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1. INTRODUCTION 

1.1 Resolution enhancement and a-priori knowledge. 

In image formation from coherence functions we start with a set of 
observed coherences (visibilities) R' (u^, v^), measured at locations 
uk> vk in t n e u,v-plane: 

R' ( V V = R (V V + r(uk' V ; k = -M, .., M. (1) 
R(u,v) is the object's coherence function (visibility function, covari-
ance function) and r(u^, v^) are random measurement errors. In conventi
onal image formation we apply a weighted fourier transformation to eq 1 
and we get 

B'(l,m) = {G(l,m) ® B(l,m)} + b(l,m), (2) 

where B(l,m) is the brightness distribution of the object and B'(l,m) is 
• the image. G(l,m) is a beampattern depending on the locations u^, v^ and 
| on the weights applied to them. The component b(l,m) is the random error 
| in the image, corresponding to r(u^, v^). 

The locations u^, v^ are usually limited to some central area A of 
the u,v-plane. Consequently the high-order fourier components of B(l,m), 
which correspond to coherences outside A, are missing from the image 
B'(l,m). The result is a loss of resolution. 

The effect of resolution loss can be controlled - to some extent -
by using suitably tapered weights, but this method does not recover any 
of the object's missing fourier components. A better job can be done if 
it is possible to operate on B'(l,m) (or on R'(u^, vjj))in such a way 
that part or all of these components are retrieved. 

At first glance the problem of inverting eq. 2, i.e. finding B( ) 
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from B'( ), looks like an ordinary deconvolution problem, but there is 
a difference. In a standard deconvolution problem the object's high 
frequency components are attenuated by a finite factor and are sub
sequently corrupted by the measurement errors. A solution is then 
sought within the class of linear operations on B'(l,m) (Wiener filters 
or modified inverse filters). In eq. 2, however, the high-order fourier 
components of the object were never observed. They have therefore effect
ively been attenuated down to zero. As a consequence, any inversion 
scheme that performs the required task must be non-linear or at least 
linear space-variant. No linear, space-invariant operation on B'(l,m) 
can create fourier components that are not already present! 

The key to the inversion of eq. 2 is to use a-priori assumptions 
concerning the object B(l,m) or, better, a-priori knowledge. The as
sumptions must provide a deterministic coupling between the missing 
high-order fourier components and the available low-order ones. Eq. 2 
can then be solved, for example, by fitting an a-priori constrained 
object model to the data B'(l,m). Equivalently, in the language of eq. 1, 
our assumptions must establish a deterministic coupling between the 
observed coherences inside the area A and the unobserved ones, outside 
A, thereby allowing an extrapolation of the coherence function. Two 
questions are important for the success of such an attempt at resolution 
improvement: 

1. Are the assumptions valid for the object under consideration? 
2. Is the coupling mechanism sufficiently powerful to withstand the 

random measurement errors? 

Some frequently used assumptions concerning B(l,m) are: 
1. Non-negativeness : B(l,m) > 0 
2. Limited extent : B(l,m) = 0 outside some closed contour in the 

l,m-plane. 
3. A variety of assumptions about the structure of the object, all 

of them characterized by a parametrization of B(l,m) (i.e. the continu
ous function B(l,m) is known if the values of N parameters have been 
found). 

Based on such assumptions a number of resolution enhancement methods 
has been proposed (Frieden 1975). We shall discuss two of the better 
developed ones and we shall try to analyze their underlying principle. 
They are Burg's Maximum Entropy Method (MEM) and Capon's High Resolution 
Method (HRM), also erroneously known as Maximum Likelihood Method (MLM). 
In ch. 2 we repeat an argument from temporal spectrum analysis to show 
that the MEM, sometimes said to be "maximally non-committal" with 
regard to the observations, relies in fact on a structural assumption 
about the object, an assumption which may or may not be valid. The HRM, 
discussed in chapter 3, was originally developed for adaptive detection 
of point sources against an unknown and non-uniform radiation background, 
but Capon realized that the method yields improved resolution when used 
as an estimator of brightness distributions. We show that the HRM can 
be interpreted as a positive-constrained reconstruction method. 
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At this point we comment briefly on methods which rely on the as
sumption of limited object extent. Historically they were the first en
hancement methods proposed and they are known as "superresolution" or 
"superdirectivity". (The temporal counterpart (section 1.3) is known as 
"superselectivity".) The idea is that an object of limited size produces 
an analytic coherence function. This implies that a set of coherence 
observations, very densely spaced, but extending over only a small area 
A in the u,v-plane, can be extrapolated to an area many times larger. 
In this way we can obtain beampatterns G(l,m) with a peakwidth inverse
ly proportional to the number of u,v-samples, rather than inversely pro
portional to the dimensions of the area A. Physically this is achieved 
by making the wavefront from the desired steering direction (10, m0) 
cancel to a high degree, while obtaining an even higher degree of can
cellation for wavefronts from the other directions. However, this can
cellation mechanism is also the source of the method's weakness: an 
extreme sensitivity to internal noise like thermal noise in the array 
sensors, quantization and round-off noise in digital processors, etc. 
By sensitivity we mean that a superresolving system, designed under the 
assumption of no internal noise, is completely swamped by such noise if 
it is indeed present. If, conversely, the internal noise is taken into 
account in the design, the system automatically reverts to a near-con
ventional processor and almost no superresolution occurs. In fact the 
assumption of finite object size is too weak to cope with the measure
ment errors, when unsupported by other assumptions. Superresolution can 
be ruled out as a practical tool for high-performance imaging systems. 
Conclusions of this sort were reached in the fields of E.M. antennas 
(Gilbert and Morgan 1955, Taylor 1955), accoustics (Cox 1973, Schultheiss 
1977), radio astronomy (Cole 1973) and optics (Frieden 1975). We note in 
passing that other enhancement methods, for example the HEM, have the 
same flaw in their character - cancellation type processing - and special 
precautions must sometimes be taken to suppress the danger involved 
(Cox 1973, Owsley 1973, Griffiths and Hudson, 1977). 

