
B. Runge
Nagoya Math. J.
Vol. 138 (1995), 179-197

ON SIEGEL MODULAR FORMS

PART II

BERNHARD RUNGE

1. Introduction

In this paper we compute dimension formulas for rings of Siegel modular

forms of genus g — 3. Let denote Γg(2) the main congruence subgroup of level

two, Γg>0(2) the Hecke subgroup of level two and Γg the full modular group. We

give the dimension formulas for genus g = 3 for the above mentioned groups Γ

and determine the graded ring A(Γ3(2)) of modular forms with respect to Γ3{2).

The dimension formula in the case Γ = Γ3 was first given by Tsuyumine in

[Tl]. Tsuyumine, following a method of Igusa, used the sequence

0 — χ18A(Γ3) -> A(Γ3) — S(2,8)

where χ18 is a cusp form of weight 18 defining the closure of the hyperelliptic

locus and S(2,8) is the graded ring of invariants of binary 8-forms. Tsuyumine

uses the structure of S(2,8), given by Shioda [Sh], and restriction of a bigger ring

A'(Γ3) with respect to a second divisor.

For our generalization of Tsuyumine's result we use a more direct approach.

In [R] we computed the ring of modular forms for 7^(2,4) (the Igusa subgroup of

level two). Principally this allows to compute all rings of modular forms for sub-

groups Γ with Γ3(2,4) c Γ a Γ3. However, this involves subtle computations of

rings of invariants with respect to the finite group Γ/Γ3(2,4:). It turns out that

the computation is simplified by constructing a certain central extension Hg of

Γg/Γg(2,4). This group seems to be of independent interest because of its import-

ance in coding theory. The main ingredient is a decomposition of Bruhat type for

the group Hg. This decomposition is closely connected with the theory of partial

Fourier transformation.

Finally, in the last chapter we give a characterization of decomposable points

in the Satake compactification, which gives another method for computing

A(Γ3(2)).
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180 BERNHARD RUNGE

2. A decomposition of Bruhat type

We give two descriptions of the group Hg. For the first description consider

V= { / : F f — C ) = L2(¥8

2)

together with the standard scalar product <,> : Y8

2 x Ff—» F 2 . Let fa for a e F 2

be the standard basis of V. We regard Fourier transformation on V, i.e.

f{a) =2~8 Σgf(b)(-l)<a'b>

and the convolution

f*g(a) =2~8 Σ/(b)g(a-b).

We have the obvious properties f(a) = 2~8 / ( — a) and f*g = fg. Furthermore

Fourier transformation commutes with complex conjugation. Secondly we have the

Gauβ functions

fs(a) = ιsm

for any symmetric matrix 5 e Mat^(Z) (here a is regarded as a vector with en-

tries 0, 1 and S[a] = aSa is the standard quadratic form). The function fs is a

character of second degree in the sense of Weil [W]. The functions fs — f2S are

characters in the usual sense. We refer for general facts to [W]. Let denote Dg the

abelian group generated by all Gauβ functions and let Dgg = Dg/(f for / ^

Dg) be the factor group regarded as functions fs with 5 containing only 0 and 1.

We call these functions fs pure. We include the proof of the following lemma,

although elementary, because it is essential for the decomposition.

LEMMA 2.1. If f s(a) e {0, ± 1, ± i) for all a^Yβ

2 and fs(a)ae¥ξ, regarded

as vector in C , has length 1, then 5 = 0 (mod 2), hence fs is a character on F 2 with

values in (± 1).

Proof We first compute for f' = fs

f*f(a) = 2'g Σ f(b)f(a - b) = 2"* Σ is[b](- t)S[a~h]

_ / •\S\a]r)-g STΛ / Λ x <Sa,b>

— \~ I) Δ Z. I"" U

(— 0 if 5# = 0 mod 2

0 else.
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Hence

//(*) = 7*/(α) = 2'8 Σ ( ~ 1) <b'Sb/2+a>

f
<2

f with Sb=0(2)

where d — dim(ker(5)) regarded as matrix in M a t ^ ( F 2 ) . The assumption im-

plies that d — g hence the result. •

Now we give a matrix description. The Fourier transformation corresponds

(up to some scalar factor) to

T =g

and the GauB functions correspond to

is[a] for a e F8)Ds = dmg(is[a] for a e F8

2)

for any symmetric g X ^-matrix 5 with integer coefficients.

Let Hg be the subgroup of Gl(V) generated by Tg and the Ds, where S runs

over the set of symmetric g X ^-matrices.

However, for our purpose we need a more combinatorical approach. This

leads to a second description of the group Hg. We regard the affine linear group

AGl(g, F 2 ) : = F f xi G/(*, F2)

together with the standard action (x, M) (a) = M a + x on Ff. The group

t F2) will be considered as a subgroup in Gl(V) = Gl(2 , C) just by per-

muting the fa.

