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The interaction between the flow in a channel with an obstruction on the bottom and
an elastic sheet representing the ice covering the liquid is considered for the case of
steady flow. The mathematical model based on the velocity potential theory and the
theory of thin elastic shells fully accounts for the nonlinear boundary conditions at the
elastic sheet/liquid interface and on the bottom of the channel. The integral hodograph
method is employed to derive the complex velocity potential of the flow, which contains
the velocity magnitude at the interface in explicit form. This allows one to formulate the
coupled ice/liquid interaction problem and reduce it to a system of nonlinear equations in
the unknown magnitude of the velocity at the interface. Case studies are carried out for a
semi-circular obstruction on the bottom of the channel. Three flow regimes are studied: a
subcritical regime, for which the interface deflection decays upstream and downstream; an
ice supercritical and channel subcritical regime, for which two waves of different lengths
may exist; and a channel supercritical regime, for which the elastic wave is found to
extend downstream to infinity. All these regimes are in full agreement with the dispersion
equation. The obtained results demonstrate a strongly nonlinear interaction between the
elastic and the gravity wave near the first critical Froude number where their lengths
approach each other. The interface shape, the bending moment and the pressure along the
interface are presented for wide ranges of the Froude number and the obstruction height.

Key words: elastic waves, surface gravity waves, wave-structure interactions

1. Introduction

The problem of the interaction between a liquid and an elastic boundary is a classical
problem in fluid mechanics, which has applications in offshore and polar engineering,
medicine and various industrial fields. In recent decades, this topic has gained renewed
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attention due to global warming and the melting of ice in Arctic regions, which has opened
up new routes for ships and new areas for resource exploration (Squire et al. 1995; Părău
& Dias 2002; Blyth, Părău & Vanden-Broeck 2011; Korobkin, Părău & Vanden-Broeck
2011).

In the past century, studies on ice/liquid interaction primarily focused on the response of
an ice cover to a load moving on the ice surface. This problem was driven by the practical
need for seasonal routes for vehicles and runways for aircraft in polar regions (Squire et al.
1988). A comprehensive bibliography on this subject can be found in the monograph by
Squire et al. (1996).

Current studies on ice-related phenomena are centred around the effect of ice on ocean
waves and their interaction with various ice structures, such as continuous ice, floes,
polynyas and pancake ice. One important aspect is understanding how far ocean waves can
penetrate into ice fields, leading to the breaking of ice near the shore and the formation
of a marginal ice zone with multiple cracks and polynyas (Guyenne & Părău 2012, 2017;
Meylan et al. 2018; Squire 2020).

Studying the interaction between an ice sheet and water waves is mathematically
challenging. Most publications in this field rely on linear theories of water waves and
the theory of a thin elastic shell to model the ice cover (Sturova 2009; Karmakar,
Bhattacharjee & Sahoo 2010; Korobkin et al. 2011; Khabakhpasheva, Shishmarev &
Korobkin 2019; Shishmarev, Khabakhpasheva & Korobkin 2019; Stepanyants & Sturova
2021). One interesting aspect of ice/water interaction is different types of ice response
depending on the wave velocity caused by a moving disturbance, such as a load on the ice
sheet or a body moving beneath the ice sheet. Linear theories can be used to derive the
dispersion relation and determine two critical wave speeds: one applies to gravity waves
in a channel of finite depth, and the other is the minimal speed of wave propagation at the
interface due to the elastic sheet (Kheisin 1963, 1967). The corresponding critical Froude
numbers based on the depth of the channel are denoted as F = 1 and F = Fcr.

For wave speeds in the range between these two critical speeds, the linear theories
predict two waves of different lengths: a longer wave due to gravity moving downstream,
and a shorter wave moving upstream caused by the elastic sheet. A linear theory is
also employed to study ice/water/structure interaction, with recent reviews provided by
Ni et al. (2020). Some papers in this field focus on the effects of bottom topography
and an arbitrary ice thickness. For example, Porter & Porter (2004) used a variational
approach to study the effect of varying the ice thickness and the water depth on wave
propagation in three dimensions. Sturova (2009) investigated the unsteady behaviour of
ice floating on shallow water with a variable depth. Karmakar et al. (2010) analysed
wave transformation by multiple steps and blocks on the channel bottom using the
wide-spacing approximation. Shishmarev et al. (2019) explored methods to mitigate
oscillations of floating elastic plates under periodic surface water waves. Ice response
to a load moving along on frozen channel and to the motion of an underwater body was
investigated by Shishmarev, Khabakhpasheva & Korobkin (2016), Shishmarev et al. (2019)
and Shishmarev, Khabakhpasheva & Oglezneva (2023). In the last work the thickness
of the ice cover was variable across a channel. Large time response of ice cover to an
underwater moving body was described in Khabakhpasheva et al. (2019). Xue et al. (2021)
investigated the hydroelastic response of an ice sheet with a lead to a moving load.

However, the linear theories cannot accurately predict the behaviour of an ice sheet
near the critical speed, where they predict an infinite response of the interface. Nonlinear
studies of flexural-gravity waves in this context are limited. Părău & Dias (2002) studied
the effects of nonlinearity slightly below the critical wave speed, or F < Fcr, and
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derived a nonlinear Schrödinger equation. Bonnefoy, Meylan & Ferrant (2009) developed
a higher-order spectral method to calculate the nonlinear response of an infinite ice
sheet to a moving load in the time domain. Milewski, Vanden-Broeck & Wang (2011)
obtained purely hydroelastic solitary waves for a full nonlinear model in deep water
using a conformal mapping technique. Gao, Wang & Milewski (2019) extended this
method to finite depth flows with constant vorticity. Guyenne & Părău (2012) discovered
depression and elevation branches of solitary waves below the minimum phase speed using
the Cosserat theory of hyperelastic shells satisfying Kirchhoff’s hypotheses (Plotnikov
& Toland 2011). They compared the wave profiles computed by the boundary-integral
method and high-order spectral method. Strongly nonlinear events were also studied for a
jet impact on an ice sheet (Yuan et al. 2022) and for ice–bubble interaction (Zhang et al.
2023).

The nonlinear studies mentioned above mainly focus on exploring solitary waves with
an ice sheet in deep or constant depth water. Both the steady and the unsteady formulations
of the problem are used to predict the wave propagation originated by the pressure load on
the ice sheet. Page & Părău (2014) investigated the steady problem of hydraulic fall in the
presence of an ice sheet and bottom geometry. They used the Cosserat theory to model the
ice sheet and employed boundary-integral equation techniques to solve the problem for the
liquid region. They presented results for hydraulic falls without wave trains upstream or
downstream; however, they obtained solutions with a train of waves trapped between two
obstructions.

In this paper, a general solution to the steady nonlinear problem of hydroelastic waves
generated by an obstruction on the channel bottom is presented. The problem is equivalent
to a body moving beneath an ice sheet along a flat bottom in still water. Although
the formulation of the problem is steady and two-dimensional, that is, simpler than the
unsteady formulations in the studies mentioned above, the present study focuses on the
nonlinear features of the elastic sheet/fluid interaction which have not been explored
before. In particular, how the height of the obstruction affects the interface, the bending
moment and the pressure distribution along the interface in the whole range of flow
velocities, including the subcritical and the supercritical flow regimes, and at what
maximal height of the obstruction a steady solution still exists. For supercritical flows
with Froude number F > 1, the present study revealed the existence of flexural gravity
waves downstream of the obstruction, which are in agreement with those predicted by the
dispersion relation. The integral hodograph method is employed to derive the complex
velocity potential, which includes the velocity magnitude at the ice/liquid interface and
the slope of the bottom in explicit form. The coupling of the elastic sheet and moving
liquid solutions is based on the condition of an equal pressure at the interface, which
arises both from the flow dynamics and from elastic sheet equilibrium. The entire problem
is reduced to a system of nonlinear equations in the unknown velocity magnitude at the
interface, which is solved numerically. This methodology was previously applied to infinite
depth water (Semenov 2021) and to the flow in a channel covered by broken ice (Ni,
Khabakhpasheva & Semenov 2023).

