
Canad. Math. Bull.Vol. 35 (1), 1992 pp. 126-132 

AUTOMORPHISMS AND DERIVATIONS 
OF SKEW POLYNOMIAL RINGS 

MARY P. ROSEN AND JERRY D. ROSEN 

ABSTRACT. For a prime ring R and a G Aut(R), we determine the group of R-
stabilizing automorphisms of the skew polynomial ring R[x; a]. In the case where R is 
simple, we characterize the X-inner automorphisms of R[x\ a]. We also provide neces
sary and sufficient conditions for a a -commuting derivation of a prime ring R to extend 
to a derivation of R[x; a]. 

Skew polynomial rings have played an increasingly important role in noncommutative 
algebra during the past twenty years. They provide an abundant source of examples and 
counter-examples and are a good testing ground for various concepts. For instance, the 
Jacobson radical, ideal structure, extended centroid, and Krull dimension have all been 
determined for skew polynomial rings. Recently, in [4], they were used to illustrate that 
the Martindale quotient rings Qi, Qr, and Qs are not closed (i.e., the repetition of the 
construction may produce a properly larger ring). Note that skew polynomial rings figure 
prominently in two recent texts [1,3] on noncommutati ve noetherian rings. 

In this paper, we determine the group G of R-stabilizing automorphisms of the skew 
polynomial ring R[x; a] where R is prime and a is an X-outer automorphism of R. We 
characterize these automorphisms in terms of units of/? and certain subgroups of Aut(7?). 
Specifically, we prove that Gj ZU = H where ZU is the group of central units of R and 
H is the preimage of the centralizer of à under the canonical epimorphism Aut(/?) —> 
Aut(R)/ lnn(R). Furthermore, if every unit of R is central, then G is isomorphic to the 
semidirect product of ZU with H where, in this case, H is the centralizer of a in Aut(/?). 

If R is a simple ring, we determine the normalizing elements and hence the X-inner 
automorphisms of R[x; a]. We use our results to construct an example of a prime ring R 
having the property that for any integer n > 1, there exists an X-outer automorphism (f 
of R such that <pn is X-inner. As another application, we compute certain Galois groups 
of the type Ga\(R/ RG) where R — F[x; a ] , F a field. We prove that if a has finite period 
and G = Xinn(tf), then Gal(/?/ RG) = G. 

Finally, we determine the /^-stabilizing derivations of R[x; a] where R is prime. We 
prove that if 6 is a derivation of R such that è a — ob then b can be extended to a 
derivation (also denoted b ) of R\x\ a] if and only if b (x) = g(x)x with g(x) e C[bxm] C\ 
R[x; a], where C is the extended centroid of R, b an /^-normalizing element, and m a 
nonnegative integer. 

We now provide some background material. Let R be a prime ring and let Q = Q(R) 
denote its (left) Martindale ring of quotients. The construction of Q has become standard 
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and we refer the reader to [4, Chapter 3] for the details. The following lemma summarizes 
the main properties of Q and characterizes Q up to isomorphism. 

LEMMA 1. Let R be a prime ring. Then Q satisfies 
(1) RÇQ with the same 1, 
(2) ifq G Q, then there exists 0 ^ A < R with Aq Ç R, 
(3) ifq G Q andO ^ A<R withAq = 0, then q = 0, 
(4) if(j>\RA—*RR is given with 0 ^ A<R, then there exists q G Q with aq = a<j) for 

all aeA. 
Furthermore, Q is uniquely determined by these properties. 

The extended centroid of/?, denoted C(R), is the center of Q. C(R) is a field containing 
Z(R), the center of R. Any <j> G Aut(/?) has a unique extension to Q. <j> is said to be 
X-inner if there exists a unit q G Q such that <f>(r) = lq(r) = qrq~l for all r G R. 
Otherwise </> is X-outer. Let Xinn(/?) be the group of X-inner automorphisms of R. Note 
that lnn(R) < Xinn(R) < Aut(R). lq is X-inner if and only if q G N(R), the subgroup of 
Q consisting of /^-normalizing elements. Let U(R) denote the group of units of/?. 

For a ring R with a G End(/?), let R\x\ a] denote the ring freely generated by R and JC 
subject to the relation xr = a(r)x for all r G R. R[x; a] is called the skew polynomial ring 
over R with respect to a. If a G Aut(R) and R is prime, then so is R[x; a]. For / G Z+ and 
a G /?, let Ni(a) = aa(a) • • -al~l(a). A derivation of any ring R is an additive mapping 
è:R-^R satisfying S (rs) = rè (s) + S (r)s for all r,s e R. 

LEMMA 2. (I) Let R be any ring with <j>, a G End(R). Then (j> extends to an endo-
morphism (also denoted <j> ) ofR[x; a ] if and only if<\> (JC) = ££=o atx* where a\al (à> ( m = 
<j> (o (r)) at for all r G R and all i. 

