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Abstract. We consider the standard action of the dihedral group Dn of order
2n on C. This representation is absolutely irreducible and so the corresponding Hopf
bifurcation occurs on C ⊕ C. Golubitsky and Stewart (Hopf bifurcation with dihedral
group symmetry: Coupled nonlinear oscillators. In: Multiparameter Bifurcation Series,
M. Golubitsky and J. Guckenheimer, eds., Contemporary Mathematics 46, Am. Math.
Soc., Providence, R.I. 1986, 131–173) and van Gils and Valkering (Hopf bifurcation
and symmetry: standing and travelling waves in a circular chain. Japan J. Appl. Math.
3, 207–222, 1986) prove the generic existence of three branches of periodic solutions,
up to conjugacy, in systems of ordinary differential equations with Dn-symmetry,
depending on one real parameter, that present Hopf bifurcation. These solutions are
found by using the Equivariant Hopf Theorem. We prove that generically, when n �= 4
and assuming Birkhoff normal form, these are the only branches of periodic solutions
that bifurcate from the trivial solution.

2000 Mathematics Subject Classification. 37G40, 34C23, 34C25.

1. Introduction. When n ≥ 3 the dihedral group Dn of order 2n has one and two-
dimensional irreducible representations. Thus, in systems with Dn-symmetry, Hopf
bifurcation from a Dn-invariant steady-state may occur by eigenvalues of multiplicity
one or two crossing the imaginary axis. In this note we consider generic Dn-Hopf
bifurcation in the double eigenvalue case. Specifically, we consider the standard action
of Dn on V = C ⊕ C (see Section 3). That is, V is the sum of two (isomorphic) absolutely
irreducible representations where Dn acts on C ≡ R2 in the standard way as symmetries
of the regular n-gon. Although Dn has many distinct two-dimensional irreducible
representations there is no loss of generality in making this assumption. Essentially
it is possible to arrange for a standard action by relabeling the group elements and
dividing by the kernel of the action.

Suppose we have a system of ordinary differential equations (ODEs)

ẋ = f (x, λ) (1.1)
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where x ∈ V, λ ∈ R is the bifurcation parameter, and f : V × R → V is smooth and
commutes with Dn:

f (σ · x, λ) = σ · f (x, λ) (σ ∈ Dn, x ∈ V, λ ∈ R)

Note that with these conditions we have f (0, λ) ≡ 0. Assume that (df )(0,0) has an
imaginary eigenvalue, say i, after rescaling time if necessary. Golubitsky and Stewart [2]
and van Gils and Valkering [9]) (see also Golubitsky et al. [4]) prove the generic exi-
stence of three branches of periodic solutions, up to conjugacy, of (1.1) bifurcating
from the trivial solution. These solutions are found by using the Equivariant Hopf
Theorem (Golubitsky et al. [4] Theorem XVI 4.1). They thus correspond to three
(conjugacy classes of) maximal isotropy subgroups of Dn × S1 (acting on V ), each
having a two-dimensional fixed-point subspace. In this note we prove in Theorem 4.2
that if we assume (1.1) satisfying the conditions of the Equivariant Hopf Theorem and
f is in Birkhoff normal form then, when n �= 4 and n ≥ 3, the only branches of small-
amplitude periodic solutions of period near 2π of (1.1) that bifurcate generically from
the trivial equilibrium are the branches of solutions guaranteed by the Equivariant
Hopf Theorem.

The case when n = 4 differs markedly from those other n. Swift [8] studies the
dynamics of all possible square-symmetric codimension one Hopf bifurcations. In
particular, it is shown that periodic solutions with submaximal symmetry bifurcate
from the origin for open regions of the parameter space of the cubic coefficients in the
Birkhoff normal form.