1.2 Simplification to 1 dimension. 

We shall base our discussions on the 1-dim. equidistant case, i.e. 
line-shaped arrays with constant baseline increment A. The advantage is 
that we obtain simple closed-form solutions which reveal the mechanism 
of the method. Apart from this, 1-dim. spatial imaging is of practical 
importance, for instance in underwater acoustics where long horizontal 
arrays are used to map the radiation intensity as a function of azimuth. 
One-dim. strip scans in radio astronomy are another example. Standard 
radio astronomy images, however, are 2-dimensional. Extension of our 
discussion to 2-dim. arrays is possible, as well as to non-uniform 
sampling. Qualitatively the properties remain the same but a good deal 
of the simplicity of the equations is lost. 

We use a fourier notation adapted to a (1-dim.) object B(l) of 
finite extent: B(l) = 0 ; |l| £W. (This is merely a matter of notation; 
we do not exploit the limited size of the object in the sense of super-
resolution.) B(l) can then be written as a fourier series on an interval 
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of length 1/A = 2W: 

B(l) = A. E Rk . exp - 2irjklA ; -W < 1 < W ; A= 1/2W, (3) 
k=-°° 

where the R^ are samples of the coherence function R(u) at equal 
spacings A: 

W 
R, = R(kA) = / B(l) . exp 2irjlkA . dl ; k = -°°, ... » . (4) 
K -W 

With an array of finite length the observed coherences are limited to 
k = -M, .., M. In conventional image reconstruction eq. 3 is then re
placed by a truncated (and weighted) fourier transform: 

M 
B'(l) = A . 1 (Ry, + rk) . gk . exp - 2ujklA , (5a) 

k=-M 

whereas image enhancement methods try to get hold of the missing co
herences, |k| > M, via an a-priori coupling mechanism. The r^ in eq. 5 
are the measurement errors and the g. are the weights. Eq. 5a can finally 
be written in the form of eq. 2: 

W 
B'(l) = / G(n-l) . B(n) . dn + b(l), (5b) 

-W 

where G( ) is the fourier transform of the weights A.g^. 

1.3 The space-time analogy. 

Resolution enhancement applies equally well to temporal spectrum 
analysis of random signals as to (pseudo -monochromatic) spatial imaging 
with a line array or a plane array. Some spatial enhancement methods 
were first conceived with an application to temporal spectrum analysis 
in mind, and conversely. Both techniques are analogous ; we briefly re
call the analogy below (table 1, fig. 1). 

In temporal spectrum analysis we have a random signal s(t) which 
is sampled at intervals A seconds. We try to measure the power density 
spectrum B(f): the distribution of the average signal power over the temporal 
frequencies f. In spatial imaging we start with the random aperture il
lumination A(x,t), the (complex) amplitude of the E.M. field along the 
aperture axis x at one time instant t. We measure B(l), the distribution 
of the average power of illumination over the spatial frequencies 1. 
Spatial frequency 1 corresponds to angular source direction <j> via 1 = 
sin $ / X . Actually, 1 is the projected wavenumber of a wavefront from 
direction <(>. 

In spectrum analysis we store a block of M + 1 samples s , .., Sj. 
in a shift register and we calculate the cross-products S£ sj+k. 
Averaging over many datablocks produces covariance estimates R\, , .., 
R^ which are processed to give a spectral estimate B(f). In the spatial 
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TIME 

. random signal: s(t) 

. time series after sampling at 
intervals of A sec: .., s^, .. 

. covariance function: R,=E{s.s. , } 

. power density spectrum: B(f) 

f: temporal frequency (sec ) 

. fourier-relation B(f)*-»R^: 

"Wiener-Khintchine" 

SPACE 

random aperture illumination: s(x) 
("frozen" at one time instant) 

space series after sampling at 
distances of A meter: .., s^, .. 

coherence function: ft =E{s . s,
+i,} 

brightness distribution: B(l) 

1: spatial frequency (meter ) 
(projected wavenumber) 

fourier relation Bd)*-*!^: 

"v. Cittert-Zernike" 

Table 1, space-time analogy. 
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Fig. 1. Temporal spectrum analysis (left) and spatial imaging (right). 
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case the block of M+l illumination samples, obtained at one time instant 
tj, is multiplied to yield crossproducts s^* Si+V' They are averaged 
over many successive times t \ , t2, t3, .. and the coherence estimates 
R_JJ, .., R^ are transformed to an estimated brightness distribution B(l). 

