AUTOMORPHISMS AND DERIVATIONS OF SKEW POLYNOMIAL RINGS

MARY P. ROSEN AND JERRY D. ROSEN

ABSTRACT. For a prime ring R and $\sigma \in Aut(R)$, we determine the group of R-stabilizing automorphisms of the skew polynomial ring $R[x; \sigma]$. In the case where R is simple, we characterize the X-inner automorphisms of $R[x; \sigma]$. We also provide necessary and sufficient conditions for a σ -commuting derivation of a prime ring R to extend to a derivation of $R[x; \sigma]$.

Skew polynomial rings have played an increasingly important role in noncommutative algebra during the past twenty years. They provide an abundant source of examples and counter-examples and are a good testing ground for various concepts. For instance, the Jacobson radical, ideal structure, extended centroid, and Krull dimension have all been determined for skew polynomial rings. Recently, in [4], they were used to illustrate that the Martindale quotient rings Q_{ℓ} , Q_r , and Q_s are not closed (i.e., the repetition of the construction may produce a properly larger ring). Note that skew polynomial rings figure prominently in two recent texts [1,3] on noncommutative noetherian rings.

In this paper, we determine the group G of R-stabilizing automorphisms of the skew polynomial ring $R[x; \sigma]$ where R is prime and σ is an X-outer automorphism of R. We characterize these automorphisms in terms of units of R and certain subgroups of Aut(R). Specifically, we prove that $G/ZU \cong H$ where ZU is the group of central units of R and H is the preimage of the centralizer of $\overline{\sigma}$ under the canonical epimorphism Aut(R) \rightarrow Aut(R)/ Inn(R). Furthermore, if every unit of R is central, then G is isomorphic to the semidirect product of ZU with H where, in this case, H is the centralizer of σ in Aut(R).

If R is a simple ring, we determine the normalizing elements and hence the X-inner automorphisms of $R[x; \sigma]$. We use our results to construct an example of a prime ring R having the property that for any integer n > 1, there exists an X-outer automorphism φ of R such that φ^n is X-inner. As another application, we compute certain Galois groups of the type Gal(R/R^G) where $R = F[x; \sigma]$, F a field. We prove that if σ has finite period and G = Xinn(R), then Gal(R/R^G) = G.

Finally, we determine the *R*-stabilizing derivations of $R[x; \sigma]$ where *R* is prime. We prove that if δ is a derivation of *R* such that $\delta \sigma = \sigma \delta$ then δ can be extended to a derivation (also denoted δ) of $R[x; \sigma]$ if and only if $\delta(x) = g(x)x$ with $g(x) \in C[bx^m] \cap R[x; \sigma]$, where *C* is the extended centroid of *R*, *b* an *R*-normalizing element, and *m* a nonnegative integer.

We now provide some background material. Let R be a prime ring and let Q = Q(R) denote its (left) Martindale ring of quotients. The construction of Q has become standard

Received by the editors December 13, 1990; revised February 5, 1991.

AMS subject classification: 16A05.

[©] Canadian Mathematical Society 1992.

and we refer the reader to [4, Chapter 3] for the details. The following lemma summarizes the main properties of Q and characterizes Q up to isomorphism.

LEMMA 1. Let R be a prime ring. Then Q satisfies

- (1) $R \subseteq Q$ with the same 1,
- (2) if $q \in Q$, then there exists $0 \neq A \triangleleft R$ with $Aq \subseteq R$,
- (3) if $q \in Q$ and $0 \neq A \triangleleft R$ with Aq = 0, then q = 0,
- (4) if $\phi : {}_{R}A \to {}_{R}R$ is given with $0 \neq A \triangleleft R$, then there exists $q \in Q$ with $aq = a\phi$ for all $a \in A$.

Furthermore, Q is uniquely determined by these properties.

The extended centroid of R, denoted C(R), is the center of Q. C(R) is a field containing Z(R), the center of R. Any $\phi \in \operatorname{Aut}(R)$ has a unique extension to Q. ϕ is said to be X-inner if there exists a unit $q \in Q$ such that $\phi(r) = I_q(r) = qrq^{-1}$ for all $r \in R$. Otherwise ϕ is X-outer. Let $\operatorname{Xinn}(R)$ be the group of X-inner automorphisms of R. Note that $\operatorname{Inn}(R) \leq \operatorname{Xinn}(R) \triangleleft \operatorname{Aut}(R)$. I_q is X-inner if and only if $q \in N(R)$, the subgroup of Q consisting of R-normalizing elements. Let U(R) denote the group of units of R.