We recall the following facts [R]:

We defined Ng = <Z)|, Tg~
ι D2

sTg for all 5>, the abelian subgroup Dg = <DS for

all 5) and the subgroup HgA = Dg *AGl(g, F 2). The notation HgΛ is motivated

by the fact, that HgΛ is acting on the fourth powers fa only by permutations. It is

a monomial group, regarded as subgroup in U[28> Z — ^ — ) c Gl(28, C) (see

[R], 2.6). In particular, the entries of a matrix in HgΛ are integral over Z and of

absolute value 1 or 0, hence contained in {0, ± 1, ± i). The group Ng is a nor-

mal subgroup in Hg and Ng c: HgΛ. One has an exact diagram

0 — JV, — Ht — Sp(2g, F2) - 0

u u u
0 — Fg

2 — ΛG/(^) -» G/ (^, F 2 ) ->• 0
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182 BERNHARD RUNGE

and the index oί H8Λ HΛs 1 3 5 (2 g + l ) .

We have to consider partial Fourier transformation M with respect to the

standard flag of subvector spaces in Ff. In matrix notation with respect to the

first standard vector (one digit, if one considers F8

2 as binary numbers)

1 1

1 - 1

is the matrix with 28 blocks ( ) along the diagonal. The typical Gauβ

function corresponds to the diagonal matrix (with 28 entries)

E= (1, i, 1, / , . . . ) .

Then P = iME2M= (0,1). . . (2* - 2, 28 - 1) (in cycle notation) is a permuta-

tion in AGlig, F2). We have the relations: MEM = EMEP, (MEM)2 = - P,

ME2M=iP, M2 = i, (ME)3 = - 1 , ME2 = PM, E2M=MP, P2 = 1 = £ 4 =

(P M) . This is easily reduced to a G/(2, C)-computation.

More generally we have to regard d-dimensional partial Fourier transforma-

tion M with respect to the first d standard basis vestors. In matrix notation

M for d < g is given by the matrix, which consists of 28~ blocks Td along the

diagonal (for example in case d = g = 2

Let denote by Δdg : Hd~^ Hg the standard diagonal embedding, which maps a mat-

rix W to the matrix with 28 blocks W along the diagonal. Then M — Δdg(Td),

\). Let denote by Ddg the set of diagonal matrices in Dg} given by

(S; 0\
elements Ds with S of the form ί ) for a symmetric d X d-block S' with

entries 0 and 1. The cardinality of this set (of pure Gauβ functions belonging to
ίd+ 1\

the first d standard vectors) is obviously 2^ 2 /.

More general, it is possible to define partial Fourier transformation for any

linear subspace U c: Ff. The group Gl(g, F2) acts by conjugation on the sets Ddg
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and the elements M . We get for any d-dimensional U c: Ff an element M and

a set Z)^. The elements M are not unique (depending on a choice of a basis), but

nevertheless we get the following result of Bruhat type

THEOREM 2.2. There is a decomposition

Hg = ft) Z)" * * * " * / ) , * A//(£, F2).
f/cFf

Proof. Remember HgA = Dg*AGl(g, F 2 ) . Furthermore

# id-dim subspaces U in F2} ==
 (2 g - 1) (2*"1 ~ 1 ) . . . (2g-d+1 - 1)

( 2 " - l ) ( 2 d - 1 - l ) . . . l

# {pure Gauβ functions in Du) = 2^ 2 ) for cί > 1.

Induction shows

[Hg:Hgi] = 1 + Σ #{</-dim subspaces ί/ iin

Hence it only remains to show the disjointness of the decomposition. The element

M is clearly unique, it corresponds to a block decomposition of the matrix. Hence

we may assume that M = M (the standard flag). We regard two product rep-

resentations DιM
{d)Bι = D2M

id)B2 with Dt e Ddg and B{ <= HgΛ. Obviously is

again DXD2

 e Ddg (up to a character) a pure Gauβ function and nontrivial for Dx

Φ D2. Using the maps Δdg it remains to show the following lemma. Π

LEMMA 2.3. It holds [Ds, Tg] e HgΛ iffS = O mod 2.

Proof. It is obvious that [Ds, Tg] ^ Hg4. On the other hand we have for the

commutator

lDs,TtUfβ)= Σ KaJc= Σ (-l)<a+c'c>fs(a + c+Sc)fc.
ceFf ceFf

If the commutator (i.e. (Kac)) is a monomial matrix, it follows from Lemma 2.1

that S Ξ= mod 2 hence Z)s e Λ^. D

COROLLARY 2.4. We /ιαw the following equality of groups

Hg = <Gl(g), P, E, M> and HgΛ = <Gl(g), P9 E>.

