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ABSTRACT. Statistics of Arctic sea-ice surface roughness have been investigated in order to improve
classification of ice-thickness regimes. The data consist of surface roughness and thickness profiles,
acquired simultaneously by helicopter-borne laser altimetry and electromagnetic induction sounding.
Five thickness classes were identified using the modal thickness as a criterion. For each class, the
statistical properties of the surface roughness profiles were analyzed. A classification algorithm was
designed, which assigns profiles to the thickness classes on the basis of a set of selected statistical
roughness parameters. The algorithm was applied to profiles of different lengths. Best results were
obtained for 2 km long profiles, for which it was possible to discriminate well between thick first-year
and multi-year ice, and to distinguish these classes from thinner ice. The classification rule was tested on
data obtained under winter and summer conditions. The results suggest that statistical surface roughness
properties are different for thinner and thicker ice classes. However, individual thin-ice classes cannot

be discriminated on the basis of the selected roughness parameters.

1. INTRODUCTION

The mass balance of sea ice is one of the key parameters in
studies of the cryosphere. Accurate knowledge of this
quantity is of fundamental importance for climate and
ocean models as well as for quantifying past and future
changes. Satellite remote sensing can be used to estimate the
lateral dimension of the sea-ice cover. However, ice
thickness cannot be derived directly from satellite data, so
estimates of the mass balance are difficult. As sea ice is
found in remote regions, field campaigns are difficult and
costly. In addition, ground-based thickness measurements
can only be carried out on local and regional scales. Indirect
methods to determine the mass balance of sea ice from
remote sensing are therefore crucial.

This study presents an analysis of the surface roughness
relative to level-ice thickness. The level-ice thickness rather
than the mean thickness is analyzed, as it represents the
prevailing thickness along a profile, assuming that for
sufficiently long profiles the length of the level-ice sections
in the profile is greater than the length of the deformed-ice
sections. We take this value as representative of different ice
types as defined by the World Meteorological Organiza-
tion’s sea-ice nomenclature (WMO, 1989). Level-ice thick-
ness is estimated from the observed modal thickness.
Roughness, in our context, is determined by undulations
of surface height over the entire profile, comprising both
smaller undulations on level ice and deformation features
such as ridges and rubble. The question is addressed
whether different ice types can be discriminated in an
analysis of the surface roughness properties. Goff (1995)
derived a method for stochastic modelling of sea-ice draft.
He generated synthetic draft profiles from a set of statistical
parameters estimated from upward-looking submarine sonar
data and compared these profiles to observed data. We take
the positive results of his comparison as a motivation to
investigate whether the roughness properties of surface
profiles, described by a set of statistical parameters, are
characteristic for different ice types. The work focuses on the
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roughness of the top side only, as this property affects
measurements from air- and space-borne sensors such as
radar and laser.

2. DATA

To derive the classification algorithm, data from the cruise
ARK XIX of R/V Polarstern to the Fram Strait and Barents Sea,
Arctic Ocean, in March-April 2003 were used. Available
data consist of surface elevation and thickness profiles. The
ice-thickness profiles were obtained by electromagnetic
induction sounding, the surface profiles by laser altimetry.
Both sensors were mounted on the same platform, the ‘"HEM
bird’, which was towed over the ice by a helicopter at an
altitude of 10-15m above the surface. Ice-thickness data
were acquired with an accuracy of 0.1 m and a point spacing
of 3—4 m. The surface elevation profiles were measured with
a Riegl LD90-3100Hs laser altimeter (905 nm wavelength)
with an accuracy of 3 cm and a point spacing of 0.3-0.4 m.
To remove the effect of altitude variation in the laser data due
to the aircraft motion, the raw laser data were processed
using a combination of high- and low-pass filters (Hibler,
1972), with high-pass cut-off frequency 1/40m™". Note that
the resulting surface elevation profiles are not identical to the
ice freeboard, but measured relative to a reference-level set
by the processing scheme. The reference level roughly
follows the level-ice surface. Only flight profiles for which
thickness and surface elevation data were acquired simul-
taneously were included in the analysis.

