SOME INFINITE INTEGRALS INVOLVING E-FUNCTIONS

by R. K. SAXENA

(Received 11 July, 1961)

1. A function $\phi(p)$ is operationally related to $h(t)$ when they satisfy the integral equation

$$
\begin{equation*}
\phi(p)=p \int_{0}^{\infty} e^{-p t} h(t) d t, \tag{1}
\end{equation*}
$$

provided that the integral is convergent and $R(p)>0$.
As usual, we shall denote (1) by the symbolic expression

$$
\phi(p) \doteqdot h(t)
$$

The object of this paper is to evaluate some infinite integrals involving E-functions by the methods of the operational calculus. Most of the results obtained are believed to be new.
2. Theorem. If $\phi(p) \doteqdot h(t)$ and

$$
\psi(p) \doteqdot(t+\alpha)^{\nu}(t+\beta)^{\nu} h(t)
$$

then

$$
\begin{equation*}
\phi(p)=\frac{\pi^{\ddagger}(\alpha-\beta)^{ \pm-v}}{\Gamma(v)} p \int_{0}^{\infty} t^{\nu- \pm} \exp \left\{-\frac{1}{2}(\alpha+\beta) t\right\} I_{v-\frac{1}{2}}\left\{\frac{1}{2}(\alpha-\beta) t\right\}(t+p)^{-1} \psi(t+p) d t, \tag{2}
\end{equation*}
$$

provided that the integral is convergent, $R(p)>0$ and $R(v)>0$.
Proof. By hypothesis, we have

$$
(t+\alpha)^{v}(t+\beta)^{\nu} h(t) \doteqdot \psi(p)
$$

and hence

$$
\begin{equation*}
e^{-a t}(t+\alpha)^{v}(t+\beta)^{v} h(t) \doteqdot p \frac{\psi(p+a)}{p+a} \tag{3}
\end{equation*}
$$

by virtue of a well-known property.
We also have [2, p. 238]

$$
\begin{equation*}
p \Gamma(\nu)(p+\alpha)^{-\nu}(p+\beta)^{-\nu} \doteqdot \pi^{\frac{1}{t}}(\alpha-\beta)^{\frac{t}{-\nu} t^{\nu}-\frac{1}{2}} \exp \left\{-\frac{1}{2}(\alpha+\beta) t\right\} I_{v-\frac{1}{2}}\left\{\frac{1}{2}(\alpha-\beta) t\right\}, \tag{4}
\end{equation*}
$$

where $R(v)>0$.
Using (3) and (4) in the Parseval-Goldstein theorem [4, p. 105] of the operational calculus, which states that if

$$
\phi_{1}(p) \doteqdot g_{1}(t) \text { and } \phi_{2}(p) \doteqdot g_{2}(t)
$$

then

$$
\begin{equation*}
\int_{0}^{\infty} \phi_{1}(t) g_{2}(t) t^{-1} d t=\int_{0}^{\infty} \phi_{2}(t) g_{1}(t) t^{-1} \cdot d t \tag{5}
\end{equation*}
$$

we obtain

$$
\int_{0}^{\infty} e^{-a t} h(t) d t=\frac{\pi^{\frac{1}{2}}(\alpha-\beta)^{\frac{1}{2}-v}}{\Gamma(v)} \int_{0}^{\infty} t^{\nu-\frac{1}{2}} \exp \left\{-\frac{1}{2}(\alpha+\beta) t\right\} I_{v-\frac{1}{2}}\left\{\frac{1}{2}(\alpha-\beta) t\right\}(t+a)^{-1} \psi(t+a) d t .
$$