HgΛ is the monomial subgroup of Hg, i.e. the group of all matrices in Gl{28, C) Π Hg

which have exactly one nonzero entry in every row and column.

https://doi.org/10.1017/S0027763000005237 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005237


184 BERNHARD RUNGE

The dimension d of the cells in the decomposition are characterized by the

property, that the number of nonzero entries in the matrices is just 2 4 . Divid-

ing by Ng gives the Bruhat decomposition with respect to the parabolic subgroup

Gl(g, F2) (corresponding to the set of shorter roots in the Dynkin diagram Cg).

3. The computation of rings of modular forms

We recall from [R] the group homomorphism

For any congruence subgroup Γ, such that there exists a subgroup G c: Hg with

Γg (2, 4) c Γ c: Γg and φ(D — G / ( ± 1), we can compute the ring of Siegel mod-

ular forms of level Γ and even weight as

A(Γ)i2) = Θ [Γ, s] = (C[/β for a e Ff]V{relations})",
2|S

where N denotes the normalization in its field of fractions and "relations" are the

theta relations. In genus one and two, there are no relations and in genus three the

relations form a principal ideal generated by a polynomial φ of degree 16 with

471 terms (see Chapter 5). For g < 3 there is no normalization necessary [loc.

cit.J. We get for the invariant rings R — C [ / J the dimension formula:

ΦM) = Σ dimr Rm x λι = -ΊΓr
^ £G det(l ~ λσ)

(We remark that the degree of a polynomial in the invariant ring is always two

times the weight as a modular form.)

Before giving generators for the invariant rings we make some general re-

marks (see also Stanley [SI], [S2]). All subgroups G of Hg4 are monomial groups

(in the matrix representation with the basis fa there is one nonzero entry in every

row and column). We have a homomorphism π : G-* S2e (the group of permuta-

tion matrices in Gl(28', C)), the group ker(7r) is an abelian group consisting of di-

agonal matrices and G is the semi direct product of ker(7r) and π(G). All in-

variants are given as symmetrization (over im(7r) in S2g) of admissible monomials

(i.e. invariant under the group ker(7r)). We fix the notation

(b0,. . ., b2'-ι) = # si-ahC/, h Y ^ ^ ^ Ja^
if OLdDV0 o,. . . , O2g_λ) σ e π ( G ) α e F |

where (b0, . . ., b2g_1) is ker(τr)-invariant and the stabilizer is taken inside G. It
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will always be clear from the context, if (δ0, . . . , δ2*-i) denotes a (usually very

large) homogeneous polynomial in C[fa] or the monomial Tίa&¥g fa

a.

The full modular group Γg corresponds to Hg, which is generated by the

monomial group HgΛ and one more element (e.g. M). In this case invariants will al-

ways be given as linear combinations of invariants under HgA.

For groups generated by pseudo reflections the invariant ring is a polynomial

ring ([S2], 4.1). In this case it is enough to find 28 algebraic independent polyno-

mials in degrees given by the Poincare-series.

For arbitrary groups it is more difficult to compute the invariant ring. The

first step is to find 28 algebraic independent invariants in degrees given by the de-

nominator of some representation of the Poincare-series in the following form.

ΦGQ) =

This representation is not unique, but if one can find polynomials glf. . ., g2e

of degree dly.,.,d2g with only finitely many common zeros, there also exist

&2g+i> >&r which generate the invariant ring as a free module over the ring

C[glf..., #2*](see [S2], Chapter 3). The invariant ring is always Cohen-Macaulay

(loc. cit. 3.2.).

To find a minimal set of generators as a ring one has to check up to the de-

gree of the numerator that all invariants are polynomials in the chosen set of in-

variants.

If the invariant ring is a complete intersection

R = C[g1,...,g2,+c]/(h1,...,hc)

(a hypersurface for c = 1), the Poincare-series has the form

= π - /o
with ^ and ht polynomials of degree d{ and e( respectively (c is the codimension,

see [SI], 3.3). In particular the Poincare-series is a quotient of products of cyclo-

tomic polynomials.

4. The Poincare-series

The computation of the Poincare-series is done in two steps. The first step is

to compute the Poincare-series for the action of H3 on the polynomial ring, the

second is to multiply this series with (1 — λ ) or (1 — λ ) according to degree or
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1 8 6 BERNHARD RUNGE

weight-grading.

As described above we have to compute many determinants. For genus three

there are 371589120. The first simplification we use comes from computing mod-

ulo the center of the group.