This paper is organized in the following way. In Section 2 we start by reviewing
a few concepts and results related with the general theory of Hopf bifurcation with
symmetry – we follow the approach of Golubitsky et al. [4]. In Section 3 we recall
the conjugacy classes of Dn × S1 (with action on V ) obtained by Golubitsky et al. [4].
For each n, there are five conjugacy classes and three of them correspond to isotropy
subgroups with two-dimensional fixed-point subspaces. The next step is to recall the
general form of the vector field f of (1.1). We assume that f is in Birkhoff normal form
to all orders and so f commutes also with S1. Specifically, we choose coordinates such
that θ · z = eiθz for all θ ∈ S1, z ∈ V . Finally in Section 4 we obtain our main result –
Theorem 4.2. We prove that when n �= 4 and n ≥ 3 generically the only branches of
small-amplitude periodic solutions of (1.1) that bifurcate from the trivial equilibrium
are those guaranteed by the Equivariant Hopf Theorem. The proof of this theorem
relies mostly in the general form of f and the use of Morse Lemma.

2. Background. We say that a system of ODEs

ẋ = f (x, λ), f (0, 0) = 0 (2.2)

where x ∈ Rn, λ ∈ R is the bifurcation parameter and f : Rn × R → Rn is a smooth
function undergoes a Hopf bifurcation at λ = 0 if (df )0,0 has a pair of simple
purely imaginary eigenvalues. Here (df )0,0 denotes the n × n Jacobian matrix of
derivatives of f with respect to the variables xj, evaluated at (x, λ) = (0, 0). Under
additional hypotheses of nondegeneracy, the standard Hopf Theorem implies the
occurrence of a branch of periodic solutions. See for example Golubitsky and
Schaeffer [1] Theorem VIII 3.1. Suppose now that � is a compact Lie group
with a linear action on V = Rn and f commutes with � (or it is �-equivariant):
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f (γ · x, λ) = γ · f (x, λ) for all γ ∈ �, x ∈ V, λ ∈ R. This imposes restrictions on the
corresponding imaginary eigenspace that may complicate the analysis, and in general
the standard Hopf Theorem does not apply directly. We outline the concepts and
results involved in the study of (2.2) in presence of symmetry. We follow Golubitsky
et al. [4] Chapter XVI. See also Golubitsky and Stewart [3] Chapter 4.

We are interested in branches of periodic solutions of (2.2) occurring by Hopf
bifurcation from the trivial solution (x, λ) = (0, 0). Suppose then that (df )(0,0) has
a pair of imaginary eigenvalues ±ωi. It follows that the corresponding imaginary
eigenspace Eωi contains a �-simple subspace W of V ([4] Lemma XVI 1.2). Thus
W ∼= W1 ⊕ W1 where W1 is absolutely irreducible for �, or W is irreducible but non-
absolutely irreducible for �. Moreover, generically the imaginary eigenspace itself is
�-simple and coincides with the corresponding real generalized eigenspace of (df )(0,0).
By rescaling time and choosing appropriate coordinates we may assume that ω = 1
and

(df )0,0|Ei =
(

0 −Idm×m

Idm×m 0

)
≡ J

where 2m = dim Ei. See [4, Proposition XVI 1.4 and Lemma XVI 1.5].
The orbit of the action of � on x ∈ V is defined to be

�x = {γ · x : γ ∈ �}
and the isotropy subgroup of x ∈ V is the subgroup �x of � defined by

�x = {γ ∈ � : γ · x = x}
Points on the same group orbit have isotropy subgroups that are conjugate.

Note that if f as above is �-equivariant and if x(t) is a solution of (2.2), then γ · x(t)
is also a solution of (2.2). In particular, if f vanishes on x ∈ V , then it vanishes on the
orbit �x. Further, if the fixed-point subspace of � ∈ � is

Fix(�) = {x ∈ V : γ · x = x, ∀γ ∈ �}
then

f (Fix (�) × R) ⊆ Fix (�)