The derivation of the flow potential and the numerical method for solving the coupled
liquid/elastic sheet interaction problem are presented in § 2. Extended numerical results are
discussed in § 3. The solution is carefully checked by reproducing the results of Page &
Părău (2014) for the hydraulic fall under an ice plate. Then, three flow regimes are studied:
a subcritical regime (F < Fcr), an ice supercritical and channel subcritical regime (Fcr <
F < 1) and a channel supercritical regime (F > 1). For the Froude number range Fcr <
F < 1, the presented results revealed a strongly nonlinear interaction between the wave due
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Figure 1. (a) Physical plane and (b) parameter, or ζ , plane.

to the elastic sheet and the gravity wave near the critical Froude number Fcr where their
wavelengths approach each other. A steady solution does not exist for a Froude number
equal to one of the critical Froude numbers; otherwise, the height of the obstruction should
be zero. The new findings are summarized in the Conclusions section.

2. Theoretical analysis

A two-dimensional steady flow in a channel with an obstruction on the bottom covered
by an elastic sheet representing the ice cover is considered. The obstruction has a
characteristic length R, and the thickness of the sheet is h̄. We define a Cartesian coordinate
system XY with the origin at the centre of the obstruction. The X axis is aligned with
the velocity direction of the flow, which has a constant speed U. The Y-axis points
vertically upwards. This consideration is equivalent to the obstruction moving along the
flat bottom of the channel with velocity U in the opposite direction. A definition sketch of
the coordinate system is shown in figure 1(a). The liquid is inviscid and incompressible,
and the flow is assumed to be irrotational, thus allowing us to use a potential flow model.

The obstruction and the bottom downstream are assumed to have an arbitrary shape,
which is defined by the function Yb(S), where S is the arc length coordinate, or by the
slope of the bottom, δb = dY/dS,

δb(X) = arctan
dYb

dX
. (2.1)

We introduce the complex velocity potential, W(Z) = Φ(X, Y)+ iΨ (X, Y), which
consists of the velocity potential Φ(X, Y) and the streamfunction Ψ (X, Y). Here, Z =
X + iY . The boundary-value problem for the velocity potential can be written as follows:

∇2Φ = 0, ∇2Ψ = 0, (2.2a,b)

in the liquid domain
∂Φ

∂Y
= ∂Φ

∂X
dYb

dX
, Ψ = 0, (2.3)

on the bottom of the channel Yb = Yb(X)

ρ
V2

2
+ ρgY + pice(X)+ pext(X) = ρ

U2

2
+ ρgH + p∞, (2.4)

which is the dynamic boundary condition at the ice/liquid interface, Y = Y(X). Here, V =
|∇Φ| is the velocity magnitude, pice(X) is the hydrodynamic pressure at the ice/liquid
interface and P∞ = Pa + ρigh is its value at infinity; pa is the atmospheric pressure, ρi is
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the density of ice, h is the thickness of the ice sheet and g is the gravitational acceleration,
pext(X) is the external pressure applied to the elastic sheet on the intervals XP2 < X < XP1
and XT1 < X < XT2 to provide a waveless interface far upstream and downstream; this
will be discussed in the following.

The sought-for solution has the limit Y(X)X→−∞ = H, where H is the depth of the
channel. The flow is steady; therefore, the value of the streamfunction at the interface is
constant and equal to the flow rate across the channel

Ψ = UH, (2.5)

and the far-field condition

∇Φ → U, X → −∞, 0 ≤ Y ≤ H. (2.6)

To complete the formulation of the boundary-value problem (2.2)–(2.4), an equation
in the hydrodynamic pressure at the ice/liquid interface is needed. The elastic sheet is
modelled using the Cosserat theory of hyperelastic shells (Plotnikov & Toland 2011)

pice = D′
(

d2κ

dS2 + 1
2
κ3
)

+ pa, (2.7)

where D′ = Eh3/12(1 − ν2) is the flexural rigidity of the elastic sheet, κ is the curvature
of the interface, E = 5.0 GPa is Young’s modulus and ν = 0.3 is Poisson’s ratio. Equation
(2.7) corresponds to the assumption that the elastic sheet is inextensible and is not
prestressed. It should be noted that the difference between the Cosserat theory and the
Kirchhoff–Love plate model, in which the cube of the curvature term in (2.7) is omitted,
is quite small due to the small curvature of the ice sheet before it starts breaking.

The interactions between the obstruction, the flow and the elastic sheet may generate
waves that extend to both upstream and downstream infinity. However, the solutions with
waves extending to upstream infinity are physically meaningless because they do not
satisfy the radiation condition, which requires that there be no energy coming from infinity
(Binder, Vanden-Broeck & Dias 2009). To satisfy the radiation condition, or make the
interface waveless far upstream, we apply an external pressure on the interval P1P2 (see
figure 1a), which can be located as far as necessary to avoid its effect on the flow near the
obstruction

pext = CdV
dV
dX
, (2.8)

where the coefficient Cd characterizes the wave attenuation on the interval P1P2; it linearly
increases from zero at point P1 to some value Cup > 0 at point P2 and then remains
constant.

Now we recall that potential flows of an ideal fluid are reversible, i.e. changing the
direction of the inflow velocity has no effect on the results. Alternatively, the flow region
can be mirrored about the y-axis without reversing the velocity direction. Therefore,
to make our solution reversible, it is also necessary to provide a waveless interface
far downstream. Similarly, the external pressure (2.8) is applied on the interval T1T2
downstream. The coefficient Cd changes from zero at point T1 to some value Cd = Cdw
at point T2 and then remains constant. The same wave attenuation technique was used by
Semenov (2021) for a similar problem, but with an infinite water depth.

To solve the problem, it is convenient to non-dimensionalize the variables. The velocity
U and the depth of the channel H are used as the reference quantities. Specifically,
x = X/H and y = Y/H, s = S/H, the thickness of the ice sheet h is replaced with
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h∗ = h/H, the bottom profile yb(x) = Yb(X)/H and the interface profile y(x) = Y(x)/H.
The velocity potential Φ and the streamfunction Ψ are also normalized to the product
UH. The normalized variables are denoted as φ = Φ/UH and ψ = Ψ/UH. With these
normalizations, the value of the streamfunction on the bottom of the channel is ψ = 0,
and the value of the streamfunction at the interface is ψ = 1.

The non-dimensionalized dynamic boundary condition (2.4) takes the form

v2 = 1 − 2( y − 1)
F2 − 2D

(
d2κ

dS2 + 1
2
κ3
)

− 2Cd

H
v

dv
ds
, (2.9)

where

v = |∇φ| = V/U, Eb = D′

ρgH4 , D = Eb

F2 , κ = dδ
ds
, (2.10a–d)

and

F = U√
gH
, (2.11)

is the Froude number based on the depth of the channel, δ = arcsin(dy/ds) = β + π is
the angle between the X-axis and the unit tangential vector τ oppositely directed to the
velocity direction β. Equation (2.9) contains the velocity magnitude along the interface v
and the wave elevation y with its derivatives, which will be related in the following through
the derived expression for the complex potential.

2.1. Dispersion relation
We examine a steady sine-like wavy interface of small steepness δ0, or the slope of the
interface can be represented as

δ(s) = Re[δ0 eikHs], (2.12)

where kH is the non-dimensional wavenumber. Upon differentiating equation (2.9) in the
arc length coordinate s, we obtain

v2 d ln v
ds

= −
(

1
F2 + D(kH)4

)
δ. (2.13)

For the case without an ice sheet (D = 0), (2.13) becomes

v2 d ln v
ds

= − δ

F2 = − kH
tanh kH

δ, (2.14)

where we used the relation between the Froude number and wavenumber for free-surface
gravity waves in a channel of depth H (Kochin, Kibel & Roze 1964). We assume that the
velocity along the interface behaves in the same as for the free-surface case. From (2.13)
and (2.14), we obtain the dispersion equation, which coincides, in particular, with that in
the papers of Greenhill (1886) and Page & Părău (2014)

kH
tanh kH

= 1
F2 + D(kH)4. (2.15)

The number of real roots of (2.15) depends on the value of the constant D and the
Froude number F. It can have no roots, two roots or one root. These cases correspond to
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Figure 2. Wavenumber vs Froude number for different thicknesses of the ice sheet, h/H.

a subcritical flow (no roots), F < Fcr, a channel subcritical and ice supercritical flow (two
roots), Fcr < F < 1, and a channel supercritical flow, F > 1.

