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Abstract
Maternal obesity may compromise the micronutrient status of the offspring. Vitamin A (VA) is an essential micronutrient during neonatal development. Its
active metabolite, retinoic acid (RA), is a key regulator of VA homeostasis, which also regulates adipose tissue (AT) development in obese adults. However,
its role on VA status and AT metabolism in neonates was unknown and it was determined in the present study. Pregnant Sprague-Dawley rats were ran-
domised to a normal fat diet (NFD) or a high fat diet (HFD). From postnatal day 5 (P5) to P20, half of the HFD pups received oral RA every 3 d (HFDRA
group). NFD pups and the remaining HFD pups (HFD group) received placebo. Six hours after dosing on P8, P14 and P20, n 4 pups per group were
euthanised for different measures. It was found that total retinol concentration in neonatal liver and lung was significantly lower in the HFD group than the
NFD group, while the concentrations were significantly increased in the HFDRA group. The HFD group exhibited significantly higher body weight (BW)
gain, AT mass, serum leptin and adiponectin, and gene expression of these adipokines in white adipose tissue compared with the NFD group; these mea-
sures were significantly reduced in the HFDRA group. BAT UCP2 and UCP3 gene expression were significantly higher in pups receiving RA. In conclu-
sion, repeated RA treatment during the suckling period improved the tissue VA status of neonates exposed to maternal obesity. RA also exerted a
regulatory effect on neonatal obesity development by reducing BW gain and adiposity and modulating AT metabolism.
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Introduction

Presently, maternal overweight and obesity affect 48 % of
pregnancies in the United States and 38⋅9 million women glo-
bally(1,2). In addition, ∼40 % of women in the United States
gain an excessive amount of weight during pregnancy(3). It
has been well known that maternal obesity and excessive ges-
tational weight gain may programme obesity in the offspring
and result in adverse consequences for neonatal and long-term
health and well-being, including the micronutrient status of the
offspring(4,5).

Vitamin A (VA, retinol) is a key micronutrient that is
required during neonatal development for innate and adaptive
immunity, haematopoiesis, and growth and differentiation of
many types of cells(6,7). VA-deficient infants have higher mor-
tality and are at increased risk of infectious diseases(8,9). In
addition, VA is essential for normal postnatal development
of the lung, among other crucial functions(10,11). Significantly
lower serum concentrations of retinol have been reported in
adult obese humans and rodents compared with their normal-
weight counterparts(12–16). Our previous study showed that
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maternal diet-induced obesity was associated with a decreased
serum concentration of retinol in neonatal rats(17). Decreased
VA concentrations in tissues, including the liver, adipose,
lungs, pancreas and kidneys, were reported in diet-induced
obese mice v. normal mice in two previous studies, leading
the authors to conclude that, via an unknown mechanism,
there was a tissue deficiency of VA associated with obes-
ity(18,19). Together, these evidence indicated potentially altered
neonatal VA status and metabolism associated with maternal
obesity.
Retinoic acid (RA), the active metabolite of VA, is known

to play significant roles in VA homeostasis and status via
regulating the expression of genes involved in VA metabol-
ism. Its target genes include lecithin:retinol acyltransferase
(LRAT) and RA hydroxylases of the CYP26 family of cyto-
chrome P450 genes, which encode for the enzymes that
catalyse the esterification of retinol for storage and the oxi-
dation of RA, respectively(20). The mRNA expression of
LRAT and CYP26 were reported to be down-regulated in
VA-deficient tissues, while the expression was rapidly
up-regulated when RA was administered(21,22). In neonatal
rats, acute RA treatment was found to significantly increase
the retinol uptake and esterification in the lung, and there-
fore its total retinol concentration(23). Despite these previous
findings and knowledge, the effect of RA on VA status of
neonates in an obesogenic environment, however, has
never been studied.
Meanwhile, RA has been reported to be a key regulator of

adipose tissue (AT) development in adult obese models(24).
Previous research reported that the ‘machinery’ required
for the molecular action of RA, including retinoic acid recep-
tors (RARs) and retinoid X receptors (RXRs), are all
expressed in the AT(25). In adult rodents, RA was shown
to inhibit adipogenesis and stimulate angiogenesis and apop-
tosis in white adipose tissue (WAT), and to increase the
adaptive thermogenesis of brown adipose tissue (BAT) via
regulating the expression of uncoupling proteins
(UCPs)(26–29). Our previous study indicated that supple-
menting the maternal diet with VA during lactation signifi-
cantly reduced the adiposity and modulated serum
adipokines and lipids in neonatal and weanling rats from
dams consuming a high fat diet (HFD)(30). However, no
study has evaluated the effect of direct RA administration
on the AT development of neonates affected by maternal
diet-induced obesity.
Therefore, the present study had a 2-fold objective. The