There is one minor difference: power density spectra are symmetric 
functions of frequency; spatial objects are not. In order to distinguish 
positive and negative source directions in the spatial case, we must use 
a complex-valued illumination s(x). The result is a complex hermitic 
coherence function. In the temporal case the covariance function is real-
valued and symmetric. 

2. MAXIMUM ENTROPY METHOD (MEM) 

The main purpose of this chapter is to repeat an argument from 
spectrum analysis (Burg 1967; van den Bos 1971) to show that MEM fits an 
a-priori constrained object model to the observed coherences. 

2.1 MEM and Markov (or autoregressive) processes. 

Following Burg (1967) we start in this section with an application 
of the MEM to spectrum analysis of a random time series .., s^, .. . 
We have M+l observed covariances R^, k = 0, .., M (or k= -M, .., M since 
Rk = R-k)' s P a c e d a t Nyquist distances A = 1/2W (eq. 4). We neglect, 
until further notice, the measurement errors ri.. Burg selected as a 
spectral estimate the function B(f) which maximizes the entropy of the 
process .., s^, .. under the condition of consistency with the observ
ations, i.e. 

W 
/ B( f ) . exp 2irjfkA . df = 1^ ; k = -M, . . , M (6) 
-W 

The entropy of the process is a measure for the randomness, or the 
unpredictability, of .., s^, .. . Maximum entropy means that a value s^ 
is maximally unpredictable from its entire past, s^-j, Sjc_2> .. , sk-<x>» 
given the (M+l) observed covariances. This implies that the first M 
previous samples, s^-], .., S^-M* are all that is needed to predict s^ 
and that the availability of earlier samples S^-M-I* ..., s-^-co does not 
improve predictability, despite the fact that they are correlated with 
s^. Given the observed Ri,'s there is only one power density spectrum 
which belongs to such a "least predictable process"; this particular 
spectrum is taken as the MEM estimate B(f). Observe that the MEM criterion 
is a subjective one; it is equivalent to the a-priori-assumption of a 
"least predictable signal" .., s^, .. . There is no evidence for this in 
the observed covariances themselves! 

Solutions can be obtained in many different ways (Survey papers: 
Ulrych and Bishop 1975, Makhoul 1975). One approach is to express the 
entropy of the process in its spectrum (Shannon and Weaver 1949): 
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w 
2 W-W 

In B(f) . df, (7) 

and to maximize (7) subject to (6). A second approach (van den Bos 1971) 
is based on the theory of (wide sense) Markov processes. (Papoulis 1965), 
Our "least predictable signal", consistent with M+l covariances, is a 
Markov process. Such processes can only be generated by an Mth order 
autoregressive filter (A.R. filter), with unit variance uncorrelated 
noise samples . at the input (fig. 2). The output covariance 
function, although infinitely long, is determined by M+l parameters, bQ, 
ll» *M- The relevant equations are 

2 

'*M 

and (8a) 
1 

**\l ' i \ - i k = M+l, M+2, (8b) 

R., we can solve eqs. 8a for b ", a., .., a.,. This implies 

aM 

Given R Q , .., Rj we can solve eqs. 8a for , _y, .., „fr 

that we fit the Mth order Markov, or A.R., model to the data. We can then 
extrapolate the covariance function via eq. 8b and take the fourier 
transform to obtain the estimate B(f). Observe that eq 8b represents the 
coupling mechanism discussed in sec. 1.1. An equivalent method, less 
elaborate, is to solve for b 2, a., .., aM and to take the AR filter's 
output spectrum as the estimate: 

B(f) = 
M 

- Z 
i=l 

a. . exp - 2TTjf iA | 

(9) 

Eq. 9 has a (2M+l)-term fourier series in the denominator. Thus, B(f) 
contains fourier components up to infinity: many more than the convent
ional estimate of eq. 5. 
— ,wk, 

white noise ,—,. 
b0 

+ 

\ a M 

z-1 

A 
z-1 

L \ a 

L 
2 

z-1 

Aa' 
z-1 

,sk,. 

A.R. process 

Fig. 2. Mth order AR filter.z is the unit delay operator. This is the 
model, fitted to the data in a MEM spectrum analysis. The implicit as
sumption is that the spectrum consists only of resonances (poles). 
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The assumption of a "least-predictable" or A.R. or Markov process 
implies an a-priori assumption concerning the spectrum. Eq. 9 can be 
factored to give 

B(f) 
(exp 2irjfA - p . ) . . (exp 2-rrjfA 

(10) 

PM)I 

where p., ... p M are the (real valued or conjugate paired) roots of 
(z - aj z1*-'^- ... - aM_] z - a,,). The roots are the poles, or re
sonances, of B(f): a resonance occurs if a frequency f brings one of the 
terms exp 2irjfA close to a pole p^. Thus, the HEM estimate consists of 
resonances only ("all-pole-spectrum"). A general spectrum contains ab
sorptions (zeroes) as well as resonances (poles). It would be obtained 
at the output of a filter with feed-forward branches in addition to feed
back branches (fig. 3 ) . 

,wk,. 

white noise bn^ r^T'T^T" 
..Sk.--

Fig. 3. General digital filter. This model should be used in the case of 
resonances (poles) and absorptions (zeroes). 