The wavenumber vs the Froude number obtained from the solution of (2.15) is shown
in figure 2 for various thicknesses of the ice sheet. It can be seen that, without an ice sheet
(h = 0), each Froude number F < 1 corresponds to one wavenumber. It tends to zero as
the Froude number F → 1. In the presence of an ice sheet, there is a minimal, or critical,
Froude number Fcr, for which the solution of the dispersion equation exists. In the range
Fcr < F < 1, there are two wavenumbers, kgr and kice corresponding to the gravity and
elastic waves; the wavenumber kice > kgr, or the elastic wave is shorter than the gravity
wave. This range of the Froude number corresponds to the ice supercritical and channel
subcritical flows. The larger the ice thickness, the smaller the wavenumber kice, and the
critical Froude number Fcr → 1. Thus, the interval Fcr < F < 1, in which both the gravity
and the elastic waves may appear, reduces. For F > 1, or for the channel supercritical
flows, there is one root due to the elastic sheet. Since for F > 1 the perturbations in the
channel cannot extend upstream, we may expect the elastic wave to extend downstream.
Usually, the dispersion equation (2.15) relates a wave frequency (or phase speed of a
monochromatic wave moving in still water) to the wavenumber: ω2 = k2U2. In the present
case, U2 = F2gH; therefore, the frequency ω and the Froude number are related as
ω2 = k2F2gH.

2.2. Integral hodograph method
Finding the complex potential of the flow, w = w(z), directly is a complicated problem
since the boundary of the flow region is unknown in advance. Instead, Joukowskii (1890)
and Michell (1890) proposed to introduce an auxiliary parameter plane, or ζ -plane, which
was typically chosen as the upper half-plane. Then, they considered two functions, which
were the complex potential w and the function

ω = − ln
(

1
v0

dw
dz

)
= ln

v

v0
− iβ, (2.16)
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both functions of the parameter variable ζ . Here, v and β are the velocity magnitude and
direction, respectively; v0 is the magnitude of the velocity on the free surface, which is
assumed to be constant. When w = w(ζ ) and ω(ζ ) are derived, the velocity and the flow
region can be obtained in parametric form as follows:

dw
dz

= exp[−ω(ζ )], z(ζ ) = z0 +
∫ ζ

0

dw
dζ ′

/
dw
dz

dζ ′, (2.17a,b)

where the function z(ζ ) is called the mapping function.
The Joukowskii–Michell method is capable of solving free-surface problems for

flows over polygon-shaped bodies with a constant velocity on the free surface/interface
(without gravity, surface tension, etc.). In this case the functions ω(ζ ) and w(ζ ) form
polygon-shaped domains and can be found applying the Schwarz–Christoffel integral to
find their conformal mapping into the upper half-plane.

An additional complexity arises when the slope of the body varies along the body
contour or the velocity magnitude on the free surface/interface varies due to gravity,
surface tension, etc. On these parts of the flow boundary, the boundary conditions are
of different types: on the solid part of the boundary, the velocity direction is determined
by the slope of the body; on the free surface/interface, the velocity magnitude can be
obtained from the Bernoulli equation. This is a so-called mixed boundary-value problem
for a complex function.

If the upper half-plane is chosen as the region of the parameter variable and the whole
real axis corresponds to the free surface or the body surface, then Schwarz’s integral
formula or Cauchy’s integral formula can be applied to determine the desired complex
function. This approach was applied by Forbes & Schwartz (1982) for solving free-surface
flow over a semicircular obstruction. In order to use Cauchy’s integral formula, they
introduced an image flow symmetric about the x-axis and were able to formulate a
uniform boundary-value problem for the complex function dζ/dw. By using Cauchy’s
integral formula and the dynamic boundary condition, they obtained an integro-differential
equation in the complex function dζ/dw.

In this paper, we use a different integral formula (Semenov & Iafrati 2006; Semenov
& Cummings 2007) that allows us to determine a complex function based on the
values of its argument and magnitude given on the real and imaginary axes of the first
quadrant, respectively. Therefore, we chose the first quadrant as the region of the parameter
variable ζ = ξ + iη (instead of a half-plane) shown in figure 1(b). The parameter region
corresponds to the liquid domain in the physical plane z = x + iy shown in figure 1(a): the
real axis corresponds to the bottom of the channel, and the imaginary axis corresponds to
the interface. The conformal mapping theorem allows us to arbitrarily choose the location
of three points O(O′) (ζ = 0) B (ζ = 1) and D(D′) (ζ = ∞), as shown in 1(b). Then, the
locations of points A (ζ = a) and C (ζ = c) are unknown and have to be determined using
additional physical considerations.

The complex velocity function on the bottom of the channel and that at the interface are
unknown a priori. At this stage, we assume that these functions are known as functions
of the parameter variables: v(η) = |dw/dz| is known as a function of the coordinate η
along the imaginary axis in the ζ -plane; χ(ξ) = arg(dw/dz) is a known function of the
coordinate ξ along the real axis of the first quadrant in the ζ -plane. These functions will
be determined later using the dynamic and kinematic boundary conditions at the interface
and on the bottom, respectively. Using the above definitions, we can write the following
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boundary-value problem for the complex velocity function:∣∣∣∣dw
dz

∣∣∣∣
ζ=iη

= v(η), 0 ≤ η < ∞, (2.18)

arg

(
dw
dz

∣∣∣∣
ζ=ξ

)
= χ(ξ), 0 ≤ ξ < ∞. (2.19)

By using Chaplygin’s singular point method (Gurevich 1965, §5 Chapter 1), the
following integral formula can be obtained for solving the mixed boundary-value problem
(2.18) and (2.19) (Semenov & Iafrati 2006):

dw
dz

= v∞ exp

[
1
π

∫ 0

∞
dχ
dξ

ln
(
ζ + ξ

ζ − ξ

)
dξ − i

π

∫ ∞

0

d ln v
dη

ln
(
ζ − iη
ζ + iη

)
dη + iχ∞

]
,

(2.20)

where v∞ = limη→∞ v(η) and γ∞ = limξ→∞ χ(ξ). An alternative way of derivation of
the above integral formula is presented by Semenov & Cummings (2007). It can easily be
verified that, for ζ = ξ , the argument of the function dw/dz is the function χ(ξ), while for
ζ = iη the magnitude of dw/dz is the function v(η), i.e. the boundary conditions (2.18)
and (2.19) are satisfied.

The argument of the complex velocity is determined by the slope of the bottom, δb, or
χ(ξ) = −δb(ξ), which at points A and C undergoes a step change due to the corners at
points A and C, as can be seen in figure 1(a). We introduce a continuous function γ (ξ)
that changes from the value γ (a) = 0 at point A, (ξ = a), to the value γ (c) = −π at point
C, (ξ = c), and further may vary continuously along the bottom

χ(ξ) =
⎧⎨
⎩

0, 0 < ξ < a,
−π/2 − γ (ξ), a ≤ ξ ≤ c,
−π − γ (ξ), c < ξ < ∞.

(2.21)

The function χ(ξ) has two jumps: at point A, ΔA = −π/2 and at point C, ΔC = −π/2.
The function γ (ξ) differs from the function δb(ξ) only by a constant; therefore, dγ /dξ =
dδb/dξ . Substituting (2.21) into (2.19), evaluating the integrals over the step changes of
the function χ(ξ) and using dγ /dξ = dδb/dξ , we obtain the expression for the complex
velocity as

dw
dz

= v0

√
a − ζ

a + ζ

c − ζ

c + ζ
exp

[
− 1

π

∫ ∞

a

dδb

dξ
ln
(
ξ − ζ

ξ + ζ

)
dξ

− i
π

∫ ∞

0

d ln v
dη

ln
(

iη − ζ

iη + ζ

)
dη
]
, (2.22)

where v0 = 1 is the velocity magnitude at point O. Here, we used arg(ζ − iη) = arg(iη −
ζ )− π for the second integral.