3. ROUGHNESS PARAMETERS

To describe surface roughness, a number of different
parameters are in use. Analyses of sea-ice roughness have
been carried out in the past by, for example, Rothrock and
Thorndike (1980), Bishop and Chellis (1989), Lewis and
others (1993), Goff (1995) and Manninen (1997). Several
mathematical roughness characteristics used for the analysis
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Table 1. Roughness parameters

Table 2. WMO ice-thickness classes

I Mean profile height (m)

o rms height (m)

13 Skewness

m Kurtosis

d; Fractal dimension

6(0.3) rms slope at lag 0.3 m (°)

0(3) rms slope at lag 3 m (°)

6(9.9) rms slope at lag 9.9m (°)

Ax Max. lag used to calculate di (m)

of geological terrain are also described in Dierking (1999)
and Shepard and others (2001). However, unlike geological
surfaces such as lava, the sea-ice surface comprises stretches
of level ice, as well as distinct vertical deformation features
such as pressure ridges. Among the most frequently used
parameters are the mean profile height, the standard
deviation of the profile elevation about the mean (rms
height) and the autocorrelation length. Another commonly
used parameter is the empirical rms slope, which measures
the mean slope angle between profile points z(x) separated
by a distance Ax (Shepard and others, 2001):

1 \/1527:1 [z(xi + Ax) — z(x;)]?
Ax

0(Ax) = tan™

Goff (1995) proposes to use the skewness as an indicator of
non-Gaussian properties of the surface. Here, we also
investigate the kurtosis, which is indicative of the properties
of the peak of the distribution (for a definition, see
Abramowitz and Stegun, 1972, def. 26.1.18). Another
approach uses offset and slope of the surface’s power
spectrum to describe the roughness. However, as pointed
out by Bishop and Chellis (1989), the asymptotic properties
of the spectrum are difficult to determine.

If the surface shape can be assumed to be a realization of
a stationary random process, empirical mean and standard
deviation are estimators of its true mean and standard
deviation. They take constant values and characterize the
surface regardless of the profile length. However, several
authors have stressed the fact that the roughness of natural
surfaces is only poorly modelled by a stationary process (e.g.
Sayles and Thomas, 1978). Instead, investigations of rough-
ness spectra of natural surfaces have indicated power-law
behaviour. In this case, mean height, standard deviation and
autocorrelation length cannot be used as estimates of the
true values. They are not constant, but depend on the profile
length and thus cannot be used to compare profiles across
different length scales.

A parameter that has been used by numerous authors to
characterize the roughness of non-stationary surfaces is the
fractal dimension (Rothrock and Thorndike, 1980; Bishop
and Chellis, 1989; Key and MclLaren, 1991; Barabasi and
Stanley, 1995). It describes the scaling behaviour of a profile
or surface. For a self-affine profile z= z(x), the height
increments scale with lag Ax according to

(Iz(x + Ax) = z(3)”)

(angled brackets denote expected value). The scaling
parameter H is the Hurst exponent, which in case of profiles
is related to the fractal dimension d; by di = 2 - H. For ideal

1/2

~ Ax" (1)
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Thickness class Ice thickness d

0.Tm<d<03m
03m<d<0.7m
0.7m<d<12m
1.2m<d<20m
d>2.0m

Young ice

Thin first-year ice
Medium first-year ice
Thick first-year ice
Old ice’

*Old ice comprises second-year and multi-year ice.

fractals, Equation (1) is valid over the whole range of
lags Ax. Natural surfaces, however, often display fractal
properties only over a specific length scale (Bishop and
Chellis, 1989; Dierking, 1999). On scales larger than a
certain cut-off, the surface may still be characterized as a
realization of a stationary random process.