(2) Let Rbe a prime ring with <j>, a G Aut(/?). Then <j> extends to an automorphism of 
R[x; a] if and only if<f> (JC) = ax + bfor some a G U(R), b G R satisfying 

(i) aa(<k(r)) = <t>(a(r))a, 
(ii) b<t>(r)=<j>(a(r))b 

for all r G R. Furthermore, if a is X-outerf then b = 0. 

PROOF. (1) R[x\a] is freely generated by R and JC subject to jcr = a(r)x for all 
r G R. Thus if S is any ring and <j>:R —• S is a homomorphism, then </> extends to a 
homomorphism </> : /?[JC; a] —• S with (/> (JC) = y if and only if y</> (r) = </> (cr(r))y for all 
r G /?. Suppose <j> G End(/?) and at e R(i = 0 , 1 , . . . , n) satisfy a/a'(</>(r))= (/> (a(r))«/ 
for all r G /?. Setting <j> (JC) = £"=0 î*1'» w e have 

c/>(JC)(/>(r) = J2 <*&*{<!> if))* = <t> {°(r))<l> (*) f o r all r G /?. 
i=0 

Hence </> defines an R-stabilizing endomorphism of R[x; a]. The converse is clear. 
(2) Suppose <j> is an R-stabilizing automorphism of R[x; a] with <f> (x) = ax11 + • • • By 

(1), aan((j)(r)) = cj> (a(r))a for all r G R which implies a G N(R). Now (/> onto gives 

x = <f)(cxm+ '•-) = <t)(c)an(a)cr2n(a) • • •a(m-1)n(«)jcmn + • • • 
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If mn > 1, then </>(c)an(a) • • -cr(m-l)n(a) = 0 and a G N(R) implies (^(c) - 0 yielding 
c = 0, a contradiction. Thus m = n = 1 and so <j){x) = ax + b with a G U(R). 
Furthermore, (i) and (ii) follow from (1). If b ^ 0, by (ii) we have b G N(R) and a is the 
X-inner automorphism determined by <j> ~l(b~l). The converse can be easily checked. • 

Let R be prime and a X-outer. Let G denote the group of/^-stabilizing automorphisms 
of R[x; a]. Every element of G may be expressed as 4>a where <j>a{x) = #* and <j> G 
Aut(/?), a G U(R) satisfy <j> (a(r))a = aai^irj) for all r € R. This last equation implies 
<\>a — Iaa(f) and hence <j> G C(â)(thecentralizerofâ)in Aut(/?)/ Inn(/?). Consequently, 
<j> G / / = the preimage of C(â) under the canonical homomorphism. 

THEOREM 3. Let Rbea prime ring and a X-outer with G, H as above. Let ZU denote 
the group of central units ofR. 

(1) ThenG/ZU^H. 
(2) If every unit ofR is central, then G is isomorphic to the semidirect product ofZU 

with H. In this case, H = C(cr) in Aut(R). 

PROOF. (1) If a G ZU, then \a G H (where \a{r) = r, la(x) = ax). The mapping 
given by a —• \a is an embedding of ZU into G. Now the restriction map (to R) determines 
an epimorphism G —+H given by (j>a —• </> with kernel ZU. Hence Gj ZU = H. 

(2) If all units of R are central, then H — C(cr) in Aut(/?) and <j> —> <j>\ embeds H in 
G. Furthermore, H D ZU = 1 and G — H - ZU (since <f>a = 0i o l^-i(a)), completing the 
proof. • 

We now determine Xinn(/?[;c; cr]) when R is simple. If, in addition, R is a simple do
main, we show every X-inner automorphism of R[x; a] stabilizes R. In this case, we will 
find necessary and sufficient conditions on <j> and a which guarantee </>a G Xinn(/?[;c; a]). 
The results in the following lemma are well-known and their respective proofs can be 
found in [2] and [5, p. 144, Exercise 12]. 

LEMMA 4. (l)IfR is prime and a G Aut(/?), then C(R[x; a]) is isomorphic to the 
field of fractions ofZ(R[x; cr]). 

(2) IfR is simple and A < R[x; cr], then A = R[x; a^g where g is central and n>0. 

THEOREM 5. IfR is a simple ring, then 

N(R[X;CT]) = {uxmz | u G U(R[x;a]),z G C(R[x;a]\m G Z}. 

IfR is a simple domain with a X-outer, then 

Xinn(/?[jc; a]) = {<t>a \ a = ua(u~l), (j> = Iua
m where u G U(R) and m G Z} . 