primary aim was to determine the effects of oral RA treat-
ments on VA status of rat offspring exposed to maternal
diet-induced obesity. It was hypothesised that RA would
increase VA concentrations that were reduced by maternal
HFD consumption in key neonatal organs. The secondary
aim was to assess the effects of RA on the adiposity and
AT metabolism of the neonates. We hypothesised that RA
would reduce the body weight (BW) gain and adiposity of
neonatal rats exposed to maternal HFD consumption,
with an influence on the adipokines and lipids profile. As
a single oral dose of RA was reported in previous research
to have a transient effect on the metabolism of neonatal

rats, RA was administered for repeated times for a poten-
tially sustained effect(23).

Materials and methods

Animal experiment

The procedure for this experiment was approved by the
Institutional Animal Care and Use Committee of the
University of Alabama. Five pregnant Sprague-Dawley rats
were purchased from Charles River Laboratories
(Wilmington, MA, USA) and arrived on their second day of
gestation. Rats were housed individually with a 12 h light/
dark cycle with free access to food and water. After a 3-d accli-
mation, rats were randomised to either a normal fat diet
(NFD = 25 % kcal from fat) or an HFD (50 % kcal from
fat) both with a marginal level of VA at 0⋅35 retinol equiva-
lents/kg. The diets were purchased from Research Diets,
Inc (New Brunswick, NJ, USA) (Table 1). After delivery,
half of the pups delivered by HFD mothers received oral
all-trans-RA (Sigma-Aldrich, MO, USA) treatments, while the
other half and pups of the NFD mothers received canola oil
as placebo. The three groups of pups (n 12 per group) were
designated as NFD, HFD and HFDRA, respectively.
The schematic diagram of the study design is shown in

Fig. 1. On postnatal day 5 (P5) and P8, respectively,
HFDRA pups received an oral RA dose via feeding pipette
at 4 μg/g BW. HFD pups and NFD pups both received

Table 1. Diet composition for Sprague-Dawley rats fed normal or high-fat

purified diet

Ingredient

Normal fat dieta High fat dietb

g kcal g kcal

Casein 200 800 200 800

L-Cystine 3 12 3 12

Corn starch 353⋅8 1415 101⋅2 405

Maltodextrin 125 500 125 500

Sucrose 68⋅8 275 68⋅8 275

Cellulose 50 0 50 0

Soyabean oil 25 225 25 225

Lard 87⋅7 789 200 1800

Mineral mix, S10026 10 0 10 0

Dicalcium phosphate 13 0 13 0

Calcium carbonate 5⋅5 0 5⋅5 0

Potassium citrate 16⋅5 0 16⋅5 0

Vitamin mix, V10001 10 40 10 40

Choline bitartrate 2 0 2 0

Food colour 0⋅05 0 0⋅05 0

Total

g% kcal% g% kcal%

Fat 12 25 27 50

Carbohydrate 57 55 37 30

Protein 21 20 24 20

Total − 100 − 100

kcal/g 4⋅2 − 4⋅9 −
Diet composition for Sprague-Dawley rats fed normal or high-fat purified diets.

Formulation details are provided in grams, g, and kilocalories, kcal.
a Research diets (rodent diet with 25 % kcal fat, D18100206).
b Research diets (rodent diet with 50 % kcal fat, D18100207).
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canola oil at the same dosage. Six hours after the dose
administration on P8, n 4 pups per group were euthanised.
Blood, liver, visceral WAT (WAT surrounding the
intra-abdominal organs), interscapular BAT, lung and brain
were collected. On P11 and P14, remaining pups in each
group (n 8 per group) received their respective treatment.
Six hours after the administration on P14, n 4 pups per
group were euthanised for tissue collection. Similar dosing
and euthanisation procedures were conducted on P17 and
P20. To sum up, pups euthanised at P8, P14 and P20
received two, four and six doses of RA, respectively. Pups’
BW and the weights of WAT and BAT were recorded.
Pups’ BW gain was calculated as the BW at the euthanisation
time minus that at P4.