We describe now what we mean by a symmetry of a periodic solution x(t) of (2.2).
Suppose that x(t) is 2π -periodic in t. (If not, we can rescale time to make the period
2π , and consequently to change the eigenvalues ±ωi of (df )(0,0) to ±i.) Let γ ∈ �.
Then γ · x(t) is another 2π -periodic solution of (2.2). If γ · x(t) and x(t) intersect then
the uniqueness of solutions implies that the trajectories must be identical. So either
the two trajectories are identical or they do not intersect. Suppose that the trajecto-
ries are identical. Then uniqueness of solutions implies that there exists θ ∈ S1 (we
identify the circle group S1 with R/2πZ) such that

γ · x(t) = x(t − θ )

We call (γ, θ ) ∈ � × S1 a spatio-temporal symmetry of the solution x(t). Denote the
space of 2π -periodic mappings by C2π . Note that S1 acts on C2π . This action of S1 is
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usually called the phase-shift action. The collection of all symmetries of x(t) forms a
subgroup

�x(t) = {(γ, θ ) ∈ � × S1 : γ · x(t) = x(t − θ )}
Assume now the generic hypothesis that L = (df )0,0 has only one pair of

imaginary eigenvalues, say ±i. The method for finding periodic solutions (with period
approximately 2π ) of (2.2) rests on prescribing in advance the symmetry of the solutions
we seek. We can apply a Liapunov-Schmidt reduction preserving symmetries that will
induce a different action of S1 on a finite-dimensional space, which can be identified
with the exponential of L|Ei = J acting on the imaginary eigenspace Ei of L. Moreover
the reduced equation of f commutes with � × S1. See [4] Lemma XXVI 3.2. Now
small-amplitude periodic solutions of (2.2) of period near 2π correspond to zeros of
a reduced equation φ(x, λ, τ ) = 0 where τ is the period-perturbing parameter. To find
periodic solutions of (2.2) with symmetries � is equivalent to find zeros of the reduced
equation restricted to Fix(�). See [4] Chapter XVI Section 4.

Consider (2.2) where f : Rn × R → Rn is smooth and commutes with a compact
Lie group � and make the generic hypothesis that Rn is �-simple. Choose coordinates
so that (df )(0,0) = J where m = n/2. The eigenvalues of (df )0,λ are σ (λ) ± iρ(λ) where
σ (0) = 0 and ρ(0) = 1 ([4] Lemma XVI 1.5). Suppose that

σ ′(0) �= 0. (2.3)

Consider the action of S1 on Rn defined by:

θ · x = eiθJx (θ ∈ S1, x ∈ Rn)

The Equivariant Hopf Theorem [4, Theorem XVI 4.1] states that for each isotropy
subgroup of � × S1 with two-dimensional fixed-point subspace there exists a unique
branch of small-amplitude periodic solutions of (2.2) with period near 2π , having that
symmetry.

A tool for seeking periodic solutions that are not guaranteed by the Equivariant
Hopf Theorem and also for calculating the stabilities of the periodic solutions is to
use a Birkhoff normal form of f : by a suitable coordinate change, up to any given
order, the vector field f can be made to commute with � and S1 (in the Hopf case).
This result is the equivariant version of the Poincaré-Birkhoff Normal Form Theorem
[4, Theorem XVI 5.1]. If we assume that the original vector field is in Birkhoff normal
form (it commutes also with S1) then it is possible to perform a Liapunov-Schmidt
reduction on (2.2) such that the reduced equation φ has the form

φ(v, λ, τ ) = f (v, λ) − (1 + τ )Jv

where τ is the period-scaling parameter ([4] Theorem XVI 10.1).
We finish this section by recalling a few results about invariant theory of compact

groups. As before � is a compact Lie group with a linear action on a finite-dimensional
(real) vector space V . A smooth function f : V → R is said to be �-invariant if
f (γ · x) = f (x) for all γ ∈ �, x ∈ V . The set of all smooth �-invariant functions is
a ring under the usual operations of sum and product. By the Hilbert-Weyl Theorem
([4] Theorem XII 4.2) and its generalization to smooth functions by Schwarz [7] this
ring is finitely generated. The set of all �-equivariant smooth mappings on V is a
module over the ring of the �-invariant smooth functions. The Hilbert-Weyl Theorem
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also implies that there exists a finite-set of �-equivariant polynomial mappings
X1, . . . , Xt that generate the module of the �-equivariant smooth mappings on V
over the ring of the smooth �-invariants (see [4] Theorem XII 5.2 and Poénaru [5]).