The main simplification comes from the decomposition theorem 2.2. Obviously

det( l — λσλσ2) = det( l — λσ2σ1)

det( l - λσ) = det ίσ" 1 - /Odet(σ).

For g > 3 the group Hg is a subgroup of SU(2g), moreover (M ) = i . Let de-

note a03 = 1, a1>3 = 14, a23 = 56, a3>3 = 64. All together we get

ΦHg(λ) = £ dimc RU) x λι = -ψj ΣΣ^ d e t ( 1 _ λσ)

#Hg d^>g

 a^ τeHgA d e t ( M ( r f ) r - X)

It is interesting to note, that we do not need the full knowledge of the

conjugacy-classes of Hg.

This restricts the computation considerably. Only 2752512 determinants of

size 8 X 8 remain. A tedious computation gives 145 types of characteristic polyno-

mials. In an appendix we give a complete list.

Because H3 is a subgroup of SU(8) all the characteristic polynomials P fulfill

the equation

POO =X *P(1/X).

Moreover by the finiteness of the group H3 all the coefficients of a characteristic

polynomial are elements in Z[ί], hence all characteristic polynomials are deter-

mined by 7 integers.

For any characteristic polynomial P also P(iX), P(— X) and P ( — iX) occur

with the same cardinality. The symmetrization over the center

S(P) = I/POO + l/P(iX) + 1/K- X) + 1/P(- iX)

yields 33 types of rational function, where the denominator is a product of cyclo-

tomic polynomials C ; of degree at most 16 and j the order of an element of Hg

hence a divisor of 371589120 = 2 1 7 * 3 4 * 5 * 7 .

The set of possible characteristic polynomials is more or less described by

this observations. The difficult point is to count how often the 145 types of

polynomials occur.
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Before giving the main result for the full modular group let us discuss the

easier cases of level 2 and Hecke case. (The Hecke subgroup ΓgQ(2) is for

M = i ) ^ Γg defined by the condition C = 0mod(2) and corresponds to

HgA)
The Poincare-series are as follows:

1 + 7λ2 + 43/ + 154/ί6 + 43/ + 7/° + / 2

= 1 + 15/ + 135/ + 870/ + 3993/ +

+ 14157/° + 41535/
2
 + 105740/

4
 + ...

As a consequence one has to compute the invariants up to weight 12, i.e. with

polynomials of degree 24 in the 8 / 0,. . . ,/7. The invariant ring is not a complete

intersection (the numerator is irreducible in Q[/i] and not cyclotomic).

Multiplication with (1 — λ ) yields:

_ (1 + 7 / + 4 3 / + 154/ 4- 4 3 / + 7/° + / 2 ) (1 + / ) (1 + / )

(1 - / ) 7

= 1 + 15/ + 135/ + 870/ + 3992/ + 14142/° +

+ 41400/2 + 104870/4 + . . .

For the Hecke subgroup the result is as follows:

φ 1/2 JVHckeU)(l + / )

(1 - /) (1 - /)3(1 - /) (1 - /) (1 - /2)(1 - /4)
- 1 + / + 4/ + 6/ + 15/ + 24/° + 49/2 + 78/4 + ...

The numerator is given by:

^HeekeW) = I ~ ^ + λ* + 2λ* + /° + 2 / ' + / ' + δ / ' + λ" + βλ™ + 2 / '
l r ) 2 4 i o i 2 6 _ι_ r I 2 8 i ^ 3 0

 J _ r- " ί 3 2 i ) 3 4 ι_ o i 3 6 ι_ ^ 3 8 i o ) 4 0 ι_ :>44 ^ 4 6 ι_ I48

+ 6/t +2/ +6/ + / +5x + / +2/ + λ + 2λ + / — / -r λ
As a consequence one has to compute the invariants up to weight 50, i.e. with

polynomials of degree 100 in the 8 / 0,. . . ,/7. The invariant ring is not a complete

intersection (NEecke is irreducible in QU] and not cyclotomic).

Multiplication with (1 — λ ) yields:
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188 BERNHARD RUNGE

^ Γ Q Λ ( 2 Λ Λ ' 0 A 9 fi 19 1A

= 1 + λ2 + 4 / + 6^ 6 + 14>ί8 + 23>ί10 + 45/i12 + Ί2λu + ...

For the full modular group (or H3) the result is as follows:

3 (Λ Ί^\ (Λ 1^\(Λ ^ 12^ 2 •-. jl4\ /-. ^^^/i 1^\ (Λ Ί^\

\ϊ / Ml / A l λ ) \ϊ Λ ) \1 A A i X A l A )

= 1 + / + / + 2/ + 2/° + 5/2 + 4^14 + ...