Serum and tissue analysis

Serum and tissue total retinol concentration. The
concentration of total retinol (esterified + unesterified retinol)
in serum, liver, lung, WAT, BAT and brain was analysed by
ultra-high-performance liquid chromatography (UPLC) with
a photodiode array detector and HSS T3 (1⋅8 μm, 2⋅1
mm× 100 mm) column (Acquity UPLC System; Waters,
Milford, MA) following our previous method(17). Briefly,
100 μl of serum sample or 0⋅1 g of tissue sample was added
to or homogenised with 1⋅9 ml of ethanol and incubated at
room temperature for 1 h. Saponification was achieved by
adding 100 μl potassium hydroxide and 100 μl of 20 %
pyrogallol to samples and being incubated in 55°C water
bath for 30 min. After cooling down, 4 ml of hexane (with
0⋅1 % butylated hydroxytoluene) and 2 ml of dd H2O were
added. After centrifugation for 15 min, the upper phase was
collected, an internal standard (retinyl acetate, Sigma-Aldrich,
St. Louis, MO) was added, and the solvent was dried under
nitrogen. The dried sample was rinsed by hexane and
reconstituted with 100 μl of acetonitrile:methanol (85:15, v/
v). Possible precipitation was removed by centrifugation.
Ten microlitres of the final sample was injected onto the
HSS T3 column for analysis.

Serum lipids and adipokines. Serum samples from P14 and
P20 were analysed for concentrations of lipids and adipokines.
Serum samples from P8 were not adequate for the analyses.
Concentrations of total cholesterol, triglycerides, HDL-C and
LDC-C were measured using a Stanbio Sirus analyzer.
Adiponectin concentration was assessed using a Millipore Rat
Adiponectin ELISA (Billerica, MA) and leptin was measured
using a Millipore Rat Leptin ELISA (Billerica, MA).

Leptin, Adiponectin and UCPs mRNA expression. For the
mRNA determination of leptin and adiponectin in the WAT
and that of UCP1, UCP2 and UCP3 in the BAT, samples
from P20 were used, but not those from P8 or P14 due to
inadequate tissue amount. Total RNA was extracted from
tissue samples using Trizol (Invitrogen, Waltham, MA) and
cDNA was prepared by using cDNA synthesis kit
(QuantaBio, Beverly, MA). The equivalent of 1 μg RNA, as
cDNA, was used for real-time qPCR analysis. The primers
designed to detect the mRNA expression were as follows:
Leptin (NM_013076.3), 5′-TCTCCGAGACCTCCTCCATCT-3′

(forward), and 5′-TTCCAGGACGCCATCCAG-3′ (reverse);
Adiponectin (NM_144744.3), 5′-AAAATGTGGACCAGGCC
TCT-3′ (forward) and 5′-TTGTCCCCTTCCCCATACAC-3′

(reverse); UCP-1 (NM_012682.2), 5′-AGAAGGATTGCC
GAAACTGTAC-3′ (forward) and 5′-AGATCTTGCTTCCC
AAAGAGG-3′ (reverse); UCP-2 (NM_019354.3), 5′-CCACA
GCCACCGTGAAGTT-3′ (forward) and 5′-CGGACTTTGG
CGGTGTCTA-3′ (reverse); UCP-3 (NM_013167.2), 5′-TG
CTGAGATGGTGACCTACG-3′ (forward) and 5′-AGTG
ACAGGGGAAGTTGTCAG-3′ (reverse). β-actin was used as
the housekeeping gene. The 2−ΔΔCT method was used to
compare the relative mRNA expression among groups(31).

Statistical analysis

Data are reported as means ± standard error of mean (SEM).
Differences among groups at each sampling time, P-value <
0⋅05, were determined by using one-way ANOVA followed by

Fig. 1. Schematic diagram of experimental procedures.
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Bonferroni post-test in GraphPad Prism software (San Diego, CA,
USA).

Results

Body weight and adiposity

A significantly higher BW in rat mothers consuming the HFD
compared with those fed the NFD was noted from P12 till the
end of the study (P< 0⋅05; Fig. 2(a)). As shown in Fig. 2(b)–(d),

at P8 and P14, no significant difference in BW gain, WAT mass
and BAT mass of pups was noted among groups. At P20, all
three measurements were significantly higher in the HFD
group than in the NFD group (BW gain: 59⋅05 ± 2⋅57 g v.
49⋅63 ± 1⋅54 g, P< 0⋅001; WAT mass: 1⋅03 ± 0⋅10 g v. 0⋅59 ±
0⋅06 g, P< 0⋅0001; BAT mass: 0⋅51 ± 0⋅04 g v. 0⋅33 ± 0⋅02 g,
P< 0⋅0001), confirming that maternal HFD consumption during
gestation and lactation could result in a significantly higher BW
gain and excessive adiposity in the young offspring. At P20,
both the BW gain and the WAT mass were significantly
decreased in the HFDRA group compared with the HFD
group (BW gain: 50⋅15 ± 2⋅42 g v. 59⋅05 ± 2⋅57 g, P< 0⋅01;
WAT mass: 0⋅89 ± 0⋅04 g v. 1⋅03 ± 0⋅10 g, P< 0⋅05), showing
the effects of RA treatments on slowing the BW gain and redu-
cing the adiposity. There was no significant difference noted in
the BAT mass between the HFDRA and the HFD group
(0⋅46 ± 0⋅02 g v. 0⋅51 ± 0⋅04 g, P> 0⋅05).

