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SOME PROPERTIES OF INDICATRICES IN A FINSLER
SPACE®w

BY
T. N. SRIVASTAVA AND SHOJI WATANABE®

(Dedicated to Prof. J. Kanitani on the occasion of his 80th birthday)

1. Introduction. Let (M™, F) be an n-dimensional Finsler space where M™®
is the underlying n-dimensional manifold and F=F(x?, X?)®® is the Finsler funda-
mental function. F being a differentiable function of the point x=(x*) € M" and
element of support X=(X?) € T,,(M") where T,(M") is the tangent space of M"
at x and is positively homogeneous of degree one with respect to X. Thus the
fundamental function F determines at every point x € M™ an indicatrix in T,(M™)
defined by the equation F(x?, X*)=1 (X*: variable).

From now and onwards we shall confine ourselves to a fixed point x,= (xg)
and to the corresponding tangent space T, (M") of M" at the point x,. Since
F(x,, X) is positively homogeneous of degree one with respect to X hence g;;=
10%F?/0X?0X’ are in general discontinuous at the origin X=0=(0,0,...,0)
of T, (M"). Clearly T, (M")—{0O} is an n-dimensional Riemannian space with the
Riemannian metric tensor g;;(X). We shall denote the space T, (M")—{O} by
248

Let M™! be a hypersurface in V'™ represented by the equation X'=X(u")=
Xi(u).® If N* denotes the unit normal vector to M and Bi=0X?/0u® then with
respect to the frame (B,, N?) the hypersurface M can be represented by the

equation
(1.1) X¥(u) = v*(w)Bj+v(u)N°.
It is easy to verify [3] that the vector field v and the scalar field » in (1.1) satisfy
the equations
(1.2a) D,vg = gap+hapv,
(1.2b) Dy = —h,*,

where D, is the covariant differentiation operator with respect to the Riemannian
connection for the induced Riemannian metric tensor g,z vy=g,", g.p(u)=
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gii(X0, X (u))BiB; and A, is the second fundamental tensor of A",
Watanabe [3] proved the following result.

PROPOSITION 1.1. Let M™* be a closed hypersurface in V", H, the first mean curva-
ture of M"! and v the scalar function on M™* as defined by (1.1). If M"* satisfies
the inequality 14+Hw>0, then M" is homothetic to the indicatrix F(xy, X)=1
in Tp (M™).

The inequality 14 H;v>0 in the above proposition can also be replaced by
14+ Hw<0. (For more details see the proof of Theorem 2.1 in [3]).

The object of this paper is to discuss the properties of the indicatrix in 7, (M")
in some what more details.

2. Integrability conditions. In this section we will obtain the integrability
conditions for the equations (1.2). Since g;;(X) is positively homogeneous of
degree zero with respect to X in V" hence C,;, as defined by

satisfies the conditions ([2], p. 15)
(2.2) CinX f= Ci:ika = Cia'ka = 0.

It can be shown [1] that in V" the Riemannian connection {;;} and the Rieman-
nian curvature tensor

T

based on {,.,ﬁ} have the following form

(2.3a) {.l ; = g"Cpj ££ Cii
Jjk

(2.3b) Rl = C},Cl—ChiChy.

Accordingly, we can write
(2.4) Riilei = Riilej = RyuX" = RiuX' =0,
where
(2.5 Ry = guRus"-

We have now the following theorem concerning the integrability conditions of
(1.2).

THEOREM 2.1. Let M™1: X'=X*(u") denote the hypersurface in V", then
(26) [Raﬂyé-’_hayhﬂ&_hﬂyhaé]va = [Dﬁhay'—'Dahﬂr]v,
2.7 [Dghyy— D, hg,Jv" = 0,

where Raﬁ,6g6‘=Raﬁy‘ is the Riemannian curvature tensor of M™2,
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Proof. On substituting (1.2) into the Ricci-identities for » and v, respectively
we obtain (2.6) and (2.7) after a little simplification.

Alternative Proof. This proof clarifies the relation between the equations
of Gauss and Codazzi for M and the equation (2.6) and (2.7).
The equations of Gauss and Codazzi are given by

(2-8) Raﬂw = Rijle;BgB,;Bg'l'hzahﬁy'—hﬂéhay’
2.9) R,.,k,Bf,Bﬂ"BﬁN V= D,hg,—Dgh,,
respectively. Now from (1.1) and (2.4), we have for M1,
(2.10) 0= R,.,-leiB;B’;X L

= R,;,B.B;Bi(Bjv’+ NW).
On substituting (2.8) and (2.9) in (2.10) we obtain (2.6).
Also from (2.4) we can write
(2.11) 0 = R,;;;B.B/X*N'
= R,;,BiBj(B*v"+ N*v) N
= R,;,BiB}BEN"".
On substituting (2.9) in (2.11) we obtain (2.7).