To capture the characteristics of profiles that may display
fractal behaviour on one scale, but appear to have properties
of stationary random processes on another scale, this study is
based on parameters suitable for stationary random profiles
as well as the fractal dimension. These parameters are listed
in Table 1.

4. CLASSIFICATION OF SURFACE PROFILES

Firstly, all profiles were divided into sections of equal length.
For each profile section, the modal ice thickness was
calculated from the electromagnetic (EM) data as an
indicator for the level-ice thickness of that profile. The
modal thickness was then used to assign the profile sections
to five ice classes according to the World Meteorological
Organization’s sea-ice nomenclature (WMO, 1989) sum-
marized in Table 2.

Next, the roughness of the corresponding surface profiles
was analyzed. Examples of laser surface profiles for each
thickness class are displayed in Figure 1. For each profile,
the parameters from Table 1 were calculated. Each profile is
thus represented by a point p in nine-dimensional parameter
space. The parameter space is partitioned into five regions
Qi (i=1,...,5) representing the five thickness classes, and
an element is classified as belonging to class w; if its
corresponding parameter vector p lies in region ;.

For classification of the profiles, the k-nearest-neighbour
method was chosen. It is distribution-free, i.e. does not make
a priori assumptions about the probability distributions of
the data. The k-nearest-neighbour method is a supervised
classification procedure and therefore requires a set of
training data, for which the group assignments are known. A
hypersphere is considered, centred on the element to be
classified. It is chosen such that it contains exactly k
elements with known group assignments. From these, k;
belong to class w1, k; to class ws, etc. The classification rule
then states (Hand, 1981) that the element is assigned to
class wj if

ki = max (kpy) m=1,...,5,

i.e. it is assigned to whichever class most of the elements
within the hypersphere belong to. Here, k was chosen to be
equal to the smallest integer k > \/n, where n is the total
number of points in the training sample (Hand, 1981).
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Fig. 1. Examples of surface profiles from different ice-thickness classes.

4.1. Performance of the classification

To assess the performance of the classification rule, the
allocation error was calculated as the proportion of
misallocated elements using a dataset with known group
assignments. The data matrix was divided into a training set
and a test set. The training set was used for calculation of
nearest neighbours. Each element from the test set was
allocated to one of the groups as described above, and the
allocation error was obtained as the proportion of mis-
classified elements.

As the allocation error depends on the particular choice
of training and test set, the procedure was repeated 1000
times, each time randomly drawing a training and a test set.
The division into training and test set was such that the
training set always contained 80% of the elements.

To assess the dependence of the classification method on
the length of the surface profiles, calculations were carried
out for profile lengths of 2, 5, 8, 10 and 15 km.

4.2. Variable selection

An important point concerns the selection of classification
variables used for discrimination between the groups. As
explained above, the different parameters reflect different
characteristics of the profiles. It might therefore be expected
that the parameters also differ regarding their performance as
classification variables. It is possible that two parameters,
when used by themselves, are not very good discriminators.
However, the classification performance may improve
considerably when both parameters are used in combin-
ation. On the other hand, the notion that each new variable
can only improve the classification is not generally true
(Hand, 1981). The question which combination of the
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parameters to choose as classification variables therefore
requires careful examination.

In this work, the parameters were chosen following a
strategy of forward selection (Hand, 1981; Krzanowski,
1993), which was applied to the training set. In the first step,
all variables were analyzed in turn to find the one that would
lead to the smallest allocation error. (The allocation error in
this context was estimated by cross-validation of the training
set (e.g. Lachenbruch, 1975; Hand, 1981; Krzanowski,
1993).) The single ‘best’ variable was retained, and in the
next step the allocation error was calculated for this variable
in combination with each of the remaining variables. Again,
the pair with the smallest allocation error was retained and
the procedure was repeated for that pair combined with a
third variable and so on, resulting in a list of allocation errors
for ‘best combinations’ of 1, 2, ..., 9 parameters. From this
list, the combination with the smallest overall allocation
error was chosen as the final set of classification variables,
which was then used in the classification of the test set.