Serum and tissue vitamin A

The total retinol concentration in pups’ serum, liver, lung,
WAT, BAT and brain are shown in Fig. 3. Comparing between
the NFD and the HFD group, the latter exhibited a signifi-
cantly lower total retinol concentration in the liver at P20
(0⋅025 ± 0⋅002 μmol/g v. 0⋅040 ± 0⋅002 μmol/g, P < 0⋅05),
in the lung at P8 (0⋅0014 ± 0⋅0002 μmol/g v. 0⋅0029 ±
0⋅0003 μmol/g, P < 0⋅01), in the BAT at P20 (0⋅0008 ±
0⋅00002 μmol/g v. 0⋅0014 ± 0⋅0002 μmol/g, P < 0⋅05) and
in the brain at P8 and P20 (P8: 0⋅00003 ± 0⋅000005 μmol/g
v. 0⋅00006 ± 0⋅000007 μmol/g, P < 0⋅05; P20: 0⋅00004 ±
0⋅000004 μmol/g v. 0⋅00007 ± 0⋅00001 μmol/g, P< 0⋅05).
The following differences were observed when comparing

the HFD and the HFDRA group. At both P8 and P20, the
serum total retinol was significantly lower in the HFDRA
than the HFD group (P8: 0⋅58 ± 0⋅07 μmol/l v. 0⋅90 ± 0⋅12
μmol/l, P < 0⋅05; P20: 0⋅38 ± 0⋅06 μmol/l v. 0⋅730 ± 0⋅08
μmol/l, P< 0⋅05), while the liver total retinol was significantly
higher in the HFDRA group (P8: 0⋅060 ± 0⋅005 μmol/g v.
0⋅050 ± 0⋅004 μmol/g, P < 0⋅05; P20: 0⋅034 ± 0⋅003 μmol/g
v. 0⋅025 ± 0⋅002 μmol/g, P < 0⋅05). RA treatment also signifi-
cantly increased the total retinol concentration in the lung at all
three sampling times (P8: 0⋅0035 ± 0⋅0005 μmol/g v. 0⋅0014
± 0⋅0002 μmol/g, P < 0⋅05; P14: 0⋅0090 ± 0⋅0017 μmol/g v.
0⋅0041 ± 0⋅0012 μmol/g, P < 0⋅05; P20: 0⋅013 ± 0⋅0025
μmol/g v. 0⋅0053 ± 0⋅0006 μmol/g, P < 0⋅05) and that in
the brain at P20 (0⋅00007 ± 0⋅000006 μmol/g v. 0⋅00004 ±
0⋅000004 μmol/g, P < 0⋅01), restoring the concentrations to
those in the NFD group.

Serum leptin and adiponectin

At P20, serum leptin and adiponectin concentrations (Fig. 4(a),
(b)) were both significantly higher in the HFD than the NFD
group (leptin: 28⋅64 ± 1⋅15 ng/ml v. 12⋅14 ± 1⋅99 ng/ml, P <
0⋅0001; adiponectin: 19⋅11 ± 2⋅24 μg/ml v. 12⋅54 ± 0⋅62 μg/
ml, P < 0⋅05). The comparison between the HFDRA and the
HFD group indicated that RA treatment significantly reduced
the concentrations of both (leptin: 20⋅18 ± 2⋅70 ng/ml v.

Fig. 2. Maternal body weight from gestational day 5 to postnatal day 20 (a),

the body weight gain (b), visceral white adipose tissue mass (c) and brown adi-

pose tissue mass (d) of rat pups at postnatal day 8, postnatal day 14 and post-

natal day 20. The body weight gain of rat pups was calculated as the body

weight at the given time point minus that at postnatal day 4. Bars show means

± SEM. The maternal body weight was compared between NFD and HFD at

individual time points using Student’s t test; significant differences were indi-

cated by *, n 2 or 3 per group, P < 0⋅05. The body weight gain and mass of

adipose tissues of rat pups were compared between different groups at individ-

ual time points using one-way ANOVA followed by Bonferroni post-test; signifi-

cant differences were indicated by different letters, a′′ > b′′ > c′′, n 4 per group,

P < 0⋅05.

4

journals.cambridge.org/jns
ht

tp
s:

//
do

i.o
rg

/1
0.

10
17

/jn
s.

20
22

.5
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jns.2022.53


28⋅64 ± 1⋅15 ng/ml, P< 0⋅01; adiponectin: 15⋅67 ± 2⋅59 μg/ml
v. 19⋅11 ± 2⋅24 μg/ml, P< 0⋅05). The pattern of changes in
serum leptin was also observed at P14.