3. The action of Dn × S1. In this section we review the standard action of Dn × S1

on C2, the corresponding isotropy lattice and the general form of a Dn × S1-equivariant
bifurcation problem. We follow Golubitsky et al. [4], Chapter XVIII.

Let us assume that � = Dn where n ≥ 3 acts on C ≡ R2 in the standard way as
symmetries of the regular n-gon. This action is generated by

ζ · z = eiζ z where ζ = 2π/n
κ · z = z

Thus the cyclic subgroup Zn of Dn consists of rotations of the plane through the angles
0, ζ, 2ζ, . . . , (n − 1)ζ , the flip κ is reflection in the x-axis and Dn = 〈ζ, κ〉. Suppose now
that � acts on C2 by the diagonal action

γ · (z1, z2) = (γ · z1, γ · z2) (γ ∈ Dn)

Note that C is absolutely irreducible for Dn and so V = C2 is Dn-simple. We choose
coordinates on V = C2 such that the action of Dn is generated by

ζ · (z1, z2) = (eiζ z1, e−iζ z2)

κ · (z1, z2) = (z2, z1)
(3.4)

Suppose we have the system of ODEs (1.1) where f : V × R → V commutes with
Dn and (df )0,0 has eigenvalues ±i. Note that since FixV (Dn) = {0} then f (0, λ) ≡ 0.
Our aim is to study the generic existence of branches of periodic solutions of (1.1) near
the bifurcation point (x, λ) = (0, 0). We assume that f is in Birkhoff normal form, that
is, f also commutes with S1, where we may assume that S1 acts on V by

θ · (z1, z2) = (eiθz1, eiθ z2) (θ ∈ S1) (3.5)

The isotropy lattice. Consider the subgroups of Dn × S1 defined by

Z̃n = {(γ,−γ ) : γ ∈ Zn}, Z2(κ) = {1, κ},
Z2(κ, π ) = {1, (κ, π )}, Z2(κζ ) = {1, κζ } (3.6)

where ζ = 2π/n and Zn = 〈ζ 〉. Given the action of Dn × S1 (n ≥ 3) on V by (3.4) and
(3.5), for each n there are five conjugacy classes of isotropy subgroups. They are listed,
together with their orbit representatives and fixed-point subspaces in Tables 1, 2 and 3.
(See Golubitsky et al. [4], pp. 368–371.) Note that, up to conjugacy, for each n, we have
three isotropy subgroups with two-dimensional fixed-point subspaces. It follows from
the Equivariant Hopf Theorem, that there are (at least) three branches of periodic
solutions occurring generically in Hopf bifurcation with Dn-symmetry.

Invariant theory for Dn × S1. We calculate now the general form of a Dn × S1-
equivariant bifurcation problem for the action of Dn × S1 on C2 generated by (3.4)
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Table 1. Isotropy subgroups of Dn × S1 acting on C2 when n is odd.

Orbit representative Isotropy subgroup Fixed-point subspace

(0, 0) Dn × S1 {(0, 0)}
(a, 0) Z̃n {(w, 0) : w ∈ C}
(a, a) Z2(κ) {(w,w) : w ∈ C}

(a,−a) Z2(κ, π ) {(w,−w) : w ∈ C}
(a, w), w �= ±a, 0 1 C2

Table 2. Isotropy subgroups of Dn × S1 acting on C2 when n ≡ 2 (mod 4). Here Zc
2 = {(0, 0), (π, π )}.

Orbit representative Isotropy subgroup Fixed-point subspace

(0, 0) Dn × S1 {(0, 0)}
(a, 0) Z̃n {(w, 0) : w ∈ C}
(a, a) Z2(κ) ⊕ Zc

2 {(w,w) : w ∈ C}
(a, −a) Z2(κ, π ) ⊕ Zc

2 {(w,−w) : w ∈ C}
(a, w), w �= ±a, 0 Zc

2 C2

Table 3. Isotropy subgroups of Dn × S1 acting on C2 when n ≡ 0 (mod 4). Here Zc
2 = {(0, 0), (π, π )}.