On multiplying both sides by a and replacing a by p we arrive at the result.
Example. If we take [2, p. 294]

$$
\begin{aligned}
h(t) & =t^{\lambda-1}(t+\alpha)^{-v} \\
& \doteqdot \frac{p^{1-\lambda} \alpha^{-v}}{\Gamma(v)} E(\lambda, v:: \alpha p)=\phi(p),
\end{aligned}
$$

where $R(\lambda)>0, R(p)>0$ and $|\arg \alpha|<\pi$, we therefore have

$$
\begin{aligned}
& (t+\alpha)^{v}(t+\beta)^{v} h(t)=t^{\lambda-1}(t+\beta)^{v} \\
& \quad \doteqdot \frac{p^{1-\lambda} \beta^{v}}{\Gamma(-v)} E(\lambda,-v:: \beta p)=\psi(p)
\end{aligned}
$$

where $R(\lambda)>0, R(p)>0$ and $|\arg \beta|<\pi$.
Applying (2) we find that

$$
\begin{align*}
& \int_{0}^{\infty} t^{v-\frac{1}{2}}(p+t)^{-\lambda} \exp \left\{-\frac{1}{2}(\alpha+\beta) t\right\} I_{v-\frac{1}{2}}\left\{\frac{1}{2}(\alpha-\beta) t\right\} E\{\lambda,-v:: \beta(p+t)\} d t \\
&=\Gamma(-v) \pi^{-\frac{t}{2}} p^{-\lambda}(\alpha \beta)^{-v}(\alpha-\beta)^{v-t} E(\lambda, v:: \alpha p) \tag{6}
\end{align*}
$$

where $R(v)>0, R(p)>0, R(\alpha)>0$ and $R(\beta)>0$.
3. The following results are to be established here.

$$
\begin{align*}
& \int_{0}^{\infty} t^{2 \lambda-1}(t+z)^{2 \sigma-1}{ }_{1} F_{2}\left(v ; \lambda, \lambda+\frac{1}{2} ;-t^{2}\right) E\left[1-\sigma, \frac{1}{2}-\sigma, \alpha, \beta: \alpha+\beta+v:(t+z)^{2}\right] d t \\
& =\frac{\Gamma(2 \lambda) \Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+v) \Gamma(\beta+v)} 2^{-2 \lambda} z^{2 \sigma+2 \lambda-2 v-1} E\left(1+v-\sigma-\lambda, \frac{1}{2}+v-\sigma-\lambda, \alpha+v, \beta+v: \alpha+\beta+v: z^{2}\right) \tag{7}
\end{align*}
$$

where $R(\lambda)>0, R(2 \sigma+v-2)<0, R\left(\lambda+\sigma-v-\frac{1}{2}\right)<0$ and $|\arg z|<\pi$.

$$
\begin{align*}
& \int_{0}^{\infty} t^{2 \lambda-1}(t+z)^{2 \sigma-1}{ }_{1} F_{2}\left(\beta ; \lambda, \lambda+\frac{1}{2} ;-t^{2}\right) E\left[1-\sigma, \frac{1}{2}-\sigma, \alpha::(t+z)^{2}\right] d t \\
& \quad=\frac{\Gamma(2 \lambda) \Gamma(\alpha)}{\Gamma(\alpha+\beta)} 2^{-2 \lambda} z^{2 \sigma+2 \lambda-2 \beta-1} E\left(1+\beta-\lambda-\sigma, \frac{1}{2}+\beta-\lambda-\sigma, \alpha+\beta:: z^{2}\right) \tag{8}
\end{align*}
$$

where $R(\lambda)>0, R(2 \sigma+\beta-2)<0, R\left(\lambda+\sigma-\beta-\frac{1}{2}\right)<0$ and $|\arg z|<\pi$.
In the proof we shall require the following results $[5$, p. 70], $[1$, p. 105]:
$\int_{0}^{\infty} e^{-p t} t-2 \sigma{ }_{2} F_{1}\left(\alpha, \beta ; \gamma ;-t^{2}\right) d t=\frac{\Gamma(\gamma) 2^{-2 \sigma}}{\Gamma(\alpha) \Gamma(\beta) \Gamma\left(\frac{1}{2}\right)} p^{2 \sigma-1} E\left(1-\sigma, \frac{1}{2}-\sigma, \alpha, \beta: \gamma: \ddagger p^{2}\right)$,
where $R(\sigma)<\frac{1}{2}$ and $R(p)>0$;

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; x)=(1-x)^{c-a-b}{ }_{2} F_{1}(c-a, c-b ; c ; x) \tag{10}
\end{equation*}
$$