For a mixed pole-zero spectrum the model of fig. 3 should be fitted 
to the data, rather than an A.R. model, and the solution would no longer 
correspond to an entropy maximization. Application, in this case, of the 
MEM leads at most to an approximation and it should be investigated 
whether this is a better one than the conventional fourier transform of 
eq. 5, or not. In the case of an all-zero spectrum the situation becomes 
surprisingly simple: no model fit is required since the covariance 
function R, assumes a finite length. Under the proviso that all non-zero 
covariances have been observed there is no need for resolution improve
ment; the conventional fourier transform (eq. 5, unweighted) is optimum! 
Succesful applications of MEM to the detection and resolution of sharp 
spectral lines were reported in the past (references in Ulrych and 
Bishop 1975 and in Lacoss 1971). Spectral lines in temporal frequency 
analysis - and point sources in spatial imaging - are limit cases of 
resonances and are therefore marginally valid objects for the MEM. 
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2.2 Example 

Fig. 4a shows an object spectrum B(f) of 20 poles (no zeroes). It 
was deliberately designed to have a narrow peak, some weak structure 
around the peak, and a dynamic range of > 100 dB. A piece of signal .., 
ŝ ., .. of 1024 points was used to determine the first^21 covariances, 
RQ, .., R2Q. Fig. 4c shows the conventional estimate B(f) (eq. 5; 
g^ ; gaussian taper): all spectral details are lost. The IIEM estimate 

B(f), based on the same 21 covariances, is shown in fig. 4b. The 
deviations from the nominal spectrum B(f) are less than 2dB; they are 
due to the errors r, caused by the finite (1024) signal duration 
(section 2.3). 

lodB"^ " 

0.000 
30/09/78 IS.31.43. 4 

.500 

a) Spectrum B(f). b) MEM estimate B(f)(eqs 8,9), 

Fig. 4. Maximum Entropy Method (MEM). 
The spectrum B(f) belongs to a 20th 
order Markov (or A.R.) process. The 
estimates B(f) are based on 21 observed 
covariances. The conventional estimate 
suffers an important resolution loss. 
The lost resolution is recovered by 
the MEM estimate. 

c) Conventional estimate B(f) (eq. 5). 
.503 

i'./iz.ma."j iZ. 3 
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Note that the conventional estimate (fig. 4c) could have been 
plotted on a wide f-grid without serious loss of detail. The HEM 
estimate, on the other hand, requires a dense plotting grid if the bene
fits of resolution enhancement are to be retained. 

2.3 Measurement errors. 

Actual observations of R^ are corrupted by errors r̂  which pro
pagate into the MEM estimate. The problem is particularly troublesome 
when B(f) has a large dynamic range. A general theory of error propagat
ion is still failing but MEM does not seem to be unduly sensitive to 
random errors, provided that the problem of order estimation can be 
solved satisfactorily. 

Up to now we have tacitly assumed that the order of the AR model is 
equal to the number of observed covariances, which implies that M+1 
degrees of freedom are fitted to M+1 observations. Clearly we must not 
use too few degrees of freedom (resolution loss) but we must also avoid 
the danger of using too many (sensitivity to random errors) and we are 
therefore in need of algorithms for estimating the order of the model 
to be fitted. Various such methods are being developed, both for AR 
order estimation (Lacoss 1977, Jones 1976, Ulrych and Bishop 1975, 
Parzen 1974) and for model fitting in general. 

Akaike's "Information Criterion" method (Akaike 1974) is an example 
from the 2nd class. An application is described by Ishiguro and Ishiguro 
(this volume). The method is a generalization of "naive" order estimat
ion where one studies the behaviour of S, the sum of the squared re
siduals of a fitting procedure, as a function of N, the number of degrees 
of freedom. For small N the value S(N) drops rapidly as N increases. For 
large N the value of S decreases slowly and linearly until S = 0 when N 
becomes equal to the number of observations, M+1. The estimated order is 
the value of N where the linear behaviour sets in. The use of a value 
N t < M+1 leads, of course, to non-zero residuals. Consequently, the 
consistency conditions of eq. 6 must be relaxed. 

Various authors have relaxed the consistency equations by maximizing 
eq. 7 under the condition 

1 M i w - 7 
T~ E |R - / B(f) . exp - 2irjfkA . df | = a2, (11) 
M ' k=0 k -W 

i 

where a2 is the variance of the r^ errors and R^ are the observations 
(eq. 1). (Abies 1974, Wernecke and d'Addario 1977, Wernecke 1977, Gull 
and Daniell 1978). The advantage is that many constraints are replaced 
by a single one. In addition one obtains an "error-tolerant" estimate 
B(f) with an entropy value larger than obtained under the conditions of 
eqs. 6. Newman (1977) shows that the structure of the solution B(f) re
mains indentical to eq. 9, which suggests that the number of degrees of 
freedom is still equal to the number of observations. It would be 
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interesting to compare the results of this approach with the results of 
order estimation methods. 

2.4 One-dimensional spatial imaging. 

Our discussion remains valid for 1-dim. spatial imaging with 
constant baseline increments A along a linear axis x, the aperture axis, 
provided that we use complex, hermitic coherences R^. The underlying 
IIEM assumption is, that the spatial series .., s-u, .. (E.I1. field 
samples along the array axis) has a spatial AR- or Markov-structure, 
i.e. that M spatial samples are sufficient to predict the next spatial 
sample and that other samples, if available, would be useless for 
spatial prediction. 