3. Hypersurfaces homothetic to the indicatrix in T, (M"). First of all we shall
prove the converse of the proposition 1.1.

THEOREM 3.1. Let M™*: X*=X"(u"), be a hypersurface homothetic to the indica-
trix in T, (M"). Then M"~* satisfies the condition 1+ Hyp=0.

Proof. Since M"~! is homothetic to the indicatrix in T, (M") it is obviously
closed and

3.1 g X)X (u)X'(u) =c (= constant > 0).

On differentiating this equation with respect to u* and using (2.2) we obtain
2:;(X(w)BiX ?(u)=0 and hence from (1.1) we have v,=0 and consequently X¢(u)=
v(u)N*. Now from (1.2) we can write g,5-h,50(u)=0.

The theorem now follows after contracting with g,,.

It should be noted that under the assumptions of the theorem 3.1, the hyper-
surface M™1 is totally umbilical [2], v=constant5£0 and H;=—1/v.

THEOREM 3.2. Let M":X*=X*'(u") be a closed hypersurface in V", Then M"1
is homothetic to the indicatrix in T, (M™) if and only if D,vs=0 (or v;=0).

Proof. If we assume that D,v;=0, then from (l.2a) we have g,z+h,w=0,
and hence 1+ H,v=0. Now using proposition 1.1 we find that M"1 is homothetic
to the indicatrix in T, (M"). The converse follows from the proof of theorem 3.1.
The fact that the conditions D,v;=0 and vz=0 are equivalent is easy to verify.
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THEOREM 3.3. Let M"1:X*=X'(u") be a closed hypersurface in V". Then M"1
is homothetic to the indicatrix in T, (M") if and only if

(3.2) 142Hw+(n—1)Hv—(n—2)H,»* = 0,

where H, is the second mean curvature of M™1,

Proof. From (1.2) we can write
8"78P(D,0;)(Dyvg) = (D*0P)(D,0p)
= (8" +h*0)(gap+hapv)
= 142H 0+ (m—1)Hv—(n—2)Hyv"
The result (3.2) now follows from theorem 3.2.

Next we shall consider totally umbilical hypersurfaces in ¥”. In this case we
have from (1.2),

(3.3) (Dyvp+Dyv,) = 2(14+Hy0)g,.
Now using theorem 3.1 and proposition 1.1 we can conclude that the vector
v* is a killing vector if and only if M"~* is homothetic to the indicatrix in T, (M").
In the following paragraphs we shall confine ourselves to totally umbilical
hypersurfaces with constant first mean curvature. Such a hypersurface may not
necessarily be the hypersurface homothetic to the indicatrix in T (M"). For

hyperspheres may not necessarily be homothetic to the indicatrix (the unit hyper-
sphere with the origin as the centre) in 7, (M"). This is due to the fact that the
centre of a hypersphere need not coincide with the origin of T, (M™).

THEOREM 3.4. Let M" be a closed totally umbilical hypersurface with the con-
stant first mean curvature Hy in V", then H,#0.

Proof. Let us assume that H;=0. Then 4,;=0 and from (1.2b) we have D,v=0.
Hence v=constant and accordingly 14 H,v=constant. In this case, we have
14,Hv>0 or 14+ H,v<0. Now by proposition 1.1 this hypersurface M1 must
be homothetic to the indicatrix in 7, (M") and hence by theorem 3.1 we must
have 14 Hyv=0. But this is a contradiction. Hence, the result follows.

THEOREM 3.5. Let M"~! be a closed and totally umbilical hypersurface with the
constant first mean curvature in V™. If M satisfies the condition R,"v’ <0, then
M"= is homothetic to the indicatrix in T, (M™), where n>3 and R, is the Ricci
tensor of M"1,

Proof. Since M"! is totally umbilical, we have h,,=H,g,5. Substituting this
relation into (2.6) we obtain

(3'4) [Razﬁyé-*'I:ﬁ(gaz'ygﬂ‘é"'gﬂygag(s)]ffS = 0.
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On contracting (3.4) with g”’»” we obtain

(3.5 R pv** = (n—2)H3g, 0" > 0.

Now according to the assumption R,v*0#<0 and theorem 3.4 it is clear that
v2=0. Thus by theorem 3.2 the hypersurface M"~1 is homothetic to the indicatrix
in T, (M"). (See also [4], Theorem 6.1, p. 46.)

THEOREM 3.6. Let M"~ be a closed totally umbilical hypersurface with the constant
Jfirst mean curvature Hy in V". Then M"~ is homothetic to the indicatrix in T, (M™)
if and only if v=constant.

Proof. Let M"~! be homothetic to the indicatrix in T, (M"). Then by theorem
3.1 we have 14+H,v=0 and hence v=constant. Conversely if v=constant then
we should have 14+ H;p>0 or 14+ H,v<0. The hypersurface M"! is clearly homo-
thetic to the indicatrix in T, (M") by proposition 1.1.