As the allocation procedure was repeated 1000 times,
different sets of classification parameters were obtained. The
properties and the distribution of these various combinations
are discussed in section 5.1. The results presented next, on
the other hand, were obtained by averaging the allocation
errors from the 1000 runs, regardless of the particular
combination of classifiers used in each run.

5. RESULTS

Results for the allocation errors obtained in 1000 runs are
summarized in Table 3. The table also displays the within-
group error rates ri—rs for the five thickness classes, which
are the fractions of misallocated elements from each
thickness class. The mean allocation error was 58-66%,
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Fig. 2. Modal ice thickness vs surface parameters for ARK XIX campaign (L = 2 km). The correlation coefficient Ris given in the top right corner.

well below the value of 80% that would result if the
probability of assigning an element to a particular group
were identical for all groups. The smallest allocation error
was obtained for profile length L = 2 km. The within-group
allocation errors for thickness classes 1-3 were 70-100%,
indicating that these groups could not be discriminated
adequately by the classification algorithm. The within-class
allocation errors for groups 4 and 5 were 30-45% except for
the case L = 10km. Apart from a decrease of r; with the
transition of the profile length from 5 km to 2 km, no strong
dependence of the classification performance on the profile
length was observed. As the range between lower and upper
5% quantile of the allocation error was smallest for
L = 2 km, this was chosen as a suitable profile length.
Scatter plots of the modal ice thickness against the surface
parameters for L =2km are shown in Figure 2. The
correlation coefficient is also displayed. The highest
correlations were obtained for the parameters y, o and dk.
In the first two cases, the thickest ice can be identified as a
separate cluster with values off the main diagonal. This
suggests that the correlation could be improved if a pre-
classification method were used to separate the thickest ice.
Figure 3 illustrates the classification performance for all five
thickness classes. Each panel displays the proportion to
which elements from one particular thickness class were
assigned to the five classes. The classification performed best
for group 4 (thick first-year ice), where 67.2% of the profiles
were allocated correctly. Good results were also obtained
for group 5 (old ice), where 61.6% of the classifications were
correct. The allocation for the remaining groups was rather
poor. These results indicate that thick first-year and multi-
year ice can be distinguished adequately from each other
and from other thickness classes using their surface rough-
ness as a separation criterion. However, the roughness
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parameters did not differentiate sufficiently between the
thinner ice classes.

5.1. Classification variables

In section 4, the dependence of the classification perform-
ance on the profile length, regardless of the set of classifi-
cation variables, has been analyzed. This subsection
investigates whether an optimal set of classification par-
ameters may be specified.

As described in section 4.1, the set of parameters used
in each run was chosen as the ‘best’ combination for that
particular run. Due to the nature of the forward selec-
tion method, only 94+8+...+1 =45 of the possible

(?) + <g> + ...+ <g) = 511 combinations of the nine

Table 3. Results (k-nearest-neighbour classification). L is profile
length, ris mean allocation error, ry is 5% quantile of r, r, is 95%
quantile of r, r;—rs denote within-group allocation errors for the five
thickness classes, and n is sample size

L

L 2km 5km 8km 10km 15km
r 0.5851 0.6330 0.5890 0.6560 0.6224
n 0.4951 0.5000 0.4167 0.4444 0.3846
ry 0.6699 0.7750 0.7500 0.8333 0.8462
n 0.7640 0.9875 0.9976 0.9769 0.9197
r 0.7340 0.7388 0.6014 0.7551 0.7971
r3 0.8093 0.7668 0.7884 0.7144 0.7969
Iy 0.3280 0.4457 0.3799 0.7273 0.3067
rs 0.3844 0.4083 0.4192 0.3822 0.4444
n 512 199 116 89 61
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parameters were investigated in each run. To compensate
this shortcoming, the procedure was repeated 1000 times.
Figure 4 displays the frequency distribution of the different
combinations of classification variables used. Tick marks on
the abscissa represent the possible combinations. The set
of parameters which occurred most often (in 49.2% of
the cases) consists of {u, o}, in agreement with Figure 2,
followed by {u, o, di} (19.7%) and {, o, u3, d, 6(0.3), 6(3),
0(9.9)} (12.8%).
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Fig. 4. Frequency distribution of different combinations of the
classification parameters for profile length 2 km. Ticks on the ab-
scissa are indices representing the possible combinations. The three
most frequent combinations are shown.
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6. APPLICABILITY