PROOF. Set S = R[x; a] and let 0 ^ a G S H N(S). Then 5a is an ideal of 5; so 
by Lemma 4 (2), there exists (3 = xng, g central, with Sa = Sf3. Thus a — uf3 = «va 
and a regular implies uv = 1. Similarly /? = va = vu/3 and thus VM = 1 which gives 
a = uxng where M G U(S). 
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Choose 0 / 7 G N(S) and let 0 ^ A< S with Al Ç S. Then A = Sr) where t) =x£h,h 
central. Now 0 ^ 777 G SPl N(S) and thus r/7 can be described as above; say 777 = uxng. 
Solving we get 7 = ux"'1gh~\ the desired result. From this it is clear that any X-inner 
automorphism of S is of the form Iua

m where u G U(S) and m G Z. 
If /? is a domain, then £/(S) = U(R) and hence any X-inner automorphism of S stabi

lizes R. Thus, if a is X-outer and Iuxm G XinnCS), then Iuxm = <\>a. Now for all r G R, 

^(r) = </>fl(r) = / ^ ( r ) = (/tta
w)(r), showing 0 = Iua

m\ 

Furthermore, ax — (j)a(x) = Iu^i*) = ua(u~x)x, which gives a — ua(u~l). Conversely, 
consider <j>a with a — ua(u~l) and <j> = luG

m> Thus for all r G R, 

4a(rjt) = <l>(r)Ni(a)xf = /^"(r^i icrV"1)*1 ' = ua^^a^u'1)^ 

= wam(r)jc/«"1 = UGm(r)xmxix-m\Tx = {ivTyxXux"1)-1 

= ^(rx*), 

proving </>a = Iuxm e Xinn(S). • 
We provide an example of a prime ring having the property that for any n > 1, there 

exists an X-outer automorphism <p such that (pn is X-inner. 

EXAMPLE ( 1 ). Let Q(t) be the field of rational functions over Q. Let a : Q(t) —• Q(t) 
be the Q-automorphism given by t —• t + 1. Set /? = ô(0[*; 0"]- By Theorem 5, 

Xinn(fl) ={(j>a\a = ua(u~x),u G Q{t)*,(j> G ( a ) } . 

Note that ai = Ix G Xinn(#). For any n > 1, define r : g(f) —• g(f) to be the £>-
automorphism given by t —• t + (1 / n). Since rcr = <JT, it follows that T\ G Aut(/?) by 
Theorem 3 (2). Also T j£ (a) implies T\ is X-outer. Since (r\)n — a\, we have (r\)n is 
X-inner. 

If # is a ring and S is a subring of R, let 

Gal(/?/ 5) = { G G Aut(#) | a(s) = s for all s G 5} . 

Montgomery and Passman prove that if R is a prime ring and G is a subgroup of Aut(/?) 
satisfying certain technical conditions (i.e., G is an N-group), then Gal(/?/ RG) — G. 
We refer the reader to [4, Chapter 7]. In Theorem 6 and Example (2), we determine 
Gal(/?/ RG) for R = F[x; a] , F a field, and various subgroups G of Aut(R). We remark 
that these groups are not N-groups. Suppose a G Aut(F) is of finite period m. Recall 
that for any j G Z+ and a G F, A (̂tf) = tfa(tf) • • -aj~l(a). The norm of a is defined to 
be Nm{a). a has norm 1 if and only if a = ba(b~l) for some b G F*. Let N denote the 
subgroup of F* consisting of those elements of norm 1. 

THEOREM 6. Let F be a field with 1 ^ a G Aut(F) of finite period and let J be 
a finite subgroup of C(a). Set R = F[x\a] and G = {4>a \ a G N, <j> G 7}. 77ien 
Gal(/?//?G) = G. 

PROOF. Let a have finite period m. We first claim that for any j not divisible by m, 
there exists /?GN such that A(/(fr) ^ 1. Let a G F* satisfy ^'(a) 7̂  « and let b = aa(«_1). 
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Then Nj(b) = aaj(a~]) ^ 1. We now show RG = FJ[xTl Note that if c G N, then 
Nim(c) = 1 for all / G Z+ and hence the inclusion D follows. Let E^x* G /?G. Then for 
any 6 G N and </> G 7, we have 

$>,V - ME*.*1') = E<M )̂Awy, 

showing a, = <j>{ai)Ni{b). Thus if a, ^ 0, iV;(b) = N,-(c) for all Z?,c G N. We claim that 
m\ i. Otherwise i = km + £ where 0 < I < m which implies N((b) = Nkm(b)okm{Nt (b)) 
— Nt(b) and hence A^(£) = Ni(c). Thus we can choose Ni(b) ^ 1 and taking c = 1, 
we obtain a contradiction. Therefore m | /, at = (/>(«/), and EÛ/JC* G /^[JC"1] as desired. 