Serum lipids

At P20, serum triglycerides concentration (Fig. 4(c)) was
found to be significantly higher in the HFD group than the
NFD group (400⋅75 ± 57⋅56 mg/dl v. 206 ± 24⋅46 mg/dl,
P < 0⋅05). The concentration was even higher in the
HFDRA group as compared with the HFD group (1104 ±
297 mg/dl v. 400⋅75 ± 57⋅56 mg/dl, P< 0⋅05). A similar
trend was noted at P14, but the difference between the
HFDRA and the HFD group did not reach statistical

significance. There was no significant difference in serum
total cholesterol, HDL-C and LDL-C observed among groups
(data not shown).

Leptin and adiponectin mRNA expression in the WAT

Consistently with the results on serum leptin and adiponectin,
the leptin and adiponectin mRNA expression in WAT at P20
(Fig. 5) were both higher in the HFD group than in the NFD
group, although it did not reach statistical significance for adi-
ponectin expression. The HFDRA group showed a reduced
trend of leptin mRNA expression while exhibiting a signifi-
cantly lower adiponectin mRNA level in the WAT compared
with the HFD group (P < 0⋅05).

Fig. 3. Concentrations of total retinol in serum (a), liver (b), lung (c), visceral white adipose tissue (d), brown adipose tissue (e) and brain (f) of rat pups at postnatal

day 8, postnatal day 14 and postnatal day 20. Bars show means ± SEM, n 4 per group. One-way ANOVA followed by a Bonferroni post-test was conducted at individual

time point. Different letters at each time point indicate statistically significant differences, a > b, a′ > b′, a′′ > b′′ > c′′, P < 0⋅05. Note: visceral white adipose tissue sam-

ple collected at P8 was not adequate for the analysis, and therefore the data are missing.

5

journals.cambridge.org/jns
ht

tp
s:

//
do

i.o
rg

/1
0.

10
17

/jn
s.

20
22

.5
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jns.2022.53


UCPs mRNA expression in the BAT

The mRNA expression of UCP1, UCP2 and UCP3 was mea-
sured using BAT samples from P20 (Fig. 6). No significant
difference in UCP1 mRNA expression was observed among
the three groups. However, the HFDRA group showed a sig-
nificantly higher UCP2 mRNA expression than the NFD
group (P < 0⋅05), while the UCP3 mRNA expression in the
HFDRA group was significantly higher than that in the
other two groups (P < 0⋅05).

Discussion

To the authors’ knowledge, the present study was the first to
determine the effects of RA on the VA status and AT metab-
olism of neonatal rats in an obesogenic environment.

RA improved the compromised tissue VA status in neonates
caused by maternal HFD consumption

We measured the total retinol concentration in serum and sev-
eral key organs in the neonatal rats to determine how maternal
HFD consumption and RA treatment may affect their VA sta-
tus, which was the primary aim of the study. Neonatal rats
were nursed by dams consuming a marginal VA diet to reduce
the transplacental transfer of VA and the concentration of VA
in the dams’ colostrum and milk(32). The serum total retinol
concentration (Fig. 3(a)) indicated that rat pups in the NFD
and the HFD group had an adequate serum VA level accord-
ing to the criteria for adults (serum retinol: 0⋅7–1⋅75 μmol/l),
which is similar to that in newborn human infants as previ-
ously reported(33,34). No significant difference in serum total
retinol was noted between these two groups, albeit the fact
that significant differences in liver and lung total retinol were
noted, indicating the well-known homeostatic control of
serum VA over a wide range of VA status.
The liver total retinol concentration (Fig. 3(b)) in the NFD

group indicated a marginal VA status of the control rat pups
(liver VA store: 0⋅035–0⋅07 μmol/g), as expected. At P8 and
P14, no significant difference in liver total retinol was noted
between the NFD and the HFD group. However, at P20,
maternal HFD consumption significantly reduced the neonatal

Fig. 4. Serum leptin (a), adiponectin (b) and triglycerides (c) concentrations of

rat pups at postnatal day 14 and postnatal day 20. Bars show means ± SEM, n 4

per group. One-way ANOVA followed by a Bonferroni post-test was conducted

at individual time point. Different letters at each time point indicate statistically

significant differences, a > b, a′ > b′ > c′, P < 0⋅05.