For a ring *R* with $\sigma \in \text{End}(R)$, let $R[x; \sigma]$ denote the ring freely generated by *R* and *x* subject to the relation $xr = \sigma(r)x$ for all $r \in R$. $R[x; \sigma]$ is called the *skew polynomial ring* over *R* with respect to σ . If $\sigma \in \text{Aut}(R)$ and *R* is prime, then so is $R[x; \sigma]$. For $i \in Z^+$ and $a \in R$, let $N_i(a) = a\sigma(a) \cdots \sigma^{i-1}(a)$. A derivation of any ring *R* is an additive mapping $\delta: R \to R$ satisfying $\delta(rs) = r\delta(s) + \delta(r)s$ for all $r, s \in R$.

LEMMA 2. (1) Let R be any ring with ϕ , $\sigma \in \text{End}(R)$. Then ϕ extends to an endomorphism (also denoted ϕ) of $R[x; \sigma]$ if and only if $\phi(x) = \sum_{i=0}^{n} a_i x^i$ where $a_i \sigma^i(\phi(r)) = \phi(\sigma(r))a_i$ for all $r \in R$ and all i.

(2) Let R be a prime ring with $\phi, \sigma \in Aut(R)$. Then ϕ extends to an automorphism of $R[x; \sigma]$ if and only if $\phi(x) = ax + b$ for some $a \in U(R)$, $b \in R$ satisfying

(i) $a\sigma(\phi(r)) = \phi(\sigma(r))a$,

(*ii*) $b\phi(r) = \phi(\sigma(r))b$

for all $r \in R$. Furthermore, if σ is X-outer, then b = 0.

PROOF. (1) $R[x;\sigma]$ is freely generated by R and x subject to $xr = \sigma(r)x$ for all $r \in R$. Thus if S is any ring and $\phi: R \to S$ is a homomorphism, then ϕ extends to a homomorphism $\phi: R[x;\sigma] \to S$ with $\phi(x) = y$ if and only if $y\phi(r) = \phi(\sigma(r))y$ for all $r \in R$. Suppose $\phi \in \text{End}(R)$ and $a_i \in R$ (i = 0, 1, ..., n) satisfy $a_i \sigma^i(\phi(r)) = \phi(\sigma(r))a_i$ for all $r \in R$. Setting $\phi(x) = \sum_{i=0}^n a_i x^i$, we have

$$\phi(x)\phi(r) = \sum_{i=0}^{n} a_i \sigma^i (\phi(r)) x^i = \phi(\sigma(r)) \phi(x) \text{ for all } r \in R.$$

Hence ϕ defines an *R*-stabilizing endomorphism of $R[x; \sigma]$. The converse is clear.

(2) Suppose ϕ is an *R*-stabilizing automorphism of $R[x; \sigma]$ with $\phi(x) = ax^n + \cdots$ By (1), $a\sigma^n(\phi(r)) = \phi(\sigma(r))a$ for all $r \in R$ which implies $a \in N(R)$. Now ϕ onto gives

$$x = \phi(cx^m + \cdots) = \phi(c)\sigma^n(a)\sigma^{2n}(a)\cdots\sigma^{(m-1)n}(a)x^{mn} + \cdots$$

If mn > 1, then $\phi(c)\sigma^n(a)\cdots\sigma^{(m-1)n}(a) = 0$ and $a \in N(R)$ implies $\phi(c) = 0$ yielding c = 0, a contradiction. Thus m = n = 1 and so $\phi(x) = ax + b$ with $a \in U(R)$. Furthermore, (i) and (ii) follow from (1). If $b \neq 0$, by (ii) we have $b \in N(R)$ and σ is the X-inner automorphism determined by $\phi^{-1}(b^{-1})$. The converse can be easily checked.

Let *R* be prime and σ *X*-outer. Let *G* denote the group of *R*-stabilizing automorphisms of *R*[*x*; σ]. Every element of *G* may be expressed as ϕ_a where $\phi_a(x) = ax$ and $\phi \in$ Aut(*R*), $a \in U(R)$ satisfy $\phi(\sigma(r))a = a\sigma(\phi(r))$ for all $r \in R$. This last equation implies $\phi \sigma = I_a \sigma \phi$ and hence $\bar{\phi} \in \mathbf{C}(\bar{\sigma})$ (the centralizer of $\bar{\sigma}$) in Aut(*R*)/Inn(*R*). Consequently, $\phi \in H$ = the preimage of $\mathbf{C}(\bar{\sigma})$ under the canonical homomorphism.