2.3. Derivative of the mapping function, dz/dw
On the bottom of the channel the streamfunction ψ ≡ 0, and at the interface ψ ≡ 1 as
follows from the boundary conditions (2.3) and (2.5), while the potential varies from
−∞ to +∞. Thus, the domain of the complex potential w = φ + iψ is the infinite strip
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−∞ < φ < ∞ of unit width, 0 ≤ ψ ≤ 1. Due to the simplicity of the domain of w, we
can use conformal mapping to immediately write the complex potential w as a function of
the parameter variable ζ

w(ζ ) = 2
π

ln ζ. (2.23)

The complex potential (2.23) is a logarithmic function of ζ , or ζ exponentially depends
on the complex potential w = φ + iψ . The arc length coordinates sb ∼ φ and s ∼ φ along
the bottom and the interface, respectively. This causes difficulties in computations for
a length of the computational region larger than 5H. We can resolve the logarithmic
singularity if we eliminate the parameter variables ζ , ξ and η from (2.22) using the
expressions

ζ = exp(πw/2), −∞ ≤ φ ≤ ∞, 0 ≤ ψ ≤ 1,
η = exp(πφ/2), −∞ ≤ φ ≤ ∞, ψ = 1,
ξ = exp(πφ/2), −∞ ≤ φ ≤ ∞, ψ = 0.

⎫⎬
⎭ (2.24)

By substituting (2.24) into (2.22), we obtain the complex velocity as a function of
the complex potential w, the inverse function of which is the derivative of the mapping
function, z = z(w)

dz
dw

= 1
v0

√
a + ew′

a − ew′
c + ew′

c − ew′ exp

[
1
π

∫ ∞

φ′
A

dδb

dφ′ ln

(
eφ

′ − ew′

eφ′ + ew′

)
dφ′

+ i
π

∫ ∞

−∞
d ln v
dφ′ ln

(
ieφ

′ − ew′

ieφ′ + ew′

)
dφ′
]
, (2.25)

where w′ = πw/2 and φ′ = πφ/2. The integrals containing functions

ln

(
eφ

′ − ew′

eφ′ + ew′

)
, ln

(
ieφ

′ − ew′

ieφ′ + ew′

)
, (2.26a,b)

exponentially decay as the difference |φ′ − w′| increases. The integration of (2.25) along
−∞ < φ < ∞, ψ = 1, in the w-plane gives the interface OD; its integration along
−∞ < φ < ∞, ψ = 0 gives the bottom surface. The parameters a = exp(πφA/2) and
c = exp(πφC/2). The potentials φA and φC, and the functions δb(φ) and v(φ) are unknown
and have to be determined from physical considerations and the boundary conditions.

2.4. Integro-differential equations in the functions δb(φ)

By using the derivative of the mapping function (2.25) we can obtain the arc length
coordinate sb as a function of the potential φ

sb(φ) =
∫ φ

0

dsb

dξ
dφ′, (2.27)

where

dsb

dφ
=
∣∣∣∣ dz
dw

∣∣∣∣
w=φ

= 1
v0

√∣∣∣∣a + eφ′

a − eφ′
c + eφ′

c − eφ′

∣∣∣∣ exp

{
1
π

∫ ∞

φA

dδb

dφ′′ ln

∣∣∣∣∣e
φ′′ − eφ

′

eφ′′ + e′′

∣∣∣∣∣ dφ′′

+ 1
π

∫ ∞

−∞
d ln v
dφ′′ [π − 2 tan−1(eφ

′′−φ′
)] dφ′′

}
, (2.28)

and φ′ = πφ/2.
983 A41-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

17
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.177


Nonlinear ice sheet/liquid interaction in a channel

The bottom shape is given by the slope of the bottom, δb = δb(sb). By making the
change of variables sb = sb(φ), we obtain the following integro-differential equation in
the function δb(φ):

dδb

dφ
= dδb

ds
dsb

dφ
, (2.29)

where dsb/dφ is determined from the above equation, which also contains the function
dδb/dφ. The parameters φA and φC are determined from the given arc length of the
obstruction ABC. In view of (2.27)

sAB = sb(φA), sBC = sb(φC), (2.30a,b)

where sAB and sBC are the arc lengths of the parts AB and BC of the obstruction.

2.5. Determination of the function v(φ)
The velocity magnitude at the interface is determined using the dynamic boundary
condition (2.9), which contains the interface shape y(s) and curvature with its higher
derivatives. The ice/liquid interface is obtained by integrating the derivative of the
mapping function (2.25) along the upper side of the strip in the w-plane, or w = φ + i,
it takes the form

x(φ)+ iy(φ) = xO + iH +
∫ φ

−φ∗

(
dz
dw

)
w=φ+i

dφ, (2.31)

where the coordinate of point xO is obtained by integrating the derivative of the mapping
function (2.25) along the lower side of the strip in the w-plane, which corresponds to the
bottom of the channel

xO =
∫ −φ∗

0

(
dz
dw

)
w=φ

dφ. (2.32)

Here, −φ∗ and φ∗ are the lower and the upper boundary of the computational region; the
channel in the physical plane is truncated, and the flow outside the computational region,
|φ| > φ∗, is assumed to be uniform. The arc length coordinate along the interface is

s(φ) =
∫ φ

0

dφ
v(φ)

. (2.33)

It would be possible to determine the slope of the interface using the derivative of the
mapping function (2.25)

δ(φ) = Im

[
ln
(

dz
dw

)
w=φ+i

]
, (2.34)

and then evaluate the curvature of the interface and its first and second derivatives by
differentiating the equation

κ = dδ
ds

= dδ
dφ

dφ
ds
. (2.35)

However, when differentiating the function δ(φ) with respect to φ, the order of singularity
in the integrand of the second integral in (2.25) increases. By substituting the y-coordinate
of the interface and the second derivative of the curvature into the dynamic boundary

983 A41-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

17
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.177


B.-Y. Ni and others

condition (2.9), we obtain a very complicated hypersingular integral equation in the
function v(φ), whose numerical solution requires special treatments.

Instead of solving the hypersingular integral equation, we use another numerical method
based on the spline approximation of the interface to evaluate its curvature and higher
derivatives. In discrete form, the solution is sought on two fixed sets of points: a set
−φ∗ < φj < φ∗, j = 1, . . . ,N corresponding to the bottom of the channel and a set
−φ∗ < φi < φ∗, i = 1, . . . ,M corresponding to the interface; both sets of points φj and
φi monotonically increase.

We chose a fifth-order spline, which provides continuous derivatives along the interface
up to the fourth derivative appearing in the pressure coefficient due to the ice sheet,

y(s) = yk + a1,k(s − sk−1)+ · · · + an,k(s − sk−1)
n, sk−1 < s < sk, k = 1, . . . , K̄,

(2.36)

where nodes sk = si(k) and yk = yi(k), i(k) = 4k − 3, k = 1, . . . , K̄, K̄ = M/4 are chosen
as every fourth point on the set of the discrete points si = s(φi) and yi = y(φi) determined
from (2.31) and (2.33). The curvature and its derivatives are obtained by differentiating
(2.34)

δ = arcsin y′, κ = y′′√
1 − y′2 ,

dκ
ds

= y′y′′2 − y′′′( y′2 − 1)
(1 − y′2)3/2

, . . . . (2.37a–c)

By applying the dynamic boundary condition (2.9) at the points φk, k = 1, . . . , K̄, we can
obtain the following system of nonlinear equations:

Gk(V̄) = cpk(V̄)− cice
pk (V̄) = 0, k = 1, . . . , K̄, (2.38)

where V̄ = (v1, . . . , vK̄)
T is the vector of the unknown velocities vk at the nodes sk

cpk(V̄) = 1 − v2
k − 2[yk(V̄)− 1]

F2 − Cdvk

(
dv
dx

)
k
, (2.39)

cice
pk (V̄) = 2D

[(
d2κ

ds2

)
k
+ 1

2
κ3

k

]
, (2.40)

are the hydrodynamic pressure coefficient and the pressure coefficient due to the elastic
sheet, respectively. The wave attenuation intervals are chosen to be xP1 − xP2 = 2λgr and
xT2 − xT1 = 3λgr, where λgr is the wavelength determined from the dispersion relation.
The coefficients Cup and Cdw are chosen in the interval from 0.2λgr to 0.4λgr to effectively
damp both the elastic and the gravity wave upstream and downstream, respectively.