Fig. 5. Visceral white adipose tissue leptin (a) and adiponectin (b) mRNA

expression in rat pups at postnatal day 20. Results were normalised to

β-actin mRNA. Bars show means ± SEM, n 4 per group. One-way ANOVA fol-

lowed by a Bonferroni post-test was conducted. Different letters indicate stat-

istically significant differences, a > b, P < 0⋅05.
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liver VA concentration, bringing it from a marginal to a defi-
cient status (liver VA store < 0⋅035 μmol/g). Previous research
in adult Wistar rats showed that the hepatic VA concentration
of HFD-fed rats was ∼50 % that of the controls(35). Similar
results were also noted in obese mice(18). For the first time,
we showed in the present study that maternal HFD consump-
tion compromised the liver VA status of the offspring, while
liver is the primary storage organ for VA. This could result
in significantly reduced VA mobilisation from the liver to
the neonatal tissues where VA plays essential roles, such as
lung, spleen and brain, and negatively affect developments
of these organs during this critical period. Promisingly, the
comparison between the HFD and the HFDRA group
showed that RA treatment promoted the storage of VA in
the liver, as evidenced by a significantly decreased serum

total retinol but an increased liver total retinol concentration
at P8 and P20. The results are consistent with previous
research showing that an acute treatment of RA significantly
increased the hepatic gene expression of LRAT, the enzyme
that is responsible for the esterification/storage of VA(36).
It is well established that VA is required for postnatal devel-

opment of the lung, including for alveolar septation, angiogen-
esis and surfactant synthesis(10,37). Most of the VA in the lungs
is in the form of retinyl esters, which can be mobilised to pro-
duce RA. A significant accumulation and utilisation of retinyl
esters was noted in neonatal lung during the alveolar stage as
well as an increase in retinol and RA in lung fibroblasts(11,38–40).
The levels of retinoid-binding proteins, RARs and RA synthe-
sising enzymes peak postnatally in the lung(41). RA adminis-
tered to neonatal rats was found to promote the recovery of
the septation process and increase the formation of alveoli,
even under conditions of stress(42,43). It was found in the pre-
sent study that the lung total retinol concentration (Fig. 3(c))
was significantly lower in the HFD pups than in the control
group at P8, suggesting that maternal HFD consumption
may compromise the lung VA status of the offspring. It is
unknown why such an effect was not observed at the later
times, but it could be related to the rapid accumulation of reti-
nyl esters in the neonatal lung as pups grew older(11), which
might offset the impacts of maternal diet-induced obesity.
Indeed, an accumulation of VA in neonatal lung was observed
across time in all three groups in the present study, and lung
was the only organ in which such an accumulative effect
was noted. At all three sampling times, the repeated RA treat-
ments were found to result in a significant 2- to 5-fold increase
in the lung VA concentration. The results are consistent with
previous findings by others. Wu et al. reported that a single
dose of RA increased the total retinol concentration, [3H]ret-
inol uptake and the mRNA expression of LRAT and
STRA6 (stimulated by retinoic acid gene 6, a transmembrane
mediator of retinol uptake from circulation into cells) in neo-
natal rat lung at 6 h after dosing(23). It has been known that
maternal overweight/obesity is a significant risk factor for pre-
term birth, while preterm babies often have low VA status at
birth and increased susceptibility to respiratory diseases(44–46).
As such, our findings are translatable in that RA could be
explored as a promising therapeutic option for those vulner-
able newborns in improving their lung VA status, enhancing
local RA production and aiding lung development.
It is also worthwhile to emphasise the results on brain VA

status (Fig. 3(f)). The neonatal period is characterised by
rapid brain development and RA is known to be critical for
neurogenesis, neural differentiation and survival, synaptic plas-
ticity, and the formation of new memories and learning(47–49).
Previous studies showed that VA deficiency in rodents resulted
in reduced performance in memory tasks, which could be
restored after VA refeeding(50–53). In the present study, mater-
nal HFD consumption was associated with a significantly
lower brain VA status at P8 and P20, while at P14, the oppos-
ite trend was noted. The mechanism of the discrepancy is
unknown. At P20, RA treatments significantly increased
brain VA concentration in the HFD pups and restored it to
the concentration in the control group. This is in line with

Fig. 6. Brown adipose tissue UCP1 (a), UCP2 (b) and UCP3 (c) mRNA

expression in rat pups at postnatal day 20. Results were normalised to

β-actin mRNA. Bars show means ± SEM, n 4 per group. One-way ANOVA fol-

lowed by a Bonferroni post-test was conducted. Different letters indicate stat-

istically significant differences, a > b, P < 0⋅05. UCP, uncoupling protein.
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the finding by Hodges et al. that maternal VA supplementation
significantly increased brain total retinol in rat pups(54). The
impacts of obesity on brain VA status and subsequent devel-
opmental and functional outcomes warrant further
investigation.
The total retinol concentration in WAT and BAT (Fig. 3(d),

3(e)) was also assessed. No significant difference was noted
among groups except that the BAT VA concentration was sig-
nificantly lower in the HFD group than in the control group at
P20 and RA treatment showed a trend to increase the concen-
tration. It is plausible that any potentially increased VA uptake
by the AT in the HFDRA group was offset by the active util-
isation of VA for regulating the tissue development.