THEOREM 3. Let R be a prime ring and σ X-outer with G, H as above. Let ZU denote the group of central units of R.

- (1) Then $G/ZU \cong H$.
- (2) If every unit of R is central, then G is isomorphic to the semidirect product of ZU with H. In this case, $H = \mathbb{C}(\sigma)$ in Aut(R).

PROOF. (1) If $a \in ZU$, then $1_a \in H$ (where $1_a(r) = r$, $1_a(x) = ax$). The mapping given by $a \to 1_a$ is an embedding of ZU into G. Now the restriction map (to R) determines an epimorphism $G \to H$ given by $\phi_a \to \phi$ with kernel ZU. Hence $G/ZU \cong H$.

(2) If all units of *R* are central, then $H = \mathbf{C}(\sigma)$ in Aut(*R*) and $\phi \to \phi_1$ embeds *H* in *G*. Furthermore, $H \cap ZU = 1$ and $G = H \cdot ZU$ (since $\phi_a = \phi_1 \circ 1_{\phi^{-1}(a)}$), completing the proof.

We now determine Xinn($R[x; \sigma]$) when R is simple. If, in addition, R is a simple domain, we show every X-inner automorphism of $R[x; \sigma]$ stabilizes R. In this case, we will find necessary and sufficient conditions on ϕ and a which guarantee $\phi_a \in \text{Xinn}(R[x; \sigma])$. The results in the following lemma are well-known and their respective proofs can be found in [2] and [5, p. 144, Exercise 12].

LEMMA 4. (1) If R is prime and $\sigma \in Aut(R)$, then $C(R[x; \sigma])$ is isomorphic to the field of fractions of $Z(R[x; \sigma])$.

(2) If R is simple and $A \triangleleft R[x; \sigma]$, then $A = R[x; \sigma]x^n g$ where g is central and $n \ge 0$.

THEOREM 5. If R is a simple ring, then

$$N(R[x;\sigma]) = \left\{ ux^m z \mid u \in U(R[x;\sigma]), z \in C(R[x;\sigma]), m \in Z \right\}.$$

If R is a simple domain with σ X-outer, then

$$Xinn(R[x;\sigma]) = \{ \phi_a \mid a = u\sigma(u^{-1}), \phi = I_u\sigma^m \text{ where } u \in U(R) \text{ and } m \in Z \}$$

PROOF. Set $S = R[x; \sigma]$ and let $0 \neq \alpha \in S \cap N(S)$. Then $S\alpha$ is an ideal of S; so by Lemma 4 (2), there exists $\beta = x^n g$, g central, with $S\alpha = S\beta$. Thus $\alpha = u\beta = uv\alpha$ and α regular implies uv = 1. Similarly $\beta = v\alpha = vu\beta$ and thus vu = 1 which gives $\alpha = ux^n g$ where $u \in U(S)$.

Choose $0 \neq \gamma \in N(S)$ and let $0 \neq A \triangleleft S$ with $A\gamma \subseteq S$. Then $A = S\eta$ where $\eta = x^{\ell} h, h$ central. Now $0 \neq \eta\gamma \in S \cap N(S)$ and thus $\eta\gamma$ can be described as above; say $\eta\gamma = ux^{n}g$. Solving we get $\gamma = ux^{n-\ell}gh^{-1}$, the desired result. From this it is clear that any X-inner automorphism of S is of the form $I_{\mu}\sigma^{m}$ where $u \in U(S)$ and $m \in Z$.

If *R* is a domain, then U(S) = U(R) and hence any *X*-inner automorphism of *S* stabilizes *R*. Thus, if σ is *X*-outer and $I_{ux^m} \in Xinn(S)$, then $I_{ux^m} = \phi_a$. Now for all $r \in R$,

$$\phi(r) = \phi_a(r) = I_{ux^m}(r) = (I_u \sigma^m)(r)$$
, showing $\phi = I_u \sigma^m$.