4. Formulas and its applications. We now mention an important result which
will be used in the proceeding paragraph.

PROPOSITION 4.1. Let M™ be a totally umbilical closed hypersurface with the
constant first mean curvature in V"1, Then

(4.1) g”D,Dy(1+Hyw)" = mH{(1+H)" " [(m—DHiw—(n—1)(1+Hw)"],
4.2) gD, Dyw™ = 2mw™ [(2m~+n—3)(1+ Hyv)*— Hiwl,
where m=1,2,3,...,and w=gapv¢vﬂ.

Proof. Using the conditions of the proposition and (1.2) the results (4.1) and
(4.2) can be obtained after some calculations.

For the sake of brevity we will denote a totally umbilical closed hypersurface
with the constant first mean curvature H, in V" by *M"1,

THEOREM 4.1. If *M"1 satisfies
(4.3) kHiw > (14+Hyp)’,

then * M™1 is homothetic to the indicatrix in T, (M™), k being a positive number.

Proof. Let us choose an ever number m such that m—1> (n—1)k. Then from
(4.1) we can write gD _D 5(1 + H,v)™>0. Thus by the Bochner’s lemma [4, p. 39]
we have 14- Hyp=constant and by proposition 1.1 *M"-1 is homothetic to the indi-
catrix in T, (M").

THEOREM 4.2. For the hypersurface* M"~! we have

4.4) (14+Hpw)*+Hiw = c,
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where the constant ¢ has the following properties;

(i) ¢=0 implies that * M"~" is homothetic to the indicatrix in T, (M™).
(i) v##0 if and only if c<1.
(iii) There exists a point P on *M"~1 at which v=0 if and only if ¢>1.

Proof. From (4.1) and (4.2) we can write
(4.5) gD, Dy(1+Hyv)* = 2Hi[Hiw—(n—1)(1+H,v)"],
(4.6) gD, D;Hiw = 2H[(n—1)(1+H,v)*— Hiw].
On adding (4.5) and (4.6) we obtain

8"’ D, Dyl[(1+H,v)*+Hiw] = 0.
Now using the Bochner’s lemma the result (4.4) follows.
To prove (i) use proposition 1.1 in (4.4) and note w>0.
To prove (ii) let v0. Since *M"~! is a totally umbilical hypersurface with the
constant first mean curvature H, we may use the relation & s =g, and write
(1.2) in the form

@.7n D, = g,5(14+Hyv), D,y = —Hv,.
Now using (4.7) it is easy to verify that
Dp™ = —mv™'Hyof
and
(4.8) D, Dgp™ = m(m—1)w" *Hiv,03—mv™ "Hy (14 Hyv)g,p.
On contracting (4.8) with g, using w=g_ ﬁv“vﬂ =gy v 5 (4.4) and setting
m=—(n—2) we obtain after a little simplification

(4.9) gD, Dy~ " = —(n—2)0""(n— [l +Hp—c].

Also from (4.4) it is obvious that (14+Hw)?<c or —\/c<1+Hw< /e If we
assume ¢>1 then \/ c¢<cand we have 14+ Hyv<c. Now from (4.9) and the Bochner’s
lemma we conclude that v=constant. From theorem 3.6 it is clear that *M"™1 is
homothetic to the indicatrix in T, (M"). Now using theorems 3.1 and 3.2 in (4.4)
we find ¢=0 which is a contradiction. Thus ¢<1. To prove the converse let c<1.
If there exists a point P on *M"! at which v=0 then from (4.4) we must have 14
Hiw=c at P and consequently ¢>1 which is a contradiction. Hence we conclude
that there is no point P on *M"~1 at which v=0.

To prove (iii) observe that if there exists a point P on *M"~* at which v=0 then
from (4.4) we have 1+H:w=c at P. But H;0 by theorem 3.4 and also w30
(if v=0 and w=0 at the same time then from (1.1) X"(x)=0 at P which is not pos-
sible). Hence ¢>1. To prove the converse observe that the second part of this
problem suggests that if ¢>1 then there exists at least one point P on *M"1 at
which v=0. We claim that if c=1 then there exists no point on the hypersurface
with v=0. Because with c=1 and v=0 and the result (4.4) we have wa=0.
But by theorem 3.4, H; 70 hence we conclude w=0. Since v=0 and w=0 implies
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X"(u)=0 which is absurd, hence we arrive at a contradiction. Thus if ¢>1 then
there exists a point P on *M"~! at which v=0.

THEOREM 4.3. If *M™1 satisfies
(4.10) k(1+H;v)* > Hiw,

then *M"~ is homothetic to the indicatrix in T, (M"), k being a positive number.

Proof. Let us choose a number m such that 2m-+n—3)>k. Then from (4.2)
we have w=constant. Thus from (4.4) we have 14 H,p=constant and hence
*M"1 is homotbhetic to the indicatrix in T, (M").
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