The system of (2.38) is solved using Newton’s method. The Jacobian of the system is
evaluated numerically using the central difference with�vk = 10−8. At each evaluation of
the function Gk(V̄), the integro-differential equation (2.29) together with (2.28) and (2.30)
is solved using the method of successive approximations, which in the discrete form
becomes

(�δb)
(m+1)
j

�φj
=
δb(s

(m)
bj )− δb(s

(m)
b( j−1))

�φj
, (2.41)

where the arc length along the body, s(m)bj = s(m)b (φj) is evaluated using (2.27) with

(�δb)
(m)
j /�ξj known at the m iteration. The iteration process converges very fast.
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After 5 to 10 iterations, the error is below a prescribed tolerance of 10−6. The parameters
a and c are obtained as

a = exp(π/2φA), c = exp(π/2φC), (2.42a,b)

where φA, and φC are determined from (2.30). From 5 to 20 iterations are necessary to get
a converged solution. All solutions, say �V∗, reported here satisfied the condition

1
K̄

K̄∑
1

|Gk(�V∗)| < 10−6, (2.43)

which is regarded as giving a sufficiently accurate solution of the nonlinear equations.
In the first iteration, the functions v(φ), sb(φ), δb(φ), and the parameters φA and φC are

given as follows: v(1)(φ) ≡ 1, s(1)b (φ) = φ, φ(1)A = sAB, φ(1)C = sBC and

δ
(1)
b (φ) =

⎧⎨
⎩

π/2, −∞ < φ ≤ φA,
π/2 − π(φ − φA)/(φC − φA), φA ≤ φ ≤ φC,
−π/2, φC ≤ φ < ∞.

(2.44)

Then, the next iteration starts from solving integro-differential equation (2.29).

3. Results and discussion

3.1. Numerical approach
The number of nodes on the bottom and at the interface is chosen in the ranges 200 <
N < 400 and 400 < M < 4000, respectively, based on the requirement to provide at least
12 nodes sk within the shorter wavelength and to get a reasonably accurate converged
solution. The computational time varies form few minutes for M = 400 to approximately
30 min for M = 4000 using a desktop Precision Tower T7920.

The integrals appearing in (2.25) are evaluated analytically using points of discretization
of the real and imaginary axes of the first quadrant in the ζ -plane, ξj = exp(πφj/2) and
ηi = exp(πφi/2), a linear interpolation of the functions δb(ξ) on the intervals (ξj−1, ξj)

and the function ln v(η) on the intervals (ηi−1, ηi)

1
π

∫ ξj

ξj−1

dδb

dξ
ln
(
ξ − ζ

ξ + ζ

)
dξ = �δbjaj(ζ ), (3.1)

1
π

∫ ηi

−ηi−1

d ln v
dη

ln
(

iη − ζ

iη + ζ

)
dξ = �(ln v)ibi(ζ ), (3.2)

where

�δbj = δb(ξj)− δb(ξj−1), (3.3a)

aj(ζ ) = 1
π�ξj

∫ ξj

ξj−1

ln
(
ξ − ζ

ξ + ζ

)
dξ, (3.3b)

�(ln v)i = ln vi − ln vi−1 = ln
vi

vi−1
, (3.3c)

bi(ζ ) = 1
π�ηi

∫ ηi

ηi−1

ln
(

iη − ζ

iη + ζ

)
dη. (3.3d)
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The integral in the above equation can be easily evaluated, and the result is a non-singular
expression for the functions aj(ζ ) and bj(ζ ). By substituting (2.24) into (3.1) and (3.2) we
can evaluate the integrals in (2.25).

3.2. Verification of the numerical approach
For verification purposes we compare the results predicted by the present nonlinear
solution with the nonlinear theory (Page & Părău 2014) based on the boundary-integral
method for the case of a hydraulic fall. Page & Părău (2014) considered the hydraulic
fall solution for which the depth of liquid upstream is greater than downstream. The
flow is assumed to be uniform in the far field as |x| → ∞, with a constant depth H and
velocity U downstream and a constant depth Hup > H and velocity Uup < U upstream of
the obstruction on the bottom of the channel.

Applying Bernoulli’s equation in the far fields |x| → ±∞ and using the conservation
mass equation, the parameters upstream and downstream are related in non-dimensional
form as follows (Dias & Vanden-Broeck 2004):

1
2

− 1
2
γ ∗2 + 1

F2 − 1
F2γ ∗2 = 0, (3.4)

where γ ∗ = Uup/U.
Page & Părău (2014) considered a cosine-squared profile of the bottom of the channel

including two obstructions as follows:

yb(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2A1 cos2
(

π(x + x1)

2L1

)
, −L1 < x < x + x1 < L1,

2A2 cos2
(

πx
2L2

)
, −L2 < x < x < L2,

0, otherwise.

(3.5)

The heights and half-lengths of the submerged obstructions are defined by 2Ai and Li
(i = 1, 2), respectively. The separation constant x1 describes the central position of the
additional obstruction. In the case of just a single submerged obstruction, A1 is taken to be
zero.

The hydraulic fall profiles over an obstruction predicted by the present solution are
compared with the results by Page & Părău (2014) in figure 3 for two cases with Froude
number F = 1.367 and F = 1.345. It can be seen that the results predicted by the present
method and those by Page & Părău (2014) coincide.

An additional verification is performed for the case of two obstructions on the bottom.
In the absence of a thin ice sheet, placing an additional obstruction downstream of the
hydraulic fall in the pure gravity case can result in a train of trapped waves between the
two obstructions (Dias & Vanden-Broeck 2004). Page & Părău (2014) predicted trapped
waves in the presence of an ice sheet. The interface profile and the bottom shape for the
case of an additional obstruction centred at x = 20 is shown in figure 4 for the present
solution (solid line) and Page & Părău (2014) (dashed line and solid symbols). The Froude
number Fcr is found as part of the solution using the additional condition of the absence of
a wave downstream. If this condition is not applied and the Froude number F > 1 is given,
a wave downstream of the second obstruction can be observed. This will be discussed
later in the following. An agreement between the present results and those by Page &
Părău (2014) verifies the calculation code.
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Figure 3. Hydraulic fall profiles over a single submerged obstruction of height 2A2 = 0.1 and length L2 = 6;
Eb = 0.5, F = 1.367, γ ∗ = 0.649 (solid circles); Eb = 0.1, F = 1.345, γ ∗ = 0.664 (solid squares); lines and
symbols correspond to the present solution and Page & Părău (2014), respectively.

–30
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Figure 4. Trapped wave at the ice/liquid interface (the solid line corresponds to the present calculations; the
dashed line with symbols corresponds to Page & Părău (2014)) for the bottom profile including two obstructions
(blue line): 2A2 = 0.2 and width 2L2 = 6.4 and an additional obstacle with 2A1 = 0.16 and 2L1 = 6.4 placed
at x1 = 20; the Froude number F = 1.5373 and γ ∗ = 0.545 are found as part of the solution, and Eb = 0.5.