Let <t>a G Gal(/?//?G). In particular, x"1 = ĉ C*"1) = Nm(a)xm implies a G N. Also for 
all fr G F7, fr = (j)a(b) — 4>(b). Thus <\> G Gal(F/ F7) = J (since 7 is a finite subgroup 
of Aut(F), we may apply Artin's Theorem) and Gal(R/ RG) < G. The other inclusion is 
clear. • 

Note that if J = (a) in the preceding theorem, then Ga\(R/RG) = G for G = 
Xinn(#). We give an example to show this result may fail if a has infinite period. 

EXAMPLE (2). Let R = Q(t)[x; a] as in Example (1) with G = Xinn(fl). We claim 
that RG = Q. If E h* G #G , then for all u G Q(t)\ we have 

EM1' = ̂ (M->)(E^) = E^(W(^("_1)y. 

Taking « = 1, we get a (hi) — ht and hence, if there exists i / 0 such that hi ^ 0, 
then Ni(uo(u~x)} = ual(u~l) — 1 for all u G Q(t)*. This implies a' is the identity on 
Q(t), a contradiction. Hence E/i/^ = h0 G g(0 a = Q, proving #G Ç g. The other 
inclusion is clear. By Theorem 3 (2), Aut(R) = {<f>q \ q G Q(t)*,(f> G C(a)}. Since 
every automorphism of Q(t) fixes Q, we have Ga\(R/ RG) = Aut(/?) ^ G. 

The next two results characterize the derivations of R[x\ a] when R is prime. 

THEOREM 7. L f̂ /? be any ring with a G End(R). Suppose 8 is a derivation of R 
satisfying 8 a = a 8. Then 8 can be extended to a derivation (also denoted 8 ) ofR[x\ a] 
if and only if 6 (x)r = a(r)8 (x)for all r G R. 

PROOF. If 8 extends to a derivation of R[x\ a], then 

8 (x)r + o(8 (r))x = 8 (x)r + x8(r) = 8 (xr) = 8 (a(r)x) = a(r)8 (x) + o(8 (rj)x, 

giving the desired result. 
Now let 8(x) G R[x;a] satisfy 8(x)r = a(r)8(x) for all r G R and define 8(xm) 

recursively by8(xm) = x8 (JC"1"1 ) + 8 (x)xm~l for m > 1. For all r G R and m > 0, define 
£ (rxm) = r8(xm) + 8 (r)jt"1. It is easy to verify by induction that 

(i) 8(xe)r = ae(r)8(xt) 

(ii) 8(xl+m) = xl8(xm)+8(xi)xm 
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J+m 

for all r G R and I, m > 0. We first check 6 on monomials. For all r,s G R and I, m > 0, 

= r ^ ( s ) ( j c^ ( ;0 + 5 ( ^ ^ 

= rc* j£ (je"1) + r<7* (6 (s))xi+m + r<r£ (s)S (xl )xm+6 (r)al (s)x£ 

= rxl (seCO + <$(s)jr) + (r<5(xe)+ 6(r)xl)sxm 

= rxt8(sxm) + b{rxt)sxm. 

Now S (£/ bijd J2j CjX>) = £lV « ( f c^V) = ^(b^S (cjxJ) + « (b^cp?) 

= (E^XE^M)) + (E W)) (£^) 

= (E **0 s (E ô )+« (E ̂ )(E oA 

which proves 5 is a derivation. • 
Theorem 7 reduces the question of determining the derivations of R[x; a] to finding 

those/ G R[x;a] which satisfy f(x)r — a(r)f(x) for all r G R. In the following result, 
we determine these polynomials when R is prime and a G Aut(/?). 

THEOREM 8. Let R be a prime ring with a G Aut(#) and f(x) G /?[*;cr]. 77œ/i 
f(x)r = a(r)f(x)for all r G R if and only iff(x) = g(x)x with g(x) G C[&0 D /?[*; a] 
vv/iere C is the extended centroid ofR, b G N(R), and bx™ centralizes R. 

PROOF. Let/(jc) = £?=0 atf. Then/(jc)r = a(r)f(x) for all r G R implies ^ ' " ( r ) = 
cr(r)ai. If #/ ^ 0, then at G M7?) and hence al~l is X-inner. There are three cases to 
consider: 

(1) (a) X-outer and infinite: Thus / = 1 and/(jt) = ax with a G Z(R). 
(2) (a) X-outer of finite order m: Thus m\ (i — 1) and so i = mt[ + 1, alG Z(/?), and 

/ ( * ) = ( £ , • « , < * * ) ' ' ) * • 
(3) Some power of a is X-inner: Let m be the smallest positive integer such that 

am = 4-i for some b~l G #(/?). Then / = mu + 1 and a(~l = /a-i = V<, which 

implies a,- = A/Z/' for A, G C. Hence/(JC) = (£/A/M CO'')* = (£/^(frO'')-** 
as desired. The converse is clear. • 
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