(a) Starting with (9), we have

$$
\begin{aligned}
\phi_{1}(p) & =\frac{\Gamma(\gamma)}{\Gamma(\alpha) \Gamma(\beta) \Gamma\left(\frac{1}{2}\right)} 2^{-2 \sigma} p(p+z)^{2 \sigma-1} E\left\{\frac{1}{2}-\sigma, 1-\sigma, \alpha, \beta: \gamma: \frac{1}{4}(p+z)^{2}\right\} \\
& \doteqdot e^{-z t} t^{-2 \sigma} \sigma_{2}\left(\alpha, \beta ; \gamma ;-t^{2}\right) \\
& =g_{1}(t)
\end{aligned}
$$

where $R(\sigma)<\frac{1}{2}$ and $R(p)>0$; also [2, p. 238]

$$
\begin{aligned}
g_{2}(t) & =\frac{t^{2 \lambda+2 \gamma-2 \alpha-2 \beta-1}}{\Gamma(2 \lambda+2 \gamma-2 \alpha-2 \beta)^{1}} F_{2}\left(\gamma-\alpha-\beta ; \lambda+\gamma-\alpha-\beta, \lambda+\gamma-\alpha-\beta+\frac{1}{2} ;-\frac{1}{4} t^{2}\right) \\
& \doteqdot p^{1-2 \lambda}\left(1+p^{2}\right)^{\alpha+\beta-\gamma} \\
& =\phi_{2}(p)
\end{aligned}
$$

where $R(\lambda+\gamma-\alpha-\beta)>0$ and $R(p)>0$.
Applying (5), using (9) and (10), replacing γ by $\alpha+\beta+v, \lambda$ by $\lambda-v, z$ by $2 z$ and t by $2 t$, we obtain (7).
(b) Now take (9) with $\beta=\gamma$. We have

$$
\begin{aligned}
\phi_{1}(p)= & \frac{2^{-2 \sigma}}{\Gamma(\alpha) \Gamma\left(\frac{1}{2}\right)} p(p+z)^{2 \sigma-1} E\left\{1-\sigma, \frac{1}{2}-\sigma, \alpha:: \frac{1}{4}(p+z)^{2}\right\} \\
& \doteqdot e^{-z t} t^{-2 \sigma}\left(1+t^{2}\right)^{-\alpha} \\
& =g_{1}(t)
\end{aligned}
$$

where $R(\sigma)<\frac{1}{2}, R(z)>0$; also [2, p. 238]

$$
\begin{aligned}
g_{2}(t)= & \frac{t^{2 \lambda+2 \beta-1}}{\Gamma(2 \lambda+2 \beta)} F_{2}\left(\beta ; \lambda+\beta, \lambda+\beta+\frac{1}{2} ;-\frac{1}{4} t^{2}\right) \\
& \doteqdot p^{1-2 \lambda}\left(1+p^{2}\right)^{-\beta} \\
& =\phi_{2}(p)
\end{aligned}
$$

where $R(\lambda+\beta)>0$ and $R(p)>0$.

Again apply (5), use the formula (9) and replace λ by $\lambda-\beta$; this gives (8).
Some interesting particular cases of the results (7) and (8) are given below.
(i) When $\lambda=v$, then, by virtue of the relation

$$
{ }_{0} F_{1}\left(v+1 ;-x^{2}\right)=\Gamma(v+1) x^{-v} J_{v}(2 x),
$$

(7) yields

$$
\begin{align*}
& \int_{0}^{\infty} t^{v-\frac{1}{2}}(t+z)^{2 \sigma-1} J_{v-\frac{1}{2}}(2 t) E\left[1-\sigma, \frac{1}{2}-\sigma, \alpha, \beta: \alpha+\beta+v:(t+z)^{2}\right] d t \\
= & \frac{\Gamma(\alpha) \Gamma(\beta) \Gamma(v)}{2 \Gamma(\alpha+v) \Gamma(\beta+v)} \frac{z^{2 \sigma-1}}{\pi^{\frac{1}{2}}} E\left(1-\sigma, \frac{1}{2}-\sigma, \alpha+v, \beta+v: \alpha+\beta+v: z^{2}\right), \tag{11}
\end{align*}
$$

where $R(v)>0, R(2 \sigma+\nu-2)<0$ and $|\arg z|<\pi$.
For $v=1$, (11) reduces to