2.5 Two-dimensional spatial imaging. 

The concept of maximizing eq. 7 under the constraints of eq. 6, or 
eq. 11, can be extended to 2-dimensional sets of coherence observations 
in the u,v-plane. Applications to radio astronomy were described by 
Ponsonby (1973), Wernecke and d'Addario (1977) and Gull and Daniell 
(1978). For simplicity we restrict ourselves to observations on a 
rectangular grid with spacings A in both dimensions: 

R,\ = R(kA, iA) + rki ; k,i = -M, ... M ; R ^ = R * ^ (12) 

Newman (1977) showed that the estimated brightness assumes the form 

b 2 

B ( l ,m) . .A2 , (13) 
M 2 

| 1 - Z Z a , . exp - 2 i\ j ( g l + hm) A | 
g ,h=0 g t l 

g+h^0 

i.e. the same structure as eq. 9. He derived eq. 13 in two ways: 1) 
maximization of the entropy / In B(l,m) dl dm under consistency con
straints, 2) via a minimum prediction error method. He concludes from 
the similarity of the results that the link between an AR model fit and 
the MEM extends to problems of 2 dimensions. 

The implication is that the underlying a-priori assumption - a 
least predictable random process - remains valid in two dimensions. 
However, our process is a 2-dim. space series .., s ̂ , .., the E.M. 
field amplitude at the aperture sample points and we must explain what 
is meant by a "least predictable process, subject to a set of observed 
coherences". This takes us into the area of 2-dim. Markov processes 
(Woods 1972, Jain 1977). 

A process .., s ̂ , •• is Markov if a sample value s . can be 
predicted in terms of a limited number of samples in °' ° the 
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hn-M 

g0-M 

.Fig. 5. Causal 2-dim. Markov process; order MxM. Prediction at g , h 
based on all points g < 

so> 
h < h (g + h i* 0) gives the same result as 

a prediction, based on the points g - M < g < g0, h - M < h 
(g+h f 0). This is the implicit model used in a 2-dim. MEM. 

< h. 

vicinity of the point g , h . The other points are superfluous for pre
diction. Just as in the 1-dim. case, the MEM seems to be exclusively 
related to causal Markov processes. Fig. 5 illustrates a 2-dim. causal 
Markov process (Jain 1977). The vicinity, sufficient for prediction of 
sgo h0 is "to the left and above" of the point g0, h0 (hatched area); 
all other points in the upper left quadrant g £ g0, h < hQ are super
fluous. Causal Markov processes obey a difference equation analogous to 
the diagram of fig. 2, with coefficients a ̂  (g, h = 0, .., M; g+h f 0) 
and bQ. The coefficients can be solved from the observed coherences of 
eq. 12 via relations analogous to eqs. 8. As in the 1-dim. case, the 
brightness distribution is finally obtained as the power transfer 
function of the difference equation, which leads to eq. 13. 

Thus, the conclusion seems justified that a 2-dim. MEM relies on 
fitting a 2-dim. Markov process to the observations. 

2.6 Another entropy expression. 

The preceding^sections were based on the entropy expression of 
eq. 7: H. -j- TV In B(l,m).dl dm. We note that H, is a property of the 
random process °k' 

related to its (un)predictability. It is not 
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a measure for the likelihood of the estimate B(l,m), unless of course we 
have the a-priori certainty that .., s^, .. is an all-pole-process. 

More recently a second entropy expression was introduced: H2 = 
// B(l,m).ln B(l,m) . dl dm. Maximization of H~ under consistency 
conditions is said to give a measure for the likelihood of B(l,m) 
(Frieden 1975, Gull and Daniell 1978, Kikuchi and Soffer 1977, various 
papers in this volume). 

When using H2 instead of Hj the connection with Markov processes is 
broken and our preceding discussion does not apply anymore. Still, H2 

gives improved resolution, implying that the coherence function has 
been extrapolated, in one way or another. It would be interesting to 
find out if Ho can also be interpreted as a model fit. In other words: 
what are the conditions on the object B(l,m) which make a H^-coherence 
extrapolation a legitimate one? 

3. HIGH RESOLUTION METHOD (HRM) 

We analyze the mechanism of Capon's High Resolution Method (HRM) -
also known, erroneously, as Maximum Likelihood Method (MLM) - and we 
indicate two areas which require further investigation. 

3.1 Imaging with a beamformer-wattmeter combination. 

We start with an array of M+l sensors and we assume that all out
puts s0, .., s^ (aperture illumination) are simultaneously available 
for processing. The sensors may be distributed over a linear or a plane 
aperture, but for simplicity we shall discuss a l-dim. line-shaped array 
with equal sensorspacings A (fig. 6). Note that the condition of simul
taneous accessibility of all sensor outputs is not fulfilled in 2-dim. 
earth rotation aperture synthesis; we return to this point in sec. 3.6. 