One aim of this work is to assess the potential of the
classification scheme to identify ice-thickness classes in
laser surface profiles, for which no thickness data are
available. If a robust relation between surface roughness and
ice thickness can be detected with the classification tech-
nique, a set of high-quality training data could be
constructed. This training set could subsequently be used
in the classification of surface data into thickness groups.
The classification scheme could thus serve as a valuable tool
in monitoring the thickness of the ice sheets. This section
presents data from two additional measurement campaigns
to the Arctic to investigate the applicability of the classifi-
cation method. The two datasets were obtained in different
geographical locations and under different seasonal condi-
tions, thus covering a broad range of surface roughness.

6.1. Lincoln Sea/Arctic Ocean, May 2004

Measurements were carried out within the framework of the
European Union project GreenlICE, and took place in May
2004 north of Greenland and Ellesmere Island. Airborne EM
and laser surveys were carried out with the instruments
described in section 2 (Haas and others, 2006). After divi-
sion into 2 km long sections, 107 profiles were available,
with modal thickness ranging up to 6m. Of these, 95%
belonged to old ice, leaving only five profiles from young or
thick first-year ice. In essence, the data reflected a one-class
distribution. In consequence, the training set also contained
data from essentially one class, and all the elements of the
test set were assigned to that class.

A comparison of the thickness and roughness statistics
with the ARK XIX data showed that the ice was much thicker
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Fig. 5. Modal ice thickness vs surface parameters for the combined dataset from ARK XIX and GreenICE (L = 2 km).

for the GreenlCE campaign, where it consisted almost
entirely of ice thicker than 2 m. For ARK XIX, on the other
hand, only 27.5% of the profiles consisted of old ice.
Figure 5 displays the data from both campaigns. The
roughness parameters p and o take considerably larger
values for the GreenlCE data, but display an overall trend
similar to that observed in the ARK XIX data. The other
roughness parameters cover roughly the same range of
values as for the ARK XIX sample. The surface roughness
properties therefore do not indicate that the ice from the two
datasets was inherently different. On the contrary, they
display similar behaviour with ice thickness. The two
datasets were therefore pooled, and the classification
procedure was applied to the combined set. The classifi-
cation performance was very similar to that for the ARK XIX
data, as expected from Figure 5, yielding a slightly lower
allocation error of 49.85%. The best set of classification
parameters consisted of {u, o, dr} and occurred in 53.2% of
instances. The allocation error for old ice (r5) decreased for
the combined set to 20.21%.

6.2. Fram Strait, July-August 2004

The cruise ARK XX/2 took place during July—August 2004
with R/V Polarstern in the Fram Strait. Unlike ARK XIX and
GreenlCE, this campaign was carried out during the Arctic
summer. As a consequence, melt ponds were present on
top of the floes (estimated coverage 10-40%). Melt ponds
lead to an increase in surface roughness due to the slopes
of the pond walls. This increase in roughness is counter-
acted by the smoothing effect of melt processes on pressure
ridges. The surface melting thus causes complex changes in
the topography.