3.3. Subcritical flows, F < Fcr

For Froude numbers F < Fcr, (2.15) has only complex roots, which correspond to decaying
perturbations of the interface caused by the obstruction on the bottom. In figure 5(a),
the interface profiles for obstruction height R/H = 0.2 and thickness of the ice elastic
sheet h/H = 0.01 are shown for different Froude numbers approaching the critical Froude
Fcr = 0.864. It can be seen that the interface shape is symmetric about the y-axis and the
wave decays; the trough of the wave is located just above the obstruction, and it gets deeper
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Figure 5. (a) The interface shape and (b) the pressure coefficient along the interface for obstruction height
R/H = 0.2, ice thickness h/H = 0.01 and a subcritical flow: Froude number F = 0.65 (solid line), F = 0.6
(dashed line), F = 0.5 (dotted line).
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Figure 6. (a) The interface shape and (b) the pressure coefficient along the interface corresponding to the onset
of convergence of the subcritical solution for ice thickness h/H = 0.01: F = 0.5, R/H = 0.32 (solid line); F =
0.7, R/H = 0.17 (solid line); F = 0.83, R/H = 0.06 (solid line); the critical Froude number Fcr = 0.8636.

as the Froude number approaches the critical value. This situation is different from that for
the free-surface flows without an elastic sheet, for which the free surface is flat upstream
and exhibits a wave downstream of the obstruction. Thus, for F < Fcr, the elastic sheet
suppresses the waves downstream and perturbs the flow near the obstruction. It was found
that for R/H = 0.2 and Froude 0.65 < F < Fcr the solution fails to converge, or F = 0.65
is the maximal value.

The interface profiles for different heights of the obstruction and the maximal value
of the Froude number for each height are shown in figure 6: for height R/H = 0.32,
the maximal Froude number is F = 0.5; for R/H = 0.17, F = 0.7; and for R/H = 0.06,
F = 0.83. As the height of the obstruction further decreases, the maximum Froude number
approaches the critical Froude number Fcr = 0.864. It can be seen from figure 6(a)
that the smaller the height of the obstruction, the smaller the deflection of the interface
corresponding to the onset of convergence of the solution. Therefore, we can conclude
that a large height of the obstruction or a large deflection of the ice/liquid interface itself
does not prevent the convergence of the solution.
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Figure 7. Convergence of the iterations for Froude number F = 0.5 and two heights of the obstruction, R/H =
0.32 (red line) and R/H = 0.33 (blue line); the left axis corresponds to the average error in the dynamic
boundary condition (solid lines); the right axis corresponds to the velocity magnitude at the trough (dashed
lines).

The behaviour of the average error (2.43) and the velocity magnitude at the trough is
shown in figure 7 (the left and right axes, respectively) for two slightly different heights of
the obstructions. The initial velocity at the interface is set to v(φ) ≡ 1. At the beginning
of the iterations, the velocity magnitude at the trough increases linearly for both cases
due to the given restriction of the velocity increment. For R/H = 0.32, the average error
gradually decreases and the velocity at the trough tends to some value, while for R/H =
0.33 both the error and velocity magnitude oscillate without any tendency to converge.

3.4. Ice supercritical – channel subcritical flows, Fcr < F < 1
In this range of the Froude number, the dispersion relation (2.15) has two real roots: one
root, kgw, is the wavenumber corresponding to the gravity wave (since its value is close to
the wavenumber corresponding to the free-surface gravity waves), and the other root, kice,
is caused by the elastic wave. Both waves may extend to infinity downstream and upstream.
In order to examine how the introduced attenuation regions affect the solution, we compare
in figure 8 the ice/liquid interfaces corresponding to two cases: for the first case, the
computational region starts at xP2 = −8λgw and ends at xT2 = 8λgw with attenuation zone
length LP1P2 = 4λgw and LT1T2 = 3λgw; for the second case, it starts at xP2 = −10λgw
and ends at xT2 = 9λgw with the same length of the attenuation zones. For both cases, the
attenuation coefficients are Cup = 0.14λgw and Cdw = 0.4λgw; for both cases, the Froude
number F = 0.8, R/H = 0.11 and the ice thickness h/H = 0.005, for which the critical
Froude number Fcr = 0.6935. From the dispersion relation (2.15), the wavenumbers are
obtained: kgw = 1.4252 (λgw = 4.409) and kice = 4.0757 (λice = 1.542). The number of
nodes of the spline K̄ is chosen to provide at least 12 nodes within the shorter ice
wave λice. Then, the total number of nodes for the first case, xT2 − xP2 = 16λgw, is
obtained as K̄ = 12 ∗ 16λgw/λice ≈ 550, and the total number of discretization points at
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Figure 8. The ice/water interface for Froude number F = 0.8, obstruction height R/H = 0.11 and different
lengths of the computational region: 16λgw (red line); 19λgw (blue line). The dashed lines indicate the length
and location of the attenuation zones.

the interface is M = 4K̄ = 2200. For the second case, the length of the computational
region xT2 − xP2 = 19λgw, and K̄ ≈ 650 and M = 2600.

The red and blue solid lines in figure 8 correspond to the first case and the second
case, respectively. The dashed lines indicate the location and the length of the attenuation
zones for each case. It can be seen that the red and blue lines coincide in the range of
−4 < xλgw < 5 where the attenuation term in the dynamic boundary condition (2.9) is
equal to zero (Cd = 0).

As the Froude number F → 1, the ratio λgw/λice = kice/kgw → ∞ since the gravity
wave number kgw → 0. In this case, the required number of discretization points also
tends to infinity, thus causing computational difficulties. The computational analysis starts
with F = 0.9 and then gradually approaches the critical Froude number Fcr = 0.6935;
the ice thickness h/H = 0.005. The wavelengths of the gravity and the elastic wave are
λgw = 7.250 and λice = 1.344, and their ratio λgw/λice = 5.394.

Figure 9 shows (a) the interface profile, (b) the bending moment and (c) the pressure
coefficient along the interface for two heights of the obstruction: R/H = 0.05 (red line)
and 0.07 (blue line), Froude number F = 0.9 or F/Fcr = 1.30 and ice thickness h/H =
0.005. This ratio is relatively large in terms of the interaction between the gravity and the
elastic wave, which is quite weak. For R/H = 0.05 the interface is almost flat upstream, or
the oscillations of the elastic wave are invisible, although its contribution to the bending
moment and the pressure coefficient is significant. For a larger height, R/H = 0.07, the
wave amplitude of the interface upstream becomes visible, but it is still much lower than
the amplitude of the interface downstream corresponding to the gravity wave

Floc = v(x)√
y(x)

F. (3.6)

The dashed lines correspond to the local Froude number (right axis). It can be seen in
figure 9(a) that the local Froude number for R/H = 0.05 (red dashed line) does not reach
the channel critical value (F = 1), and the period of the wave is close to λgw predicted
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Figure 9. The ice/water interface (a), the bending moment (b) and the pressure coefficient (c) along the
interface for Froude number F = 0.9, ice thickness h/H = 0.005 and obstruction heights R/H = 0.05 (red
line) and 0.07 (blue line), which is the maximal height for which the steady solution is obtained; the critical
Froude number Fcr = 0.6935.

by the dispersion relation. For R/H = 0.07, the amplitude of the both the elastic and the
gravity wave increases, and the local Froude number reaches the critical value at the wave
trough on some short intervals. This means that the flow becomes transcritical on some
shot intervals, thus affecting the wavelength, which is slightly increased. We found that
the convergence of the solution for obstruction height R/H > 0.07 is very challenging: the
amplitude and period of the gravity wave further increase, which results in the lowering of
the interface and a further increase in the velocity at the trough. The supercritical part of
the flow becomes larger.

The bending moment along the interface is shown in figure 9(b). It can be seen that
the amplitudes of the bending moment for the elastic wave upstream and the gravity
wave downstream are approximately the same. For obstruction height R/H = 0.05, the
bending moment varies quite smoothly both upstream and downstream of the obstruction.
For R/H = 0.07, the bending moment exhibits sine-like behaviour upstream of the
obstruction, but downstream we can observe a sharp trough corresponding to the crest
at the interface and a flat interval of bending with a small contribution of the elastic wave,
which gradually decays. A superposition of the gravity and the elastic wave is clearly
seen because the wavelength ratio λgw/λice = 5.394 is relatively large. For a smaller ratio,
the interaction of the waves will cause more complicated behaviour of the interface, the
bending moment and the pressure coefficient.
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Figure 10. The same as in figure 9 for F = 0.8 and R/H = 0.05 (red line) and 0.1 (blue line.