RA reduced the adiposity and modulated the WAT metabolism
of suckling rats exposed to maternal HFD consumption

In the present study, maternal HFD consumption during ges-
tation and lactation (up to 20 d) was shown to dramatically
increase the adiposity and the BW gain of the neonates
(Fig. 2(a), 2(b)). This is consistent with previous findings
from others and from our group(30,55,56). The negative effects
of maternal obesity or excessive gestational weight gain on the
metabolic health of the offspring have been well established.
In the present study, we found that repeated RA treatments
given orally to the pups of HFD-consuming mothers every
3 d from P5 to P20 exerted a significant effect on reducing
their BW gain and the WAT mass. The findings are consistent
with our previous study, which showed that VA-supplemented
to the maternal HFD significantly reduced the BW and the
adiposity of suckling and weanling pups(30). It should be
noted that supplementing maternal diet to benefit the health
of the offspring can only be utilised in the lactational period,
while direct administration of treatments to the offspring, as
used in the present study, would allow for a potentially long-
lasting effect.
Leptin and adiponectin are two adipokines that are primarily

produced by the WAT and are correlated with obesity and
metabolic health(57). Leptin can reduce fat storage in adipo-
cytes by inhibiting hunger. Adiponectin plays roles in regulat-
ing glucose homeostasis and fatty acid breakdown. In the
present study, maternal HFD consumption significantly
increased the serum concentrations of leptin and adiponectin
as well as their gene expression in the WAT in neonatal rats,
while RA treatment exerted a significant reducing effect on
the serum concentrations of both and on the WAT gene
expression of adiponectin (Figs. 4, 5). The changes may par-
tially be the result of increased WAT in HFD pups and
reduced tissue mass by the RA treatment. The findings on
serum leptin are consistent with our previous study, in
which maternal dietary VA supplementation was also found
to decrease the enhanced serum leptin concentration in
HFD pups(30). Previous studies in adult rodent models also
showed that chronic dietary VA supplementation reduced
serum leptin as well as leptin gene expression in WAT(58,59).
Acute RA treatment was shown to down-regulate the gene
expression of both leptin and adiponectin in WAT in adult
rats as well as suppressing leptin gene expression in

BAT(60,61). The potential physiological benefits or conse-
quences of RA’s regulatory effects on leptin and adiponectin
production will need further exploration.
Serum lipid profile was determined in the study. It was

noted that the concentration of serum triglycerides was
increased in HFD pups compared with NFD pups and was
further enhanced in HFDRA pups (Fig. 4(c)). Although the
finding was surprising considering that RA reduced the mass
of WAT where triglycerides are stored, similar results were
reported in rats fed an isotretinoin (13-cis-RA)-supplemented
diet(62,63). There were also previous case studies reporting
that serum triglycerides concentration was increased in patients
receiving isotretinoin as acne treatment or following a high
dose of VA treatment to patients with pityriasis rubra
pilaris(64,65). The development of hypertriglyceridaemia in
patients receiving RA-based treatments was discussed by
Chen(66). It was noted that RA-induced hypertriglyceridaemia
might be due to RA-induced apo CIII expression(67). Apo
CIII is considered to be an inhibitor of the activity of lipopro-
tein lipase, which therefore reduces the clearance of plasma tri-
glycerides(68,69). The effects of RA on the expression of genes
invovled in hepatic lipogenesis should be determined in future
studies.

RA influenced the BAT development in suckling rats

BAT is the site for adaptive thermogenesis and is prominent in
newborns. In humans, it is gradually lost with age but may still
contain beige adipocytes that can be potentially reactivated.
Therefore, BAT retains the capacity to play a significant role
in energy metabolism and is a primary target in obesity preven-
tion and treatment(70). Our previous study applying maternal
dietary VA supplementation showed that maternal con-
sumption of HFD significantly reduced BAT mass while VA
supplementation restored the mass(30). However, in the pre-
sent study, maternal HFD consumption increased the BAT
mass in neonates, and oral RA did not exert any effect on
the mass (Fig. 2(c)). The discrepancy needs further investiga-
tion. However, the finding from the present study that RA
treatment significantly reduced the neonatal WAT mass but
did not exert the reducing effect on BAT is encouraging.
Moreover, it was found that RA significantly increased the