Orbit representative Isotropy subgroup Fixed-point subspace

(0, 0) Dn × S1 {(0, 0)}
(a, 0) Z̃n {(w, 0) : w ∈ C}
(a, a) Z2(κ) ⊕ Zc

2 {(w,w) : w ∈ C}(
a, e2π i/na

)
Z2(κζ ) ⊕ Zc

2 {(w, e2π i/nw
)

: w ∈ C}
(a, w), w �= ±a, 0 Zc

2 C2

and (3.5). Define

m =
{

n if n is odd,

n/2 if n is even
(3.7)

Golubitsky et al. [4] (Proposition XVIII 2.1) prove that if n ≥ 3 and m is as in (3.7),
then the ring of the smooth D3 × S1-invariant functions f : C2 → R is generated by the
polynomials

N = |z1|2 + |z2|2, P = |z1|2|z2|2, S = (z1z2)m + (z1z2)m,

T = i(|z1|2 − |z2|2)((z1z2)m − (z1z2)m) (3.8)

Moreover, every smooth Dn × S1-equivariant function f : C2 → C2 has the form

f (z1, z2) = A
[

z1

z2

]
+ B

[
z2

1z1

z2
2z2

]
+ C

[
zm−1

1 zm
2

zm
1 zm−1

2

]
+ D

[
zm+1

1 zm
2

zm
1 zm+1

2

]
(3.9)

where A, B, C, D are complex-valued Dn × S1-invariant smooth functions.

4. Generic Hopf bifurcation with Dn-symmetry. In Section 3 we show the
conjugacy classes of isotropy subgroups for the action of Dn × S1 on V = C2 (Tables 1,
2 and 3). Up to conjugacy, for each n ≥ 3, we have three isotropy subgroups with two-
dimensional fixed-point subspaces. It follows from the Equivariant Hopf Theorem,
that there are (at least) three branches of periodic solutions corresponding to each
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one of these isotropy subgroups of Dn × S1 occurring in generic Hopf bifurcation
with Dn-symmetry. We prove in Theorem 4.2 that, when n �= 4, generically these are
the only branches of periodic solutions obtained through bifurcation from the trivial
equilibrium in bifurcation problems with Dn-symmetry (assuming Birkhoff normal
form).

Suppose that the function f : V × R → V is Dn × S1-equivariant and smooth, and
satisfies the conditions of the Equivariant Hopf Theorem. Thus we assume that

(df )0,λ(z) = µ(λ)z (4.10)

where µ is a smooth function from R to C such that

µ(0) = i, Re(µ′(0)) �= 0 (4.11)

From [4] Theorem XVI 10.1 the small-amplitude periodic solutions of the equation

ż = f (z, λ) (4.12)

of period near 2π are in one-to-one correspondence with the zeros of the equation

g(z, λ, τ ) = 0 (4.13)

where g = f − (1 + τ )iz and τ is the period-scaling parameter. From (3.9) the general
form of f = (f1, f2) is

f1(z1, z2, λ) = µ(λ)z1 + Az1 + Bz2
1z1 + Czm−1

1 zm
2 + Dzm+1

1 zm
2

f2(z1, z2, λ) = µ(λ)z2 + Az2 + Bz2
2z2 + Czm

1 zm−1
2 + Dzm

1 zm+1
2

(4.14)

where A, B, C, D are smooth Dn × S1-invariant functions from V × R to C (thus they
may depend on λ) and m is defined by (3.7). Since we are assuming (4.10) it follows
that A(0, λ) ≡ 0. Let us consider g as in (4.13). Thus g has form

g1(z, λ, τ ) = (ν + A) z1 + Bz2
1z1 + Czm−1

1 zm
2 + Dzm+1

1 zm
2

g2(z, λ, τ ) = (ν + A) z2 + Bz2
2z2 + Czm

1 zm−1
2 + Dzm

1 zm+1
2

(4.15)

where ν = µ(λ) − (1 + τ )i.