The numerator is given by:

K.
+

9λ

6λ

3λ

2/°
50 +

70 ,

92

) = 1

+ 7λ

\2t2

9/2-

t4 +

—
32

+

f ί

3;

/ "+

7 / 4

iλ7*-

.96 +

" ̂  + λ

+ 14^56

h 7 / 6 +

λ102 + λ

+
+

+

3Λ
108

3/β -

5/8 +

7/8 +
78 1 „ ,

" λ +

9/°H

12/°

:80 + 2

+• λ 1 1 2

3/° 4

- 6/2 -

+ 9/2

λS2 + 4

-2

f:

+

t/

10/4

2λ

+
{ 8 6

24 ,

8 / 6

+ 2;

3^ + 4
- lθ/ 8 4

+10/8

( 8 8 + 2 ; j90

To get a numerator with positive coefficients one has to multiply Nmod(λ) with

(1 + λ ) . As a consequence one has to compute the invariants at least up to

weight 114, i.e. with polynomials of degree 228 in the 8 / 0 , . . ., f7. The invariant

ring is not a complete intersection (iVmod is irreducible in Q[λ] and not cycloto-

mic).

Multiplication with (1 — λ ) yields:

φ m =
- / ) ( i - λΎd - λu)(i - λls)(i - Λ α - λ30)

= 1 + λ4 + λ6 + / + 2λ10 + 4λu + 3λ14 + ...

(One may check that iVmod * (1 + λ2) is the same numerator given in Tsuyumine's

paper [Tl]. The statement in [Tl], [T3] and [T4], that the ring is not

Cohen-Macaulay is not correct.)

Remark. All the Poincare-series given in this paper have the property

for some r ^ Z which is equivalent to the Gorenstein-property. It turns out that r

is the number of pseudo reflections in G. For example for G c: Sl(d, C) the in-

variant rings are Gorenstein-rings [SI], 4.4. and 5.5. or [S2], 8.1). We remark,
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that this is not equivalent to the Gorenstein-property of the Satake compactifica-

tion as a variety.

5. The case Γ3(2)

In the notation with the fa the relation is a polynomial of degree 16 with 471

terms. We have (recall from part I [R])

φ = 2(9,1,1,1,1,1,1,1) - (8,0,0,0,2,2,2,2)

+ (6,2,2,2,4,0,0,0) -4(5,5,1,1,1,1,1,1)

- (4,4,4,0,4,0,0,0) -2(4,4,0,0,2,2,2,2)

+ 16(3,3,3,3,1,1,1,1) - 72(2,2,2,2,2,2,2,2),

where the writing is given with respect to the monomial group H3A. For every

monomial one has to take the orbit under the AGl (3, F2) -action. For

JΓ 3(2)— which corresponds to the case N3—the permutation part is only an abelian

group of order 8, hence one has to collect the 471 terms to 79 orbits in this case

to get a writing in accordance with the convention described in chapter 3. We

have to define the notion of an admissible monomial (i.e. invariance under the ker-

nel of the canonical map N3 —> S8).

LEMMA 5.1. A monomial (b0, bv 62, b3, b4, b5, b6, b7) is admissible^

Σ b{ = n = 2 (weight) = 0 mod (4)
i=0. .7

b0 + bλ + b2 + b3 = 0 mod (2)

b0 + bγ + b, + b5 = 0 mod (2)

b0 + b2 + bA + b6 = 0 mod (2).

Proof. The point is to find a set of conditions, which uniquely defines a

monomial modulo the group action. The group of diagonal matrices in this case is

generated by / and the following diagonal matrices:

( - 1 , - 1 , - 1 , - 1 , 1, 1, 1,1)

( - 1 , - 1 , 1 , 1, - 1 , - 1 , 1,1)

( - 1 , 1 , - 1 , 1 , - 1 , 1 , - 1 , 1 ) D

The computation of all modular forms for a certain weight consists in divid-

ing the set of admissible monomials in orbits under the action of the group F 2 in
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the natural decomposition of AGl(3, F 2 ). We will give the invariants by some

choice with respect to the permutation orbit under AGl(3, F 2 ) . F 2 is a normal

subgroup of AGl(3, F2) and very orbit under AGl{3> F2) decomposes in orbits

under F 2 . Zeros are omitted if possible.

weight 2 (degree 4).

In the following tables we choose in every orbit under AGl(3, F2) a repre-

sentative (first column) and give the cardinality of the orbit under AGl(3, F2)

(second column) and the number of linear independent invariants of that type for

(4)

(2,

(1,

(third

2)

1,1,1)

column).

8

28

14

1

7

7

weight 4 (degree 8).