mRNA expression of UCP2 and UCP3 in the BAT of HFD
rat pups, although that of UCP1 was not altered (Fig. 6).
UCP1 is the inner mitochondrial membrane protein that is
responsible for adaptive thermogenesis in BAT(58). In adult
rodent models, dietary VA or RA treatment was shown to
induce the expression of UCP1(28,29,71–73). In contrast, no
change in BAT UCP1 expression was observed in maternal
VA-supplemented rat pups in our previous study nor in
RA-treated pups in the present study(30). UCP2 and UCP3
genes were cloned in 1997 and the encoded proteins have a
high sequence homology to UCP1, but their roles in adaptive
thermogenesis and energy metabolism are controversial(73).
Compared with the extensive research on UCP1, little is
known on the effects of VA or RA on UCP2 and UCP3
expression. Bonet et al. reported that acute RA treatment
increased BAT UCP2 expression in adult obese mice, which
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is consistent with our finding(74). The same author group
found that RA exerted no significant effect on BAT UCP3
expression, while we found that repeated RA significantly
induced its expression in the suckling rats(58). UCP3 was
reported to play an important role in regulating the generation
of ROS and reducing the oxidative pressure on the respiratory
chain(75). Whether our result of increased UCP3 expression in
RA-treated BAT reflects an enhanced oxidative stress brought
by RA or a protective mechanism induced by RA to maintain
the redox balance in HFD rats warrants further investigation.

Strengths, implications and limitations

The present study has several strengths and accompanying
implications. First, maternal diets with a marginal VA level
were used to resemble the VA status of at-risk newborns in
parts of the developing world or in low-birth-weight infants
in the United States(76). Although maternal overweight/obesity
is more prevalent in high-income countries, it has also become
increasingly prevalent in lower-income countries, including the
areas where VA deficiency is a significant nutritional problem
in women of childbearing age. A study published in 2014
reported that over half of reproductive-aged women in
urban Mauritania are overweight or obese, and the prevalence
in urban areas of Kenya, Ghana, Niger, Sierra Leone, Tanzania
and Zimbabwe is approaching 50 %(77). Therefore, maternal
overweight/obesity may pose a further risk on VA status
and the healthy development of infants in those areas which
has already been compromised by maternal VA deficiency.
As such, our research could be translatable in informing clin-
ical research in both high- and lower-income countries.
Secondly, repeated doses of RA were administered for a
potentially long-lasting effect. RA was reported in previous
studies to have a transient activity in regulating VA homeo-
static genes, possibly due to its high turnover rate(78). A single
dose of RA was shown to up-regulate the mRNA expression
of STRA6, LRAT and CYP26A1 in neonatal lung at 6 h after
dose administration, but the effect declined at 12 h(23). In the
present study, rat pups euthanised at P8, P14 and P20 received
2, 4 and 6 doses of RA, respectively, and the last dose was
given 6 h prior to their euthanisation. Comparing results at
those sampling times, it was noted that instead of exerting a
cumulative effect, repeated RA treatments every 3 d showed
a maintaining effect on most outcomes. Thirdly, collecting
data at multiple times provided a dynamic view of neonatal
growth and VA status during lactation. Age-related changes
in VA status have been reported. Specifically, the VA content
of extrahepatic tissues (e.g. lung, heart and brain) have been
found to increase with age in rat pups(79).
A few limitations should also be noted. Maternal rats in the

HFD groups were provided with the HFD from gestational
day 5, which resulted in a relatively short induction period
of maternal obesity. A longer induction period during
pre-gestation is warranted to better understand the impacts
of maternal obesity on the metabolism and development of
the offspring. In addition, due to the nature of a neonatal
model, the amounts of tissue samples were very limited,
which did not allow for more analysis at cellular and molecular

levels, and several measures could only be conducted on sam-
ples from P14 or P20. Lastly, the sex of neonatal rats was not
controlled, but the number of male and female rats was close,
which could be a good representation of the general
population.

Conclusion and future directions

To conclude, using a maternal-neonatal rat model, we found
that maternal HFD consumption during gestation and lacta-
tion posed a significantly negative impact on the BW, adiposity
and VA status of the neonatal offspring. Repeated oral RA
treatments during the suckling period significantly reduced
BW gain and WAT mass, modulated adipokine levels, and
improved VA status in key organs of the neonates. Results
on the lung VA status were particularly encouraging, consider-
ing the critical role of VA in postnatal lung development.
Further analysis at the cellular level will be done to fully under-
stand how RA regulates VA metabolism and AT development
in neonates exposed to an obesogenic environment.
Pre-clinical studies with a longer duration and adopting mul-
tiple RA dosages are also needed to elucidate the long-term
and dose-dependent effects of RA and to determine the opti-
mal and safe dose.
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