Fig. 6 shows the traditional array processor, consisting of a 
, beamformer and a wattmeter. The beamformer adds the instantaneous sensor 
j outputs SJ via weights a? (10) so as to steer an antenna beam in the 
! desired direction 1Q: 
I 

M 
x = I a* (1 ) . s, . (14) 

i=0 1 ° 

The wattmeter estimates the power, incident upon the array from 
direction 10, by squaring x(t) and averaging over a finite time T. Note 
that beams can be steered simultaneously in many different directions 
1Q by using different sets of weights for each beam. Neglecting the 
measurement error caused by a finite integration time T, the average 
output power is given below, where E denotes expectation: 

M 
P(l ) - E {| E a* (1 ) . s |2} . (15) 

i=0 L ° 1 
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Beamformer 

Wattmeter 

aM({0] 

Fig. 6. Beam former + wattmeter; a traditional imaging system when all 
sensor outputs are simultaneously available for processing. 1 is the 
beamsteering direction. Using a parallel processor, beams can be steered 
in many different directions. 

Invoking the definition of the coherence function, E{s. ŝ .̂ } = R-%., and 
the van Cittert-Zernike theorem, R, = / B(l) . exp 2ir fkl A . dl, this 
can be written in various other forms: 

P(lo) = A a* (10) . am (1 ) . R ^ 
i,m=0 i 

(16) 

11 

,1-n < «•> • ** 
(17) 

= / W(l,l0) . B(l) . dl, (18) 

https://doi.org/10.1017/S0252921100074893 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100074893


RESOLUTION ENHANCEMENT 211 

where 

K M * 
w, (1 ) = T. a. (1 ) . a. , (1 ) (19) 

k o . . 1 0 l - k o ' 
i=0 

M H 2 
W(l, 1 ) = E w* (1 ) . exp 2irjlkA = | 2 af (1 ) .exp 2 TT j l i A | -

k=-H i=0 x 

(20) 

All integrals above and below are over the source interval [-W = - 1/2A 
W=l/2A](eqs. 3,4). Eq. 18 expresses the output power in the familiar 
form of the brightness distribution B(l), convolved with W(l, 1 ), the 
antenna beampattem (BP). 

Observe that eq. 18 allows the use of differently shaped BP's for 
different steering directions, by selecting specific sets of weights 
ai ^ o ^ ^or ^ ^ o ^ ^o r e a c h If,* This opens the possibility to adapt 
the imaging system to the brightness distribution. Although 17(1, 1 ) is 
limited to 2M+1 fourier components (eq. 20), we can realize quite 
arbitrary, and even asymmetrical, BP's. We shall take advantage of this 
feature by minimizing the power, picked up by our antenna beam, from 
directions other than 1 . Or, in the jargon of spectrum analysis, we 
shall minimize the "leakage" from object coordinates 1 to the steering 
direction 1 . 

Eq. 18 holds also the potential of resolution improvement. Suppose 
that we divide eq. 18 by the effective width of the beampattern, say L, 
and that we regard P(l0)/L as a brightness estimate B(1Q). In that case 
eq. 18 relates the estimate to the object via a shift-variant operation, 
contrary to a conventional image reconstruction which produces a shift-
invariant operation, similar to eq. 5b: 

B(l0) = / G(1-1Q) . B(l) . dl. (21) 

(The conventional result can be obtained by putting w^ (1 ) = 
g, . exp - 2irjkl A in eq. 17; compare with eq. 5a; the pattern G ( ) in 
eq. 21 is the fourier transform of g^, k = -II, .., M.) In eq. 21 the 
number of fourier components in B(l) is limited by the number in G(l), 
i.e. k = -M, .., 11. In eq. 18, however, the range of fourier components 
in B(l) may exceed this number, i.e. it may exceed the limit set by the 
length of the antenna array, and we may hope for a resolution improve
ment. 

3.2 Capon's High Resolution Method (HRM). 

Capon (1969; Capon and Goodman 1970) imposed the following con
ditions on the beampattern: 

1. W(l, 1Q) > 0; all 1, any 1Q (22) 
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2. W(l0 , 1Q) = 1 

3 . P(1Q) = mimimum, 

(23) 

(24) 

and he proposed to regard the minimized output power P(l_) as an 
estimate of the power radiated by the object B(l) in a narrow region 
around 1Q. What is the significance of these conditions? 

1. By requiring a non-negative beampattern we have the certainty 
of a positive estimate P(l ) . Hence the method relies on the a-priori 
assumption of a positive brightness distribution (sec. 1.1). (For a 
processor of the type of fig. 6 the positivity assumption is already 
incorporated because of the presence of the wattmeter.) 

2. Eq. 23 normalizes the beampattern's power sensitivity in the 
steering direction to unity. Radiated power from directions close.to 1 
is measured correctly. 

3. By minimizing the average output power ?(1 ) under the con
straints 22 and 23 we hope to minimize the power picked up via sidelobes 
of the BP (minimization of "leakage"; sec. 3.1). We shall see that this 
leads to a BP where the sidelobes have arranged themselves "inversely" 
with respect to the brightness distribution: low sidelobes where B(l) 
is large, and conversely. 