LEMMA 4.1. Consider f as in (4.14). Let (z1, z2) = (r1eiφ1 , r2eiφ2 ) with r1, r2 ∈ R
and let φ = φ2 − φ1. Then we can write f = [ f1

f2
] as [ r1eiφ1 h(r1,r2,φ,λ)

r2eiφ2 h(r2,r1,−φ,λ) ] where h is a smooth
function from R4 to C.

Proof. Let N, P, S and T be as in (3.8). Taking (z1, z2) = (r1eiφ1 , r2eiφ2 ) and φ =
φ2 − φ1 we can write each of the invariant polynomials in the form

N = r2
1 + r2

2, P = r2
1r2

2, S = 2rm
1 rm

2 cos(mφ), T = 2rm
1 rm

2 sin(mφ)
(
r2

1 − r2
2

)
Recall now (4.14) and denote by

X2 =
[

z2
1z1

z2
2z2

]
, X3 =

[
zm−1

1 zm
2

zm
1 zm−1

2

]
, X4 =

[
zm+1

1 zm
2

zm
1 zm+1

2

]
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Then

Xj =
[

r1eiφ1 hj(r1, r2, φ)

r2eiφ2 hj(r2, r1,−φ)

]
(4.16)

where

h2(r1, r2, φ) = r2
1, h3(r1, r2, φ) = rm−2

1 rm
2 (cos(mφ) + i sin(mφ)),

h4(r1, r2, λ) = rm
1 rm

2 (cos(mφ) − i sin(mφ))
(4.17)

It follows the result if we consider (4.14). �
THEOREM 4.2. Consider (4.12) with f as in (4.14) where A(0, λ) ≡ 0 and µ : R → C is

smooth and satisfies (4.11). Suppose that n �= 4 and n ≥ 3. Then, generically, the system
(4.12) admits only branches of periodic solutions that bifurcate from (0, 0) corresponding
to the isotropy subgroups of Dn × S1 with two-dimensional fixed-point subspaces.

Proof. We have that FixV (Dn) = {0}, consequently f (0, λ) ≡ 0. Therefore (0, λ) is
an equilibrium point of (4.12) for all values of λ. Since we are assuming that (df )0,λ(z) =
µ(λ)z, where µ(0) = i and Re (µ′ (0)) �= 0, the stability of this equilibrium changes when
λ crosses zero.

The space V is Dn-simple and we are assuming (4.10) and (4.11) and so the
conditions of the Equivariant Hopf Theorem are satisfied. Therefore, for each isotropy
subgroup � of Dn × S1 with a two-dimensional fixed-point subspace, the system (4.12)
admits a unique branch of periodic solutions with symmetry � by bifurcation from
(z, λ) = (0, 0). Moreover, this corresponds to a branch of zeros of (4.13) with the
corresponding symmetry. We study now the existence of branches of periodic solutions
of (4.12) with submaximal symmetry that bifurcate from (0, 0). We begin by looking
for branches of zeros (z1, z2) of (4.15) with z1z2 �= 0. These satisfy

g1(z, λ, τ )
z1

= 0

g2(z, λ, τ )
z2

= 0
(4.18)

Taking (z1, z2) = (r1eiφ1 , r2eiφ2 ) and φ = φ2 − φ1, by Lemma 4.1 we can write f in the
form [

r1eiφ1 h(r1, r2, φ, λ)

r2eiφ2 h(r2, r1,−φ, λ)

]

and so (4.18) can be written as{
ν + A + Br2

1 + Crm−2
1 rm

2 (cos(mφ) + i sin(mφ)) + D(r1r2)m(cos(mφ) − i sin(mφ)) = 0

ν + A + Br2
2 + Crm

1 rm−2
2 (cos(mφ) − i sin(mφ)) + D(r1r2)m(cos(mφ) + i sin(mφ)) = 0

(4.19)