Furthermore, $ax = \phi_a(x) = I_{ux^m}(x) = u\sigma(u^{-1})x$, which gives $a = u\sigma(u^{-1})$. Conversely, consider ϕ_a with $a = u\sigma(u^{-1})$ and $\phi = I_u\sigma^m$. Thus for all $r \in R$,

$$\begin{aligned} \phi_a(rx^i) &= \phi(r) N_i(a) x^i = I_u \left(\sigma^m(r) \right) u \sigma^i(u^{-1}) x^i = u \sigma^m(r) \sigma^i(u^{-1}) x^i \\ &= u \sigma^m(r) x^i u^{-1} = u \sigma^m(r) x^m x^i x^{-m} u^{-1} = (u x^m) r x^i (u x^m)^{-1} \\ &= I_{u x^m}(r x^i), \end{aligned}$$

proving $\phi_a = I_{ux^m} \in Xinn(S)$.

We provide an example of a prime ring having the property that for any n > 1, there exists an X-outer automorphism φ such that φ^n is X-inner.

EXAMPLE (1). Let Q(t) be the field of rational functions over Q. Let $\sigma: Q(t) \to Q(t)$ be the Q-automorphism given by $t \to t + 1$. Set $R = Q(t)[x; \sigma]$. By Theorem 5,

$$\operatorname{Xinn}(R) = \left\{ \phi_a \mid a = u\sigma(u^{-1}), u \in Q(t)^*, \phi \in \langle \sigma \rangle \right\}.$$

Note that $\sigma_1 = I_x \in \text{Xinn}(R)$. For any n > 1, define $\tau: Q(t) \to Q(t)$ to be the *Q*-automorphism given by $t \to t + (1/n)$. Since $\tau \sigma = \sigma \tau$, it follows that $\tau_1 \in \text{Aut}(R)$ by Theorem 3 (2). Also $\tau \notin \langle \sigma \rangle$ implies τ_1 is *X*-outer. Since $(\tau_1)^n = \sigma_1$, we have $(\tau_1)^n$ is *X*-inner.

If R is a ring and S is a subring of R, let

$$\operatorname{Gal}(R/S) = \left\{ \sigma \in \operatorname{Aut}(R) \mid \sigma(s) = s \text{ for all } s \in S \right\}.$$

Montgomery and Passman prove that if *R* is a prime ring and *G* is a subgroup of Aut(*R*) satisfying certain technical conditions (i.e., *G* is an *N*-group), then Gal(R/R^G) = *G*. We refer the reader to [4, Chapter 7]. In Theorem 6 and Example (2), we determine Gal(R/R^G) for $R = F[x; \sigma]$, *F* a field, and various subgroups *G* of Aut(*R*). We remark that these groups are not *N*-groups. Suppose $\sigma \in Aut(F)$ is of finite period *m*. Recall that for any $j \in Z^+$ and $a \in F$, $N_j(a) = a\sigma(a) \cdots \sigma^{j-1}(a)$. The norm of *a* is defined to be $N_m(a)$. *a* has norm 1 if and only if $a = b\sigma(b^{-1})$ for some $b \in F^*$. Let **N** denote the subgroup of F^* consisting of those elements of norm 1.

THEOREM 6. Let F be a field with $1 \neq \sigma \in \text{Aut}(F)$ of finite period and let J be a finite subgroup of $\mathbb{C}(\sigma)$. Set $R = F[x;\sigma]$ and $G = \{\phi_a \mid a \in \mathbb{N}, \phi \in J\}$. Then $\text{Gal}(R/R^G) = G$.

PROOF. Let σ have finite period *m*. We first claim that for any *j* not divisible by *m*, there exists $b \in \mathbb{N}$ such that $N_j(b) \neq 1$. Let $a \in F^*$ satisfy $\sigma^j(a) \neq a$ and let $b = a\sigma(a^{-1})$.

Then $N_j(b) = a\sigma^j(a^{-1}) \neq 1$. We now show $R^G = F^J[x^m]$. Note that if $c \in \mathbb{N}$, then $N_{im}(c) = 1$ for all $i \in Z^+$ and hence the inclusion \supseteq follows. Let $\sum a_i x^i \in R^G$. Then for any $b \in \mathbb{N}$ and $\phi \in J$, we have

$$\sum a_i x^i = \phi_b(\sum a_i x^i) = \sum \phi(a_i) N_i(b) x^i,$$

showing $a_i = \phi(a_i)N_i(b)$. Thus if $a_i \neq 0$, $N_i(b) = N_i(c)$ for all $b, c \in \mathbb{N}$. We claim that m|i. Otherwise $i = km + \ell$ where $0 < \ell < m$ which implies $N_i(b) = N_{km}(b)\sigma^{km}(N_\ell(b))$ = $N_\ell(b)$ and hence $N_\ell(b) = N_\ell(c)$. Thus we can choose $N_\ell(b) \neq 1$ and taking c = 1, we obtain a contradiction. Therefore $m \mid i, a_i = \phi(a_i)$, and $\sum a_i x^i \in F^J[x^m]$ as desired.