(8)

(6,2)

(5,1,1,1)

(4,4)

(4,2,2)

(3,3,1,1)

8

56

56

28

168

84

1

7

7

7

21

21

(3

(2

(1

(2

(1

(1

,1,1,1,2)

,2,2,2)

,1,1,1,2,2)

,2,2,0,2,0,0

,1,1,1,4)

,1,1,1,1,1,1

,0)

,1)

224

14

84

56

56

1

28

7

21

7

7

1

It follows from the Poincare-series that the tables aboves give all the 15 and

135 modular forms, which generate the space of modular forms in weight 2 and 4.

To get generators for the ring of modular forms, we take all the 15 forms in

weight 2 and the last 15 in weight 4.

THEOREM 5.2. A(Γ3(2)) is minimally generated by the 30 modular forms

(4,0,0,0,0,0,0,0), (2,2,0,0,0,0,0,0), (2,0,2,0,0,0,0,0), (2,0,0,2,0,0,0,0),

(2,0,0,0,2,0,0,0), (2,0,0,0,0,2,0,0), (2,0,0,0,0,0,2,0), (2,0,0,0,0,0,0,2),

(1,1,1,1,0,0,0,0), (1,1,0,0,1,1,0,0), (1,1,0,0,0,0,1,1), (1,0,0,1,1,0,0,1),

(1,0,0,1,0,1,1,0), (1,0,1,0,1,0,1,0), (1,0,1,0,0,1,0,1), (2,2,2,0,2,0,0,0),

(2,2,2,0,0,2,0,0), (2,2,2,0,0,0,2,0), (2,2,2,0,0,0,0,2), (2,2,0,0,2,0,2,0),

(2,2,0,0,2,0,0,2), (2,0,0,2,0,2,0,2), (1,1,1,1,4,0,0,0), (1,1,4,0,1,1,0,0),

(1,1,4,0,0,0,1,1), (1,4,0,1,1,0,0,1), (1,4,0,1,0,1,1,0), (1,4,1,0,1,0,1,0),

(1,4,1,0,0,1,0,1), (1,1,1,1,1,1,1,1).
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We start with a lemma. Let denote

Fb = Σgfafa+b for b e Ff.

If one substitutes the /α by its squares one gets the first eight polynomials of the

list. The quadrics Fb may simultaneously be brought into normal form by a linear

change of variable as described in the proof of the following lemma.

LEMMA 5.3. The Fb have only 0 as a common zero.

Proof. We have

W ) = ( i ϊ Σ ( Σ ( - D<βlC>/c)( Σ ( - D<β+M>Λ)
^Δ/ αeFf ceFf rfeFf

= ig

 cΣg(-l)<b c>fc

2.

The matrix ((— 1) >c ) b c is regular, hence the result. D

Proof (of the theorem) It is enough to show that the polynomials generate the

(polynomial) invariant ring. The first eight polynomials have no common zero ex-

cept (0, . . . ,0) by Lemma 5.3. Hence there exists a set of generators containing

the first eight polynomials of the list with degrees given by the Poincare-series,

especially by the numerator in the above form.

One can easily see that all basis invariants in degree 8, different from the last

fifteen generators, are linear combinations in the last fifteen and mixed products

of first fifteen generators. The last generator F = Π α e F 2 fa plays a special role. F

corresponds to the term λ in the numerator and F * any modular forms of de-

gree 8 (weight 4) (and degree 4 (weight 2)) correspond to the term Ίλ (and 43/ί )

in the numerator of the Poincare-series. Hence the following problem of linear

algebra remains: Is it possible to write all of the 870 basis invariants in degree

12 as a linear combination in the 1 3 5 * 15 = 2025 products of basis invariants of

degree 8 and 4 ? With a computer or with tedious computations one can check

that the answer is yes. Π
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6. The characterization of decomposable points

In this chapter we want to derive some consequences for the set of decompos-

able points from the theory developed in part I, in particular Propositions 2.9,

2.10, and 3.15.

As a point set the Satake compactification is given by Proj(C[/J) . For every

r + s = g one has a commutative diagram

P 2 "" 1 X P 2 ' " 1 -> P 2 ' " 1 .

The map in the upper row is usually denoted by Ψ. The map in the lower row is

the Segre map. It is well known that the Segre map is an embedding (see [Ha], Ex.

I, 2.14).

One may check quite easily that the diagram is equivariant under the various

groups Nr, Ns and Ng. Hence we get the following

THEOREM 6.1. There is a fibre product diagram of injective maps for every r + s

= g as follows

dr{2) x ds(2) -+ dg(2)

I 1

Y2~ι/Nr x P2-ViVs — P /Ng.

For r=s=l the Segre embedding is given by the principal ideal (/0/3 —

fιf2), therefore it is easy to compute the ring of modular forms in genus two by

restriction to the diagonal as it is done in Freitag [F](IΠ, 1.4).