Taking the difference of the equations of (4.19) we obtain

B
(
r2

1 − r2
2

) + C (r1r2)m−2 (
cos(mφ)

(
r2

2 − r2
1

) + i sin(mφ)
(
r2

1 + r2
2

))
− 2iD (r1r2)m sin (mφ) = 0 (4.20)
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and so the real and imaginary parts of (4.20) should verify
(
r2

2 − r2
1

)
(CR(r1r2)m−2 cos(mφ) − BR) + sin(mφ)(r1r2)m−2

(
2DI r2

1r2
2 − CI

(
r2

1 + r2
2

)) = 0(
r2

2 − r2
1

)
(CI (r1r2)m−2 cos(mφ) − BI ) + sin(mφ)(r1r2)m−2

(
CR

(
r2

1 + r2
2

) − 2DRr2
1r2

2

) = 0

(4.21)

Here we use the notation BR = Re(B), BI = Im(B), . . . . Thus B = BR + iBI , . . . , where
BR, BI , . . . , are smooth Dn × S1-invariant functions from V × R to R.

Assume the generic hypothesis

BR(0) �= 0

where BR(0) denotes the function BR evaluated at the origin. Recall that n ≥ 3 and
n �= 4. By (3.7) it follows that m − 2 ≥ 1 and so in a sufficiently small neighborhood of
the origin the system (4.21) can be writen asr2

2 − r2
1 = sin(mφ)(r1r2)m−2

(
CI

(
r2

1 + r2
2

) − 2DI r2
1r2

2

)
CR(r1r2)m−2 cos(mφ) − BR

sin(mφ)
(
(BI CI + BRCR)

(
r2

1 + r2
2

) + P(r1, r2, λ, m)
) = 0

(4.22)

where

P(r1, r2, λ, m) = (r1r2)m−2 cos(mφ)
(
2(CI DI + CRDR)r2

1r2
2 − (

C2
R + C2

I

)(
r2

1 + r2
2

))
−2r2

1r2
2(BRDR + BI DI )

Assume the generic hypothesis

(BI CI + BRCR)(0) �= 0

where (BI CI + BRCR)(0) denotes the function BI CI + BRCR evaluated at the origin.
By Morse Lemma (see for example Poston and Stewart [6] Theorem 4.2), the equation

(BI CI + BRCR)
(
r2

1 + r2
2

) + P(r1, r2, λ, m) = 0

in a sufficiently small neighborhood of the origin admits only the trivial solution
(r1, r2) = (0, 0). Recall (3.7) and note that we are assuming n ≥ 3 and n �= 4. Thus
m − 2 ≥ 1. It follows that the system (4.22) in a sufficiently small neighborhood of the
origin admits only branches of solutions (containing (r1, r2) = (0, 0) and) satisfying{

sin(mφ) = 0

r2
1 = r2

2

(4.23)

Thus φ = kπ/m for some integer k. We show below that these solutions correspond
to the branches of periodic solutions of (4.12) guaranteed by the Equivariant Hopf
Theorem. Note that the case n = 4 and so m − 2 = 0 is special. The existence of
branches of periodic solutions of (4.12) with submaximal symmetry that bifurcate
from (0, 0) in a generic Hopf bifurcation with D4-symmetry is proved by Swift [8].

We show now the correspondence between the solutions of (4.23) and the periodic
solutions of (4.12).
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(i) We begin with the case when n is odd. We recall that

Fix (Z2(κ)) = {(w,w) : w ∈ C}
(see Table 1). It follows that n + 1 ≥ 4 is even and so k(1 + n)π/n ∈ Zn. Moreover,

e
ik(1+n)π

n ·
(
w, e

2ikπ
n w

)
=

(
we

ik(1+n)π
n , we

2ikπ
n − ik(1+n)π

n

)
and

2kπ

n
− k(1 + n)π

n
− k(1 + n)π

n
= −2kπ

So, periodic solutions of (4.12) with symmetry (conjugate to) Z2(κ) correspond to zeros
of (4.13) where r1 = r2 and φ = 2kπ/n, k ∈ Z (or r1 = −r2 and φ = 2kπ/n − π, k ∈
Z). In the case of Z2(κ, π ), we have