Let $\phi_a \in \text{Gal}(R/R^G)$. In particular, $x^m = \phi_a(x^m) = N_m(a)x^m$ implies $a \in \mathbb{N}$. Also for all $b \in F^J$, $b = \phi_a(b) = \phi(b)$. Thus $\phi \in \text{Gal}(F/F^J) = J$ (since J is a finite subgroup of Aut(F), we may apply Artin's Theorem) and $\text{Gal}(R/R^G) \leq G$. The other inclusion is clear.

Note that if $J = \langle \sigma \rangle$ in the preceding theorem, then $Gal(R/R^G) = G$ for G = Xinn(R). We give an example to show this result may fail if σ has infinite period.

EXAMPLE (2). Let $R = Q(t)[x; \sigma]$ as in Example (1) with G = Xinn(R). We claim that $R^G = Q$. If $\sum h_i x^i \in R^G$, then for all $u \in Q(t)^*$, we have

$$\sum h_i x^i = \sigma_{u\sigma(u^{-1})}(\sum h_i x^i) = \sum \sigma(h_i) N_i (u\sigma(u^{-1})) x^i.$$

Taking u = 1, we get $\sigma(h_i) = h_i$ and hence, if there exists $i \neq 0$ such that $h_i \neq 0$, then $N_i(u\sigma(u^{-1})) = u\sigma^i(u^{-1}) = 1$ for all $u \in Q(t)^*$. This implies σ^i is the identity on Q(t), a contradiction. Hence $\sum h_i x^i = h_0 \in Q(t)^\sigma = Q$, proving $R^G \subseteq Q$. The other inclusion is clear. By Theorem 3 (2), Aut $(R) = \{\phi_q \mid q \in Q(t)^*, \phi \in \mathbb{C}(\sigma)\}$. Since every automorphism of Q(t) fixes Q, we have $\operatorname{Gal}(R/R^G) = \operatorname{Aut}(R) \neq G$.

The next two results characterize the derivations of $R[x; \sigma]$ when R is prime.

THEOREM 7. Let R be any ring with $\sigma \in \text{End}(R)$. Suppose δ is a derivation of R satisfying $\delta \sigma = \sigma \delta$. Then δ can be extended to a derivation (also denoted δ) of $R[x; \sigma]$ if and only if $\delta(x)r = \sigma(r)\delta(x)$ for all $r \in R$.

PROOF. If δ extends to a derivation of $R[x; \sigma]$, then

$$\delta(x)r + \sigma(\delta(r))x = \delta(x)r + x\delta(r) = \delta(xr) = \delta(\sigma(r)x) = \sigma(r)\delta(x) + \sigma(\delta(r))x,$$

giving the desired result.

Now let $\delta(x) \in R[x; \sigma]$ satisfy $\delta(x)r = \sigma(r)\delta(x)$ for all $r \in R$ and define $\delta(x^m)$ recursively by $\delta(x^m) = x\delta(x^{m-1}) + \delta(x)x^{m-1}$ for $m \ge 1$. For all $r \in R$ and $m \ge 0$, define $\delta(rx^m) = r\delta(x^m) + \delta(r)x^m$. It is easy to verify by induction that

- (i) $\delta(x^{\ell})r = \sigma^{\ell}(r)\delta(x^{\ell})$
- (ii) $\delta(x^{\ell+m}) = x^{\ell} \delta(x^m) + \delta(x^{\ell}) x^m$

for all $r \in R$ and $\ell, m \ge 0$. We first check δ on monomials. For all $r, s \in R$ and $\ell, m \ge 0$,