Eqs. 22, 23, 24 are solved very easily for a beamformer system. No 
special precautions are required to satisfy eq. 22; the BP is always 
positive because of eq. 20. Further, eqs. 20 and 16 are used to express 
W(l , 10) and P(l0) in terms of the weights a¥(l ). The minimization is 
then performed via a Lagrange multiplier and we obtain an optimum set of 
weights a* (1 ) which can be resubstituted in eq. 16. We shall skip the 
calculations (Lacoss 1971, Cox 1973 (2), Capon 1969). The result is: 

P(l ) = 
11 

Z Z Q.. . exp - 2Trj(i-k) 1 A 
* . « IK O 

i,k=0 

(25) 

where Q£^ are the elements of the inverse, Q, of the coherence matrix R, 
which consists of the elements R ^ = E {s? s^+^} : 

/Roo Rol "• RoM' 

R10 Rll 

tRMo MM' 

x>o 

Tto* 

•<oM 

^fll' 

(26) 

(In the present case of an equidistant linear array (fig. 6) we have 
R.. = R. . ) . We make the following observations. 
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1. Although we started with a beamformer, requiring the simultan
eous availability of all sensor outputs, we end up with an expression 
(25) that enables us to use observed coherences R^. In the equidistant 
case we only need the values R_M, .., R-, since R., = R^-i- Thus, we 
can start by measuring coherences in the usual way and then substitute 
them in eqs. 25, 26 to obtain P(l ). Note that this implies the use of 
slightly incorrect values since the finite correlation time creates an 
error r^ (eq. 1). 

2. Eq. 25 can be written as a fourier series of infinite length 
(finite length fourier series in the denominator). Hence P(l0) contains 
fourier components missing from a conventional image (eq. 5a). Equivalent-
ly, the coherence function corresponding to eq. 25 has an infinite length 
and contains many of the unobserved coherences. 

3. Unlike the MEM, the HRM solution (25) is not consistent with the 
original observations: the first 11+1 coherences, calculated from eq. 25, 
differ from the observed RQ, .., R^. This is simply checked by doing the 
calculations for a short series. 

3.3 Example. 

Fig. 7 shows an example of the HRM in temporal spectrum analysis, 
applied to the same 21 covariances as used in the MEM example of fig. 4. 
The nominal spectrum B(f) and the HRM estimate P(f0) are depicted in 
figs. 7a and 7b, respectively. The resemblance is reasonable. Comparison 
with the conventional estimate of fig. 4c shows a significant enhance
ment of resolution. Note the discrepancy between the vertical scales of 
fig. 7a and 7b, caused by the fact that eq. 25 represents power rather 
than power density. 

The plots of fig. 7c present beampatterns W(f, fQ) for 4 different 
tuning frequencies ("steering directions") f , indicated by vertical 
lines. Observe that W(f0, fQ) = 1, in accordance with eq. 23. Comparison 
of the BP's with the object spectrum B(f) illustrates the "inverse" be
haviour of the sidelobes, in response to the required leakage minimizat
ion (eq. 24). The BP's have adapted themselves to the data. The effect 
is so strong that the main beam of the antenna pattern is no longer 
clearly recognizable. 

3.4 Discussion. 

In sec. 3.2 we derived the HRM estimate P(l ) as the minimum power 
that can be measured with an all-positive beampattern, normalized to 
unit sensitivity in the steering direction. Thus, we interprete HRM as a 
positive constrained reconstruction method which minimizes leakage. 

Yet it is amazing that a result of the quality of fig. 7b can be 
obtained solely on the assumption of a positive object function and one 
may wonder whether there is perhaps a hidden structural assumption be
hind the HRM, similar to the MEM assumption. This suspicion is fed by 
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Fig. 7. High Resolution Method (HRM). Same spectrum B(f) as in fig. 4a. 
Comparison with the conventional estimate (fig. 4c) illustrates the re
solution enhancement. Figs. 7c illustrate how the beampatterns adapt in 
an inverse sense to the object B(f) , in order to minimize leakage. 
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the existence of an algebraic relation between MEM and HRM estimates, as 
demonstrated by Burg (1972). 

3.5 Areas for further study. 

There are at least two problems requiring further investigation: 
1) intensity calibration and 2) incomplete coherence matrices. The 2nd 
point is important for application to 2-dim. earth rotation aperture 
synthesis. 

Intensity calibration. We recall that eq. 25 is an estimate of the 
power radiated by the object within a narrow region around the steering 
direction; it is not an estimate of the brightness (i.e. density of 
power) B(l). The HRM has a long history in the area of underwater a-
coustics where the problem is to detect the presence or absence of a 
point source Ps.6(l-1 ) against an unknown, continuously distributed 
background radiation B(l). The HEM, in the form of a power estimator, is 
perfectly suited to this purpose since the constraints 23 and 24 guarantee 
a maximum signal-to-noise ratio if a point source is indeed present in 
direction 10. (These applications go by the name of MLM: Maximum Likeli
hood Method, a misnomer since the method does not provide an ML estimate 
of power. Cox 1969, Cox 1973 (1), Cox 1973 (2), Lewis and Schultheiss 
1970, Schultheiss 1977.) 

Our present purpose is slightly different: we are interested in a 
density estimate. Hence eq. 25 must be divided by the effective width L 
of the BP's main beam. Since the BP's may assume strange shapes (fig.7c), 
and since the shapes differ from one steering direction to the next, the 
problem deserves some more attention. Various approaches can be taken. 