For higher genus there are different types of decomposable points given by

different types of Segre embeddings. Let as denote the ideal of a Segre embedding

S.

COROLLARY 6.2.

Γ M < ( 2 ) d e c o m p o s a b i e ) = U Z(aN')Λ s
S Segre map

where the index set are the various Segre maps.
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EXAMPLE 6.3. In genus 3 the ideal of one Segre embedding is given by as =

(/o/s ~ /iΛ> hfi - fsfβf fofe ~ hU fJi ~ hU fJi ~ hU fife ~ /2/5) and the
group N3 is acting on the generators by transpositions and multiplication with

± 1. By lifting the generators of A>(2) x Aλ(2) to A3(2) and computing a basis of

α s

3 one has another possibility for computing A3(2).

The cartesian product of two graded rings R* and S* is given by (R X S) {

= Rt 0 S{ (see [Ha], II. Ex. 5.11) and is a direct summand of the tensor product

(with half of the grading). For the groups Nr, Ns and Ng the group action may be

extended to the tensor product of the graded rings.

Remark 6.4. In [SMI], [SM2] Salvati Manni gives a characterization of decom-

posable points in terms of theta constants (of the first kind).

Table

We give a list of all characteristic polynomials of elements in H3 and count

their occurrence. The polynomials have the type

P(X) = 1 + axX + a2X
2 + a3X

3 a5X
5 aΊX

Ί + X8

with ^ = a7, a2 — a6, a3 — a5 and a4 ^ Z. This table is included to allow com-

parison with other approaches.

In the table, after the coefficients, we give the number of types under the ac-

tion of the center (a row may belong to at most four characteristic polynomials)

and the numbers corresponding to the rf-dimensional M , the number of cases is

the sum # {0-dim cases} + 1 4 * # {1-dim cases} + 5 6 * # {2-dim cases} + 6 4 *

# {3-dim cases}. The last column gives the product decomposition into cyclotomic

polynomials of the denominator of the symmetrization S(P). There are different

symmetrizations with equal cyclotomic type. By summation over the O-dimensional

cases one gets the Poincare-series for H3Λ.

a
i

i

0

0

l ̂

0

0

1-1

2

2

a
2

0

0

2i

-i 0

0

2

- i 2%

2

4

α
3

0

0

0

1 - i

0

0

- 1 + i

2

6

a,

0

2

-

2

-

2

-

2

6

2

2

2

#

4

1

2

4

1

2

4

4

4

0-dim

196608

193536

16128

21504

246456

32256

21504

16128

1344

1-dim

49152

62976

13824

39936

34848

9216

3072

4608

384

2-dim

122880

44544

4608

16896

56640

13824

26112

6912

192

3-dim

86016

34944

4032

21504

29568

8064

21504

4032

672

cyclotomic type

28,14,7,4
2
,2

2
,l'