The behaviour of the pressure coefficient along the interface is shown in figure 9(c).
It can be seen that the amplitude of the oscillations upstream is much higher than those
downstream. The oscillations of the pressure coefficient due to gravity downstream are so
small that they are almost invisible. That is why we can observe downstream only a small
contribution caused by the elastic wave, which gradually decays.

The results for Froude number F = 0.8, or F/Fcr = 1.15, and two obstruction heights
R/H = 0.05 and 0.11 are shown in figure 10. The wavelengths are: λgw = 4.409 and
λice = 1.542; the ratio λgw/λice = 2.86. For height R/H = 0.05, the amplitude of the
elastic wave upstream is quite small in comparison with the amplitude of the gravity
wave downstream. Both waves exhibit sine-like behaviour. For height R/H = 0.11, the
amplitude of the elastic wave increases, so that the local Froude number approaches
the critical value F = 1 at the troughs. This causes difficulties in the convergence of
the solution for larger heights of the obstruction. The interface downstream exhibits a
superposition of the gravity wave and the elastic wave, although the contribution of
the latter decays. However, since the wavelengths approach each other, their interaction
exhibits more complicated behaviour than that in figure 9. The bending moment and
the pressure coefficient along the interface are shown in figure 10(b,c). For the smaller
height of the obstruction, the oscillations caused by the elastic sheet and gravity can be
seen upstream and downstream separately. For the larger height, gravity does not affect
the oscillations of the bending moment upstream, while the elastic sheet contributes to a
superposition of the oscillations downstream to a larger extent, and its contribution decays
downstream slower than in figure 9(b).

The results for Froude number F = 0.75, or F/Fcr = 1.08, and two obstruction heights
R/H = 0.05 and 0.11 are shown in figure 11. The wavelengths are: λgw = 3.537 and
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Figure 11. The same as in figure 9 for F = 0.75 and R/H = 0.05 (red line) and 0.11 (blue line.

λice = 1.705; the ratio λgw/λice = 2.07. This case is closer to the critical Froude number
Fcr = 0.6935, and we can observe a larger amplitude of the interface upstream (due to
the elastic sheet), while the amplitude of the wave downstream (due to gravity) becomes
smaller. Moreover, for R/H = 0.11 the amplitude of the elastic wave upstream becomes
larger than the amplitude of the gravity wave far downstream, where the contribution of
the elastic wave decays. The length of the computational region in figure 11 may not be
large enough to see the interface without any contribution of the elastic wave. When the
Froude number further approaches the critical Froude number Fcr, the interaction of the
elastic wave and the gravity wave gets stronger. This results in a smaller height of the
obstruction for which the solution can be obtained.

3.5. Channel supercritical flows, F > 1
It is well known for free-surface channel flows (Dias & Vanden-Broeck 1989) that, for the
supercritical regime (F > 1), there may exist two solutions, one with a smaller height of
the wave crest called the ‘perturbed’ wave and the other with a higher wave crest called
the soliton wave. The ‘perturbed’ wave is a solution that is a member of a family of steady
solutions that bifurcate from the uniform stream as the height of the obstruction increases
from zero. The ‘soliton’ wave, is a member of a family of steady solutions that bifurcate
from a solitary wave as the height of the obstruction increases from zero. The families
merge at a fold for some Froude number, Fmin, which is the minimum Froude number. If
the solitary wave does not exist, then the ‘soliton’-type solution also do not exist. There is
no solution of any type in the range 1 < F < Fmin (Dias & Vanden-Broeck 1989).
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Figure 12. The perturbed wave (dashed line) and the soliton wave (solid line) for a free-surface channel
supercritical flow with Froude number (a) F = 1.2 and (b) F = 1.3; the height of the obstruction R/H = 0.2.

The present method allows one to compute both these cases. The perturbed wave, y(x), is
computed in parametric form using (2.31) and (2.32). In order to compute the soliton wave,
we rearrange the obtained free surface/interface y(x) in such a way as to fit its maximum
value with the given coordinate yms of the soliton crest

ȳ(s) = H + Cms( y(s)− H), (3.7)

where

Cms = yms − H
ym − H

, ym = max[y(s)]
s(−φ∗)<s<s(φ∗)

. (3.8)

The unknown coordinate of the soliton crest, yms, is obtained by solving the equation

Cms( yms) = 1, (3.9)

then the functions ȳ(s) and y(s) coincide.
The perturbed (dashed line) and the soliton (solid line) wave for Froude numbers (a)

F = 1.3 and (b) F = 1.2 are shown in figure 12; the height of the obstruction R/H = 0.2.
For this height, the soliton wave was found in the range of the Froude number 1.2 < F <
1.4. As the Froude number approaches the upper limit, the free surface of the soliton wave
forms an angle of 120 degrees at the wave crest (Vanden-Broeck 1987).

In contrast to a channel flow with a free surface or a liquid surface covered by broken
ice Ni et al. (2023), the attempts to find a soliton wave in the presence of an elastic sheet
were unsuccessful. In the following, the analysis of perturbed-type supercritical flows is
presented.

Figure 13 shows the interface profiles (a), the bending moment (b) and the pressure
coefficient (c) along the interface for the perturbed type of channel supercritical flow. The
Froude number F = 1.2 is the minimal value for which a converged solution is obtained for
obstruction height R/H = 0.2. For this case (red line), the interface reaches its maximum
above the obstruction, and the local Froude number (red dashed line) drops below 1, or
the local flow becomes subcritical. A subcritical flow at some part of the interface may
generate local waves there, which may hinder the convergence of the iterative process.
In figure 13(a), it can be seen that there are no waves upstream (because the flow is
supercritical), but there are small (almost invisible) waves downstream. These waves
manifest themselves clearly in the behaviour of the bending moment and the pressure
coefficient shown in figure 13(b,c). The wave amplitudes of the interface, the bending
moment and the pressure coefficient decrease as the Froude number increases.

The ice/water interfaces for thickness h/H = 0.01 are shown in figure 14 for different
Froude numbers. In comparison with the results for h/H = 0.005 in figure 13, the
oscillation of the ice/liquid interface about the perturbed free surface is clearly seen.
The wave attenuation term in the dynamic boundary condition (2.9) was applied
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Figure 13. Supercritical flows for Froude numbers F = 1.2, λice = 1.0434 (red), F = 1.3, λice = 0.981 (blue)
and F = 1.5, λice = 0.882 (magenta) and R/H = 0.2: (a) the ice/water interfaces (solid lines) and the local
Froude number (dashed lines), (b) bending moment and (c) the pressure coefficient.

far downstream. The sign of the coefficient Cdw was taken as negative to provide wave
attenuation for the case of channel supercritical flows, F > 1.

The elastic wave for Fcr < F < 1 in figures 9 to 11 propagates upstream, while for
F > 1 in figures 13 and 14 it propagates downstream. The wavenumber kice in both
cases coincides with that predicted by the dispersion equation (2.15), and it is continuous
near F = 1 (see figure 2). Therefore, one would expect that, even at F > 1, the elastic
wave remains upstream rather than appearing downstream. Such a case is possible from
a mathematical point of view if we recall that the potential flows of an ideal fluid are
reversible, i.e. changing the direction of the inflow velocity has no effect on the results.
Then the elastic wave will propagate upstream and the downstream flow will be waveless.
This is because the flow direction does not appear in the formulation of the boundary-value
problem (2.2)–(2.6). The choice of the ‘correct’ flow direction depends on how the solution
corresponds to real observations. Dias & Vanden-Broeck (2002) studied a generalized
hydraulic fall with a free surface. They found that the radiation condition is satisfied only
for waves propagating downstream.

Finally, let us justify the results shown in figures 13 and 14, for which the velocity is
directed from left to right. For F > 1, a perturbation in the liquid cannot move upstream,
so there is no perturbation of the ice sheet from the liquid, and consequently no wave
upstream is excited.
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Figure 14. The perturbed supercritical ice/water interfaces (blue solid lines), the free surface without an ice
sheet (blue dashed lines) and the scaled strain, exx/eY (red lines) for Froude numbers (a) F = 1.2, (b) F = 1.3
and (c) F = 1.5; ice thickness h/H = 0.01 and obstruction height R/H = 0.2.