1. An ad-hoc approach is to divide eq. 25 by the effective width L 
of a conventional unweighted beampattern G(l), to be obtained via eqs. 5. 

2. Another option is to use the actual beampatterns W(l, 1 Q ), to be 
derived from eq. 20, but this poses the problem of defining an effective 
width for BP's shaped like those of fig. 7c. 

3. A 3d solution might be to replace constraint 23 by a modified 
one: 

/ W(l, 10) . C(1-1Q) . dl = 1, (27) 

where C(l-1 ) is a positive pulse-type function (e.g. a gaussian), 
centered at 1 , with an area 1 and an effective width L which could, for 
instance, be taken equal to a desired resolution width. Observe that 
eq. 27 reduces to the original constraint 23 if C(l-10) is a delta 
function. 

Incomplete coherence matrix. The preceding discussions extend im
mediately to non-equidistant arrays, distributed over a 2-dim. plane 
aperture. One can use a beamformer + wattmeter if all sensor outputs are 
simultaneously accessible or one can start from a previously measured 
coherence matrix R (eqs. 25, 26). 
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In the last case, however, the HRM requires that all cross co
herences R£k have been measured! This condition is not met in radio 
astronomy earth rotation aperture synthesis, where the usual observation 
scheme limits the coherences to those involving the sensor at the origin 
of the rotating array. This leads at best to the elements in the first 
row, the first column and the main diagonal of the coherence matrix R. 
Papadopoulos (1975) applied the HRM to radio astronomical data and he 
solved the dilemma by setting all unobserved matrix elements equal to 
zero. 

A better solution for the case of an incomplete matrix is to break 
the link with simultaneously accessible arrays and to rephrase the 
problem. Suppose that a set of coherences R_M, .., RJJ has been observed, 
distributed arbitrarily in the u,v-plane. The HRM conditions could then 
read: 

M ¥ 

1. Minimize P(l„) = Z w, (1 ).Ri_ under the constraints 
o K O «• 

-M 
2. W(l, 1Q) > 0 (28) 

3. W(lo, 10) - 1 , 

where W(l, 1 ) is the fourier transform of the weights w, (1 ). Un
fortunately the solution of this problem is less straightforward than 
the one of eqs. 22, 23, 24 since a convenient relation of the type 20, 
automatically satisfying the positivity constraint, is no longer 
available. 
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DISCUSSION 

Comment R.H.T. BATES 
Do you not think that superresolution can work (using Gerchberg's al
gorithm, for instance) provided the resolution is only a few Shannon 
samples? See, for instance, McDonnell and Bates, Ap.J. 208, Sept. 1976, 
443. 
Reply C. van SCHOONEVELD 
The only useful application of superresolution that I know of, has to 
do with very short antenna's or antenna arrays, i.e. arrays with a 
length of one or two Nyquist intervals A, or less. One can then extra
polate the coherence function over a distance of the order of A beyond 
the physical array limits, before the effect of internal noise becomes 
prohibitive. Unfortunately, this limits superresolution to antenna 
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systems where the resolved angle is an appreciable fraction of the field 
of view. In addition, some useful applications were reported in relation 
to short end-fire arrays. 

Comment J.C. DAINTY 
The application of MEM to power spectrum analysis leads to a "log B" 
maximization implying certain structural constraints on the random 
process. Astronomers sometimes use "B log B" -MEM- methods. What are the 
structural constraints in this case? 
Reply C. van SCHOONEVELD 
I wish I knew! This is an interesting area for further research. The 
variational problem involved is probably too complicated to lead to a 
closed-form solution, but it might give a hint about the structure of 
the solution. This might then lead to a guess about an underlying 
assumption concerning the process. 

Comment L.R. D'ADDARIO 
I think that the MLM is not useful for fourier synthesis in radio astro
nomy. It computes, for each map point, the most likely flux assuming the 
rest of the map is empty. This is often an unreasonable assumption. Also, 
the simple matrix inverse does not apply to rotation synthesis data; an 
instantaneous array with all elements cross-correlated is required. 
Reply C. van SCHOONEVELD 
1 do not agree with your first statement. The MLM, or HEM, is fully 
aware of the flux in other map points and it deliberately minimizes the 
effect of these fluxes in the map point under consideration. Your 
second comment is completely to the point! Lack of time prevented me to 
mention this problem in my presentation; it is considered in the paper. 

Comment J.E.B. PONSONBY 
You said that one dimensional time series analysis and two dimensional 
imaging are analogous. You said that the Wiener-Khintchine theorem be
comes the van Cittert-Zernike theorem, etc. You then discussed the time-
series analysis of autoregressive processes with the implication that 
there is an analogy in 2 dimensions. Can you give examples of 2-dimen-
sional autoregressive processes? 
Reply C. van SCHOONEVELD 
Yes and no. In my paper I give the example of a causal 2-dim. AR process, 
where the corner of a rectangular block of data can be predicted from the 
other points in the block. This is a direct analogy with the 1-dim. case. 
The trouble is, that one can imagine many other prediction schemes in 
2 dimensions, most of them non-causal, whether such processes do indeed 
exist, and whether they lead to modified MEM algorithms, is not yet 
completely clear. 

https://doi.org/10.1017/S0252921100074893 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100074893