Measurements of surface elevation and ice thickness
were obtained from laser altimetry and simultaneous EM
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induction sounding as described in section 2. After division
of the profiles into 2 km long sections, in total 149 sections
were available for classification. The distribution of the
observed modal ice thickness showed that hardly any thin
ice was present, which can be attributed to the fact that it
was summer. Only 15 profiles representing young, thin first-
year or medium first-year ice were available, in contrast to
59 and 75 profiles of thick first-year and old ice, respect-
ively. Plots of the ice thickness vs surface parameters reveal
fairly spherical distributions with no obvious inherent
structure. The correlation between the parameters p and o
with ice thickness decreased for the summer data. Applica-
tion of the classification rule in this case gave poor results,
and it was not possible to discriminate between different
thickness classes. From a statistical point of view, the profiles
from different classes had very similar properties and could
not be distinguished from each other.

7. CONCLUSION AND OUTLOOK

The relation between sea-ice surface roughness and level-
ice thickness was investigated with regard to classification
and discrimination of different ice regimes. Here, level-ice
thickness of a profile was represented by the modal
thickness observed on that profile. The investigation focused
on the level-ice thickness rather than the mean thickness, as
it represents the typical thickness observed along a profile.
Statistical parameters characterizing the roughness of ice
surfaces were extracted, and an algorithm was designed to
classify the surface profiles into different ice-thickness
groups based on these parameters. Five thickness classes
were used, in accordance with WMO sea-ice type
nomenclature. The roughness parameters were subjected
to a k-nearest-neighbour classification algorithm in order to
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investigate whether different level-ice thickness is reflected
in the surface properties. Different profile lengths were
examined. No strong dependence of the classification
performance on the profile length was found, except for
the thinnest ice class, for which the allocation error
decreased from profile length 5km to 2km. The profile
length 2 km was considered best. On the one hand, this
value is sufficiently large to derive statistical information,
while on the other hand it is small enough to preserve
homogeneity with respect to ice types within the profiles.
The classification algorithm gave best results for the two
thickest classes, namely thick first-year and old ice, where
67.2% and 61.6% of the profiles, respectively, were
assigned correctly. These two classes could be distinguished
clearly from each other and from the thinner ice classes. For
young ice, thin first-year and medium first-year ice, the
allocation errors were large, indicating that the surface
properties of these thickness classes were not sufficiently
different for separating them.

In section 6, the applicability of the classification scheme
was investigated on two different datasets. The GreenlCE
data displayed a relation of the parameters mean elevation
and rms height to ice thickness similar to that observed in
the ARK XIX data. Application of the classification to the
combined datasets yielded a decrease of the within-class
allocation error for old ice, due to the additional old ice
profiles present in the GreenlCE dataset, while the overall
performance did not improve significantly.

The ARK XX dataset showed that application of the
classification scheme to data obtained under summer
conditions is not feasible. Even though essentially two
different thickness classes were present, the roughness
parameters gave no indication of the existence of different
ice types. The difference in classification performance for
summer and winter illustrates that the surface topography
changes significantly between seasons. On the one hand,
melt processes in summer lead to a smoothing of pressure
ridges. On the other hand, the accumulation of melt ponds
on top of the floes increases the surface roughness due to the
generation of vertical pond walls in former level-ice areas.

The results lead to the conclusion that the relation
between modal ice thickness and statistical surface rough-
ness parameters is not sufficiently stable to guarantee a
robust classification of surface profiles into thickness
regimes. The parameters mean height and rms height were
found to be indicative of the ice thickness. However,
meaningful results were obtained only for the thickest ice
classes. A classification into the five WMO ice types is
therefore not feasible, as the modal ice thickness is not
reflected sufficiently in the surface roughness properties of
the thinner ice classes. In addition, a classification of
summer data is impossible with our method.

In the light of these results, the question arises whether
the level-ice thickness is a suitable thickness measure in the
analysis presented. The sea-ice thickness distribution is
affected by thermodynamic processes, reflected in the level-
ice thickness, as well as by deformation processes, which
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lead to rafting and ridging. The latter strongly affect the
surface roughness in the sense that pressure ridges appear as
distinct roughness features. As the thickness of deformed ice
affects the mean ice thickness, but not the level-ice
thickness, future work will focus on the mean thickness.
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