$$
\begin{gather*}
\int_{0}^{\infty} \sin 2 t(t+z)^{2 \sigma-1} E\left[1-\sigma, \frac{1}{2}-\sigma, \alpha, \beta: \alpha+\beta+1:(t+z)^{2}\right] d t \\
\quad=\frac{z^{2 \sigma-1}}{2 \alpha \beta} E\left(1-\sigma, \frac{1}{2}-\sigma, \alpha+1, \beta+1: \alpha+\beta+1: z^{2}\right) \tag{12}
\end{gather*}
$$

where $R(\sigma)<\frac{1}{2}$ and $|\arg z|<\pi$.
(ii) On the other hand, if we take $\sigma=k, \alpha=\frac{1}{2}-k+m, \beta=\frac{1}{2}-k-m$ and $v=0$, then by virtue of the property of the E-function [3, p. 434]

$$
\begin{align*}
E\left(\frac{1}{2}-k+m, \frac{1}{2}-k-m, \frac{1}{2}-k\right. & \left.1-k: 1-2 k: x^{2}\right) \\
& =\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2}-k+m\right) \Gamma\left(\frac{1}{2}-k-m\right) x^{-2 k} W_{k, m}(2 i x) W_{k, m}(-2 i x) \tag{13}
\end{align*}
$$

(7) gives

$$
\begin{align*}
& \int_{0}^{\infty} t^{2 \lambda-1}(t+z)^{-1} W_{k, m}\{2 i(t+z)\} W_{k, m}\{-2 i(t+z)\} d t \\
& \quad=\Gamma(2 \lambda) 2^{-2 \lambda z^{2 \lambda+2 k-1}} E\left(1-k-\lambda, \frac{1}{2}-k-\lambda, \frac{1}{2}-k+m, \frac{1}{2}-k-m: 1-2 k: z^{2}\right) \tag{14}
\end{align*}
$$

where $R(\lambda)>0, R\left(\frac{1}{2}-k-\lambda\right)>0$ and $|\arg z|<\pi$.
(iii) On taking $\lambda=\beta$ in (8), we obtain

$$
\begin{gather*}
\int_{0}^{\infty} t^{\beta-\frac{1}{2}}(t+z)^{2 \sigma-1} J_{\beta-\frac{1}{2}}(2 t) E\left\{1-\sigma, \frac{1}{2}-\sigma, \alpha::(t+z)^{2}\right\} d t \\
=\frac{B(\alpha, \beta)}{2 \pi^{\frac{1}{2}}} z^{2 \sigma-1} E\left(1-\sigma, \frac{1}{2}-\sigma, \alpha+\beta:: z^{2}\right), \tag{15}
\end{gather*}
$$

where $R(\beta)>0, R(\beta+2 \sigma-2)<0$ and $|\arg z|<\pi$.
For $\beta=1$, (15) gives
$\int_{0}^{\infty} \sin 2 t(t+z)^{2 \sigma-1} E\left\{1-\sigma, \frac{1}{2}-\sigma, \alpha::(t+z)^{2}\right\} d t=\frac{z^{2 \sigma-1}}{2 \alpha} E\left\{1-\sigma, \frac{1}{2}-\sigma, \alpha+1:: z^{2}\right\}$,
where $R(\sigma)<\frac{1}{2}$ and $|\arg z|<\pi$.
My thanks are due to $\operatorname{Dr} \mathrm{C}$. B. Rathie for his keen interest in the preparation of this paper.

REFERENCES

1. A. Erdélyi, Higher transcendental functions, Vol. I (New York, 1953).
2. A. Erdélyi, Tables of integral transforms, Vol. I (New York, 1954).
3. A. Erdélyi, Tables of integral transforms, Vol. II (New York, 1954).
4. S. Goldstein, Operational representation of Whittaker's confluent hypergeometric function and Weber's parabolic cylinder functions, Proc. London Math. Soc. (2) 34 (1932), 103-125.
5. C. B. Rathie, A few theorems on generalised Laplace transform, Proc. Nat. Acad. Sci., India 21 (1953), 65-74.

Maharana Bhupal College

Udalpur (India)

