 
Campbell-Hausdorff formula also applies in the case p > 0 , the summation 
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breaking off after p - 1 summands.) Since e is a permutation of R, e is invertible 
by a mapping I, viz. 

\:R^R,a^Z ((-l)k+1lk)ak, 
keN" 

and from (10) we conclude 

(11) For all a, b e R I(e(a)*e(b)) = a + b + \a ° b mod{a, b}(3). 

Since a°(—a) = 0, we have {a, -a}(3) = 0, and by (10) consequently e(a) = 
e(—a). Thus (11) yields 

I(e(a) *e(b) *e(a) *e(b)) = I(e(-a) *e(-b) *e(a) *e(b)) 

= a°b mod{a, b}(3). 

Inductively, we conclude for * -commutators (denoted by brackets) of arbitrary 
length: 

(12) (Jennings [2, 6.1.6]) For all a0,..., a^ e R 

!([• • • [a0, a j , . . . , a j ) = (- • • (I(a0)°l(a1))o • • • )ol(an) 

mod{l(a0) , . . . , l (an)} (^2 ) 

where we have switched from t{at) to ah from at to Ko»). 
From Lemma l(i) we get 

(13) For all aeR aeZ„ <=>\(a)eZ„. 

We can now show the equality Yn= Zn: Suppose first aeZn. Then by (13), 
1(a) e Z^, thus for all bu ..., bn e R, by (9) and (12), !([• • • [a, b j , . . . , bn]) = 0, 
i.e. [• • • [a, b j , . . . , bn] = 0, yielding a e Yn. Thus Zn ç Yn. In order to prove 
the reverse inclusion we show by induction, putting c := cl(i^, + , °): 

(14) Yn^Zc_t for 0 < i < c - n . 

This is trivial for i = 0. Assume Y^^Z^^x for an integer m>n. We have to 
show Yn^Zm. Let aeYn. Then by (13) and our induction hypothesis, 1(a) e 
Z m + 1 , and for all bu . . . , bm e R we have {1(a), I f o ) , . . . , I(bm)}(m+2) = 0, by (9). 
Since m > n , (12) yields (• • • (1(a)olfa))** • • •)°l(6m) = 0, therefore 1(a)eZ^, 
and finally, by (13), a G Zm. This proves (14) which in the special case i = c — n 
reduces to the desired inclusion Yn ç Z„. The proof of our theorem is com
plete. 

This proof does not give any hint how to get rid of the hypotheses of our 
theorem and prove the equality of the upper centers, say, for arbitrary radical 
rings, to put it in a most optimistic way. We have noted above that Zx and Yx 

are equal. This result being trivial, we found it on the other hand far from easy 
to treat the second centers and prove equality in the end: 
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THEOREM 3. Let (R, 4-, •) be a radical ring and (Y2, *) the second center of 
the group (R, *). Then Y2 = Z2. 

Proof. We shall need the following simple but powerful rule: 

(15) For all a,beR a + ab=0^>a=0. 

For a + ab = 0 implies a*b = b, hence a = a*b*b = b*b = 0. (This shows (15) 
is true in arbitrary rings .R if we suppose beQ(R).) Similarly: 

(16) For all a,beR a + ba = 0^>a = 0. 

From (1), one easily deduces the following formula for the commutator 
[a, b~\ = à * b * a * b : 

(17) For all a,beR [a, b] = a ° b + (â *b)(a°b). 

The first main step of our proof is the following statement: 

(18) If zeY2, then ( z ° a ) ° a = 0 for all aeR. 

To this end, suppose z e Y2. Then for all a e R we have [z, a] G Z(R), hence by 
(17) and (5) 

0 = [z, a]°(a *z) 

= ( z ° a + ( z*â ) ( z °a ) ) ° ( a *z) 

= ( z ° a ) ° ( a * z ) + (z* â)((z ° a ) ° ( a * z)), 

as (z * â) ° (a * z) = 0. Now (16) yields 

(19) For all aeR (zoa)°(a +z + az) = 0. 

This implies (z°(a + z)) ° ((a + z) + z + (a 4- z)z) = 0, hence 

(20) For all a e £ ( z °a ) ° ( a + az) = 0. 

Now (19), (20) imply 

(21) For all aeR ( z ° a ) ° z = 0 , 

and (19), (21), (4) yield 0 = (z°a)°a + (zoa)o(az) = (z°a)oa + ((z°a)oa)z. 
Applying (15), we see that (18) holds. 

The second step of our proof is 

(22) If z e R and ( z ° a ) ° a = 0 for all aeR, then [z, a] ° b = (z ° a) ° b + 
(z *â)((z °a)°i)) for all a,beR. 

Under the hypothesis of (22), we have (z°(a + b)) °(a + b) = 0 for all a,beR, 
whence 

(23) For all a, beR ( z °a )ob + ( z 4 ) o a = 0, 
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and in particular 

(24) Forall aeR ( z ° a ) ° z = 0 . 

Moreover, 

(25) Forall a, beR (b°â) (z°a) = 0, 

as (23), (4) and (5) yield 

0 = (z° (ba)) ° à + (z ° à) ° (ba) 

= ((z ° b)a + b(z © a)) ° â + ((z °â)° b)a + b((z ° â) ° a) 

= ((z 4 ) ° â)a + b((z ° a) ° â) + (b ° â)(z ° a) 

+ ((z °â)° b)a + b((z ° â) ° a) 

= (fc°â)(z°a). 

In a similar way, but using (24) additionally, we get 

(26) For all a, i> e # ( z ° b)(z ° a) = 0, 

because 

0 = (z ° (za)) ° b + (z ° b) ° (za) 

= (z(z o a)) ° b 4- ((z °i))° z)a + z((z °5)°a) 

= (z((z ° a) ° b) + (z ° b)(z ° a) + z((z ° b) ° a) 

= (z°b)(z°a) . 

Furthermore, (2) and the hypothesis of (22) yield 

(27) Forall aeR ( z ° a ) ° a = 0. 

Applying (5), (25), (26) and (27), we calculate 

((z * â) ° fr)(z °a) = (z° fr)(z °a) + ( â ° 5 ) ( z ° a ) + ((zâ) ° b)(z ° a) 

= z(â ° b)(z °a) + (z° b)â(z ° a) 

= 0 

for all a, beR. This implies (22), since for all a, beR we have by (5) and (17) 

[z, a]°b = (z °a + (z * a){z °a))°b 

= ( z o a ) ° H ( ( z * â ) ° b)(z °a) + (z* â)((z °a)°b) 

= (z°à)°b + {z* â)((z ° a) ° 5). 

Now we are ready to prove the desired equality Y2 = Z2. Suppose first 
zeZ2. Then obviously the hypothesis of (22) is satisfied, and for all aeR we 
consequently have [z, a]eZ(R), whence zeY2. Conversely, suppose zeY2. 
Then, applying (18), we see that again the hypothesis of (22) holds. Hence 
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(z°a)°b + (z *a)((z°a)°b) = 0 for ail a,beR. But (16) now yields (z°a)°b = 
0 for all a,beR, i.e. z e Z2 . Our proof is complete. 
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