Fix(Z2(κ, π )) = {(w,−w) : w ∈ C}
Observe that if n ≡ 3 (mod 4) then

e
(2k+1)(1+n)π i

2n ·
(
w, e

(2k+1)iπ
n w

)
=

(
we

(2k+1)(1+n)π i
2n , we

(2k+1)π i
n − (2k+1)(1+n)π i

2n

)
where

(2k + 1)π
n

− (2k + 1)(1 + n)π
2n

− (2k + 1)(1 + n)π
2n

= −(2k + 1)π

and if n ≡ 1 (mod 4) then

e
(2k+1)(1−n)π i

2n ·
(
w, e

(2k+1)iπ
n w

)
=

(
we

(2k+1)(1−n)π i
2n , we

(2k+1)π i
n − (2k+1)(1−n)π i

2n

)
where

(2k + 1)π
n

− (2k + 1)(1 − n)π
2n

− (2k + 1)(1 − n)π
2n

= (2k + 1)π

So, periodic solutions of (4.12) with symmetry (conjugate to) Z2(κ, π ) correspond
to zeros of (4.13) where r1 = r2 and φ = (2k + 1)π/n, k ∈ Z (or r1 = −r2 and φ =
(2k + 1)π/n − π, k ∈ Z).
(ii) We consider now the case where n ≡ 2 (mod 4). We recall that

Fix (Z2(κ) ⊕ Zc
2) = {(w,w) : w ∈ C}, Fix (Z2(κ, π ) ⊕ Zc

2) = {(w,−w) : w ∈ C}
(see Table 2). We prove, by the same method used in (i), that periodic solutions of (4.12)
with symmetry (conjugate to) Z2(κ) ⊕ Zc

2 correspond to zeros of (4.13) where r1 = r2

and φ = 2kπ/m, k ∈ Z, and periodic solutions of (4.12) with symmetry (conjugate to)
Z2(κ, π ) ⊕ Zc

2 correspond to zeros of (4.13) where r1 = r2 and φ = (2k + 1)π/m, k ∈ Z.
(iii) Finally we study the case where n ≡ 0 (mod 4) and n �= 4. We recall that

Fix (Z2(κ) ⊕ Zc
2) = {(w,w) : w ∈ C}, Fix (Z2(κζ ) ⊕ Zc

2) = {(w, e2π i/nw) : w ∈ C}
(see Table 3). We prove, by the same method used in (i), that periodic solutions of (4.12)
with symmetry (conjugate to) Z2(κ) ⊕ Zc

2 correspond to zeros of (4.13) where r1 = r2
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and φ = 2kπ/m, k ∈ Z, and that periodic solutions of (4.12) with symmetry (conjugate
to) Z2(κζ ) ⊕ Zc

2 correspond to zeros of (4.13) where r1 = r2 and φ = (2k + 1)π/

m, k ∈ Z.
We finish the proof considering the cases where z1 = 0 and z2 �= 0. Let N, P, S

and T be as in (3.8). In that case N = |z2|2, P = S = T = 0 and (4.15) takes the form{
g1(z, λ, τ ) = 0
g2(z, λ, τ ) = (ν + A) z2 + Bz2

2z2

In this case we obtain zeros corresponding to a branch of periodic solutions with
symmetry conjugate to Z̃n. If z2 = 0 and z1 �= 0 the situation is similar to this one. �

REMARK 4.3. From the above proof, the nondegeneracy conditions (referred to
in the word “generically”) in Theorem 4.2 that guarantee that the only branches of
periodic solutions with symmetry corresponding to isotropy subgroups of Dn × S1

with two-dimensional fixed-point subspaces can bifurcate at λ = 0 for the equations
(4.12) with f as in (4.14) are

BR(0) �= 0, (BI CI + BRCR) (0) �= 0
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