8
2

8
2

8
2

4
2
,2

2
,1

2

4
2
,2

2
,1

2

4
2
,2

2
,1

2

4
2
,2

2
,1

2

4
2
2

2
,1

2
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2

0

0

0

1

1

0

1

1

0

0

2

2

2

2

2

4

4

4

8

0

0

0

1

0

1

0

1

2

1

1

2

1

2

2

4

- 2ι - 4ί

1

i

0

+ ί i

+ ί i

0

1

+ i 2%

4t

4

0

1

1

+ 2t 2i

+ 2i 6i

8

4

+ 4i 16i

28

2

0

+ i i

1

0

2i

+ i 0

2

1

1

3

1

4

+ 2i 4ί

10

—

0

0

0

1-

-

0

0

-

0

0

-

2

-

2-

-

12

-

-

56

0

0

0

0

0

-

0

0

0

1

-

4

2

4

-

16

2-2ι

-i

l + i

2 + 2*

2

2

-2ι

6 + 6*

4

20 + 20i

1

2

4 + 4/

—

0

0

0

2

-

1

0

-

-

6

-

4

-

6

-

14

-

-

70

3

-

-

1

1

-

-

-

-

1

-

5

2

5

-

19

2

2

3

6

2

4

10

10

34

1

1

1

3

1

1

2

7

4

2

2

1

4

4

1

4

4

2

2

4

4

4

4

4

4

4

4

4

2

1

2

4

2

4

2

4

4

4

4

4

4

4

4

4

BERNHARD

1568

172032

114688

172032

28672

28672

0

0

0

3584

5670

14784

14336

14336

1344

1344

420

364

14

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

RUNGE

512

36864

90112

172032

4096

40960

179712

61440

9216

1280

384

384

0

6144

1920

384

48

0

8

0

12672

79872

73728

36864

36864

49152

15360

33792

5376

49152

2048

6144

2048

1792

1920

64

128

55296

61440

172032

11264

19456

40704

36864

13824

256

480

2112

2560

6656

192

576

48

16

0

0

9408

89088

73728

36864

36864

49152

3584

7680

4224

73728

0

6144

12288

384

448

32

224

21504

86016

172032

8960

34048

91392

75264

16128

448

0

672

896

2688

336

336

0

0

0

0

5376

86016

64512

32256

32256

43008

3584

16128

2688

86016

1792

5376

8960

1792

448

0

4
2
,2

2
,1

2

12,6,4
2
,3,2

2
,1

24,8
2

16

12,6,4
2
,3,2

2
,1

12,6,3

12,6,3

12,6,3

12,6,3

8
4

4
4
,2

4
,1

4

4
4
,2

4
,1

4

12
2
,6

2
,4

4
,3

2
,2

12
2
,6

2
,4

2
,3

2
,2

8
2
,4

2
,2

2
,1

2

8
2
,4

2
,2

2
,1

2

4
4
,2

4
,1

4

4
6
,2

6
,1

6

4
4
,2

4
,1

4

4
8
,2

8
,1

8

12
2
,6

2
,3

2

24

40

20,10,5

20,10,5

60,30,15

24
2

24,12,6,3

12
2
,6

2
,3

2

36,18,12,9,6

12
3
,6

3
,4

2
,3

3
,2

20
2
,10

2
,5

2

12
2
,6

2
,4

2
,3

2
,2

12
3
,6

3
,3

3

12
2
,6

2
,3

2

12
4
,6

4
,3

4

2

2

4
, i

4

2
, i

2

,3
2
, 1

2

2
, i

2
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Appendix

As an appendix we give the Poincare-series and the graded rings of modular

forms for genus one and two. In this cases our method reduces to a very simple

one. A second method (in level 2) would be just to apply the (surjective)

Φ-operator from genus three to get the results in genus one and two. In the fol-

lowing tables we give the congruence subgroup, the order of the corresponding fi-

nite subgroup in Hg, the Poincare-series and the ring of modular forms for that

congruence subgroup. Although the results are known, it may be useful for the ap-

plications in coding theory, to give the invariant rings in terms of theta constants

of second order (and in genus two the exceptional Θ = Π e v e n m # [ m ] ) .

/\(4) 2 1 * * 2 Ct (2,0), (0,2), (1,1)]
(1 Λ)

Γ,(2) 16 —-j-YY C [(4,0), (2,2)]

Γ10(2) 32 ^ Γ C[(4,0),(4,4)]

a-/)(i-/)
Γx 96 ^ Γ C[(8,0) + 14(4,4),(12,0) - 33(8,4)]

That corresponds to the fact that the three group Nlt N1A and H1 are generated

by pseudo reflections, whereas 7^(4) corresponds to ± 1.

In the genus two case we will always distinguish between the case of even

weight and the general case. In the case of even weight we get:

1- λB

Γ2(2) 32 — C[(4,0,0,0),(1,1,1,1),(2,2,0,0),(2,0,2,0),(2,0,0,2)]
(1 — λ ) -,

Γ2 0(2) 3072 — Γ

α-/)(i-/)2α-/)

C[(4,0,0,0),(4,4,0,0),(2,2,2,2),(12,0,0,0)]

In the case of general weight we get (following [R], 4.2):

(1-/)(! + /)ΓΛ2) 32
λ2Ϋ

C[(4,0,0,0),(1,1,1,1),(2,2,0,0),(2,0,2,0),(2,0,0,2), Θ]

Γ20(2) 3072 2 4 \ ~
(1 - λ2) (1 - λ*)2(1 - / )

C[(4,0,0,0),(4,4,0,0),(2,2,2,2),(12,0,0,0), Θ * P28]
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If one denotes

A = (4,0,0,0), B = (1,1,1,1), C = (2,2,0,0), D = (2,0,2,0), E = (2,0,0,2),

then there is a relation of degree 16 between the generators in level 2 as follows.

16B4 + A2B2 + C2D2 + D2E2 + C2E2 = ACDE + 4£ 2 (C 2 + D2 + E2)

Hence d2(2) is a quartic hypersurface in P (see also Igusa [11], [12]).

In level Γ20(2) the computation is easy because the group H2Λ is a group gener-

ated by pseudo reflections of order 3072. Hence s420(2) is a weighted P and

hence rational (see also Ibukiyama [Ibl, 2]). The polynomial P28 is given as fol-

lows:

P2s = /oΛΛ/a * (/o4 ~ Λ4) (/o4 - Λ4) (/o4 - //) (fϊ " ft) (fϊ ~ Φ (fϊ ~ //)
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