$$\begin{split} \delta\left(rx^{\ell} sx^{m}\right) &= \delta\left(r\sigma^{\ell}\left(s\right)x^{\ell+m}\right) = r\sigma^{\ell}\left(s\right)\delta\left(x^{\ell+m}\right) + \delta\left(r\sigma^{\ell}\left(s\right)\right)x^{\ell+m} \\ &= r\sigma^{\ell}\left(s\right)\left(x^{\ell}\delta\left(x^{m}\right) + \delta\left(x^{\ell}\right)x^{m}\right) + r\delta\left(\sigma^{\ell}\left(s\right)\right)x^{\ell+m} + \delta\left(r\right)\sigma^{\ell}\left(s\right)x^{\ell+m} \\ &= rx^{\ell} s\delta\left(x^{m}\right) + r\sigma^{\ell}\left(\delta\left(s\right)\right)x^{\ell+m} + r\sigma^{\ell}\left(s\right)\delta\left(x^{\ell}\right)x^{m} + \delta\left(r\right)\sigma^{\ell}\left(s\right)x^{\ell+m} \\ &= rx^{\ell}\left(s\delta\left(x^{m}\right) + \delta\left(s\right)x^{m}\right) + \left(r\delta\left(x^{\ell}\right) + \delta\left(r\right)x^{\ell}\right)sx^{m} \\ &= rx^{\ell}\delta\left(sx^{m}\right) + \delta\left(rx^{\ell}\right)sx^{m}. \end{split}$$

Now
$$\delta(\sum_i b_i x^i \sum_j c_j x^j) = \sum_{i,j} \delta(b_i x^i c_j x^j) = \sum_{i,j} (b_i x^i \delta(c_j x^j) + \delta(b_i x^i) c_j x^j)$$

$$= (\sum_i b_i x^i) (\sum_j \delta(c_j x^j)) + (\sum_i \delta(b_i x^i)) (\sum_j c_j x^j)$$

$$= (\sum_i b_i x^i) \delta(\sum_j c_j x^j) + \delta(\sum_i b_i x^i) (\sum_j c_j x^j),$$

which proves δ is a derivation.

Theorem 7 reduces the question of determining the derivations of $R[x; \sigma]$ to finding those $f \in R[x; \sigma]$ which satisfy $f(x)r = \sigma(r)f(x)$ for all $r \in R$. In the following result, we determine these polynomials when R is prime and $\sigma \in Aut(R)$.

THEOREM 8. Let R be a prime ring with $\sigma \in Aut(R)$ and $f(x) \in R[x; \sigma]$. Then $f(x)r = \sigma(r)f(x)$ for all $r \in R$ if and only if f(x) = g(x)x with $g(x) \in C[bx^m] \cap R[x; \sigma]$ where C is the extended centroid of R, $b \in N(R)$, and bx^m centralizes R.

PROOF. Let $f(x) = \sum_{i=0}^{n} a_i x^i$. Then $f(x)r = \sigma(r)f(x)$ for all $r \in R$ implies $a_i \sigma^i(r) = \sigma(r)a_i$. If $a_i \neq 0$, then $a_i \in N(R)$ and hence σ^{i-1} is X-inner. There are three cases to consider:

- (1) $\langle \sigma \rangle$ X-outer and infinite: Thus i = 1 and f(x) = ax with $a \in Z(R)$.
- (2) $\langle \sigma \rangle$ X-outer of finite order *m*: Thus m | (i-1) and so $i = mt_i + 1$, $a_i \in Z(R)$, and $f(x) = (\sum_i a_i (x^m)^{t_i}) x$.
- (3) Some power of σ is X-inner: Let *m* be the smallest positive integer such that $\sigma^m = I_{b^{-1}}$ for some $b^{-1} \in N(R)$. Then $i = mt_i + 1$ and $\sigma^{i-1} = I_{a_i^{-1}} = I_{b^{-t_i}}$ which implies $a_i = \lambda_i b^{t_i}$ for $\lambda_i \in C$. Hence $f(x) = (\sum_i \lambda_i b^{t_i} (x^m)^{t_i}) x = (\sum_i \lambda_i (bx^m)^{t_i}) x$, as desired. The converse is clear.

REFERENCES

- K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, LMS Student Texts 16, Cambridge University Press, Cambridge, 1989.
- 2. J. Matczuk, Extended centroids of skew polynomials rings, Math. J. Okayama Univ. 30(1988), 13-20.
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley Series in Pure and Applied Mathematics, Wiley, Chichester, 1987.

M. ROSEN AND J. ROSEN

- 4. D. S. Passman, *Infinite Crossed Products*, Pure and Applied Mathematics, 135, Academic Press, Inc., San Diego, 1989.
- 5. L. Rowen, *Ring Theory, Volume I*, Pure and Applied Mathematics, 127, Academic Press, Inc., San Diego, 1988.

Department of Mathematics California State University, Northridge Northridge, California 91330 U.S.A.

132