The scaled strain, εxx/εY , where εxx = −1
2 hκ is the strain in the floating elastic plate

and εY is the yield strain for the ice estimated as 8 × 10−5, see Brocklehurst, Korobkin
& Părău (2011), is shown in figure 14 by red lines. For the obstacle with R/H = 0.2, the
scaled strain is less than one in magnitude only well above the obstacle. Formally speaking,
the obtained solution predicts that the continuous ice sheet should be broken starting from
X/H = −2. Note that yield strain εY is not used for calculations of the ice elevation. If the
ice is less brittle, which corresponds to a εY greater than our estimate, then the ice could
be not damaged even for the conditions of figure 14. It is understood that the strains in the
ice cover are smaller for smaller obstacles. For given characteristics of the ice cover and
a given speed of the current, we can find the maximal height of the obstacle before the
scaled strain εxx/εY exceeds one. Different characteristics of the elastic plate placed on the
water above an obstacle, such as those used in the laboratory experiments by Pogorelova,
Zemlyak & Kozin (2019), provide different conditions of the plate damage.

The scaled strains in figure 14 can be well approximated by sinusoidal functions
downstream from the obstacle

exx

eY
= A sin

[
kH

x
H

+ δ
]

+ A0, (3.10)
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Figure 15. Wave amplitudes of the interface downstream of the obstruction vs the ice sheet thickness h/H:
the interface (red, left axis), its bending moment (magenta, right axis) and the pressure coefficient (blue, right
axis) for Froude number F = 1.4 and obstruction height R/H = 0.2.

where

A = 19.2, kH = 2.866, δ = 2.42, A0 = 0.30, for F = 1.2,
A = 16.4, kH = 3.087, δ = 2.85, A0 = 0.20, for F = 1.3,
A = 13.8, kH = 3.485, δ = 2.94, A0 = 0.15, for F = 1.5.

⎫⎬
⎭ (3.11)

The non-zero values A0 indicate that the waves downstream the obstacle are nonlinear.
However, the dimensionless wavenumbers kH obtained from the numerical solution satisfy
the dispersion equation (2.15) for linear waves with a relative accuracy less than 0.4 %.
The relative difference was calculated as the difference between the left-hand side and
right-hand side of (2.15) divided by the left-hand side and multiplied by 100 %.

The wave amplitude of the ice/liquid interface, the bending moment and the pressure
coefficient vs the thickness of the ice sheet are shown in figure 15 for Froude number
F = 1.4 and obstruction height R/H = 0.2. In the case of the free surface (h = 0), waves
are absent, or the amplitude is equal to zero. For the case of a very large thickness of the ice
sheet, it behaves like a rigid plate; therefore, waves are absent too. Therefore, there exists a
thickness of the ice sheet for which the wave amplitude reaches its maximal value. It can be
seen in figure 15 that the amplitude of the interface reaches its maximal value at thickness
h/H = 0.033, while the pressure coefficient takes its maximal value at h/H = 0.18. The
bending moment gradually increases in the range h/H < 0.1 presented in the figure. For
a larger ice thickness, computations become challenging because the waves become very
long (see figure 2) and require too many discretization points, for example, for h/H = 0.1
and F = 1.4 λice/H = 16.2.

Throughout the analysis of the results discussed in this section, starting with the
subcritical flows and ending with the channel supercritical flows, it was shown that the
obstruction height plays an important role: it determines the level of flow nonlinearity and
affects the existence of the solution. It was found that, as the Froude number approaches
one of the critical Froude numbers Fcr or F = 1, the obstruction height corresponding
to the onset of existence of the solution becomes smaller. This is shown in figure 16
in the Froude number vs obstruction height plane for two thicknesses of the ice sheet,
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Figure 16. The onset of existence of the steady solution (exists below the line) in the Froude number vs
obstruction height plane; the ice thickness h/H = 0.005 (blue line) and h/H = 0.010 (red line).

h/H = 0.005 and 0.010. The reasons for the restriction of the height of the obstruction
near the Fcr and F = 1 are different: near the critical value Fcr, but Fcr < F the lengths
of the elastic and gravity waves approach each other, and they exhibit a complicated
interaction; near the channel critical Froude number, F = 1, the flow downstream becomes
transcritical, or it becomes subcritical at the wave crest, while the flow is supercritical
upstream; alternatively, it becomes supercritical at the trough, while the flow is channel
subcritical (F < 1) upstream. The larger the height of the obstruction, the more the
Froude number deviates from the critical values. It can also be seen in figure 16 that the
region between the two critical Froude numbers, 1 − Fcr, and the maximal height of the
obstruction becomes smaller.

4. Conclusions

Fully nonlinear solutions of the flexural-gravity waves in a channel covered by an elastic
sheet are obtained. A case study is presented for a channel of constant depth with
a semi-circular obstruction on the bottom. The integral hodograph method is adopted
to solve the boundary-value problem in two steps. At the first step, an expression
for the complex velocity is obtained using the integral formula that solves the mixed
boundary-value problem for the first quadrant, which is the chosen parameter region. At
the second step, the parameter variable of the first quadrant is eliminated by using the
relation between it and the complex potential w. Then, the complex potential w is used
as the independent variable in the expression for the derivative of the mapping function,
which facilitates the computations in the channel at larger distances from the obstruction
in both directions. A system of integral equations in the slope of the bottom and the
velocity magnitude at the interface is obtained using the kinematic and dynamic boundary
conditions. In discrete form, the problem is reduced to a system of nonlinear equations
in the unknown magnitude of the velocity at the interface, which is solved numerically
using a collocation method. The numerical model is verified by computing hydraulic fall
solutions and comparing the results with those by Page & Părău (2014).

According to the dispersion relation, there are three intervals of the Froude number for
which the interface behaves differently. The first corresponds to subcritical flows F < Fcr,

983 A41-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

17
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.177


Nonlinear ice sheet/liquid interaction in a channel

for which the disturbance of the ice/liquid interface caused by the submerged body decays
both in the upstream and in the downstream direction; the second is the ice supercritical
and channel subcritical interval, Fcr < F < 1, which is characterized by the elastic wave
extending to infinity upstream and the gravity wave extending to infinity downstream;
the third interval corresponds to the channel supercritical flows, F > 1, for which the
obstruction generates a hydroelastic wave downstream oscillating about the perturbed
free-surface wave. It is found that for each Froude number there exists a restriction on
the obstruction height for which a converged solution can be obtained.

The most complicated behaviour of the interface was found for the second range of the
Froude number where the two waves caused by the elastic sheet and gravity interact with
each other. The gravity wave is observed only downstream, while the elastic wave extends
to infinity upstream and some distance downstream of the obstruction. The contribution of
the elastic wave to the resulting interface shape decays downstream at a rate that depends
on the ratio λgw/λice, or F/Fcr. For a relatively large ratio of the wavelengths, the elastic
wave decays very fast, and its contribution to the resulting interface can be observed
considering only the behaviour of the bending moment and the pressure coefficient. As the
ratio λgw/λice approaches one, or F/Fcr → 1, the elastic wave weakly decays downstream.
The length and amplitude of the waves are approximately the same; therefore, they exhibit
a strongly nonlinear interaction. In order to obtain a converged solution, the height of the
obstruction should be taken small enough.

For the channel supercritical flows, F > 1, we found a wave caused by the elastic
sheet whose wavenumber agrees with that predicted by the dispersion relation. The
wave oscillates about the perturbed free-surface solution for the case without an elastic
sheet. The amplitude of the wave depends on the thickness of the elastic sheet. It is
obvious that there is no wave downstream for the cases h/H = 0 (the free surface) and
h/H → ∞ (the rigid plate). From the computations, we found the maximal amplitude of
the hydroelastic wave downstream and the thickness of the elastic sheet, h/H ≈ 0.033, to
which it corresponds; the pressure coefficient reaches its maximal value for sheet thickness
h/H ≈ 0.018.

Forbes & Schwartz (1982) found for free-surface flows that there is no solution for
Froude number F = 1. The present solution confirmed this result for the cases of an elastic
sheet and revealed that no solution exists for the critical Froude number Fcr.
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