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Introduction

Letk be a perfect field of characteristicand letW,, be the ring of Witt vectors of
lengthm with coefficients ink for a positive integem. Let N (resp.W,,(N)) be one

of the following log. structures (in the sense of Fontaine—lllusie) on &pdresp.
SpecW,,)) ([K1]): (i) The trivial log. structure. (ii) The log. structure associated to
N— k (resp.W,,); L — 0.

We consider an fs log. schem&, M) log. smooth ([K1] (3.3)) and univer-
sally saturated (Definition 2.17) ovéSpeck), N) whose underlying scheme is
proper overk and of pure dimensiom. Denote by f the structure morphism
(X, M) — (Speck), N). (In fact, for a smooth morphism of fs log. schemes
(Y, My) — (Specgk), N), g is universally saturated if and only i is reduced
([T]. Furthermore, whenV is trivial, g is always universally saturated.) In the
case (i) (resp. (ii)), a toric variety (resp. the special fiber of a semi-stable family
over a discrete valuation ring with residue fieldk) is a typical example ([K1]
Example (3.7)). In this paper, we prove Poincaré duality for the log. crystalline
cohomology of(X, M) with coefficients in a locally fre®y,y,, -module of finite
type. Since this can be applied to a proper smdstitheme with the trivial log.
structure, this is a generalization of Poincaré duality for crystalline cohomology of
a proper smooth scheme ([B] VII). For the special fiber of a semi-stable family and
trivial coefficients, Poincaré duality has been proved by O. Hyodo, using de Rham-
Witt complexes ([Hyo]). Since we want to treat twisted coefficients, we follow the
method of [B] VII in this paper.
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More precisely, we prove the following. Let be the canonical PD structure
on the idealpW,, and let(X/W,,)&ys = (X, M)/(Wyu, Wy (N), pWon, ¥))erys be
the log. crystalline site defined in [K1] Section 5. For a locally fégg w,,-module
of finite type, we define the log. crystalline cohomology and the log. crystalline
cohomology with compact supports by

i i |
Hlog-crys(X/ Wy, E) .= H'(X/ Wm)corg/s, E),

i i |
Hlog-crysc(X/ Wy, E) == H'(X/ "Vm)cor?/s, Kxw,E),

whereKy,w, is the ideal of@0y,y,, defined in Section 5. In the case of the special
fiber of a semi-stable familyK xw, = Ox,w, - HenceHyy.crvsc = Hipgcrys
THEOREM. Let m be a positive integer. Then there exists a canonical homo-
morphismTr s Hlﬁ’é_crysc(X/ W, Ox,w,) — W, called trace morphism such that,
for any locally freeOx,w, -module of finite type, the pairing induced by the cup
product and the trace morphism

I_Ili)g-crys(X/ W, E) X H|§l;:érysc(x/ W, Ev‘) — W,

is perfect, wheré = Homo, , (E. Ox,w,)-

We remark here that the existence of Poincaré duality (with some compatibil-
ity of the trace map with Frobenius) implies the bijectivity of FrobeniusQo®
Hyycrys(X/ W), which is not true in general whefi is not universally saturated.
See Remark 5.7 for details.

This paper is organized as follows. In Section 1, we review the theory of du-
alizing and residual complexes, and Grothendieck—Serre duality. In Section 2, we
calculate 'Oy for a certain kind of log. smooth morphistX, M) — (S, N). In
Section 3, we state Poincaré duality for de Rham cohomology of a log. smooth
variety. The proof is easy once we construct the trace morphism. In the construction
of the trace morphism, we need vanishing of the ‘residues’ of ‘exdotms’ for a
log. smooth variety (Proposition 4.1), which is proved in Section 4. In Section 5, we
state Poincaré duality for log. crystalline cohomology together with the definition
of crystalline cohomology with compact supports. The main problem is again the
construction of the trace morphism. After some preliminaries on local cohomology
and Cousin complex for a log. crystalline topos in Section 6 and Section 7, we
construct the trace morphism in Section 8.

In this paper, we use freely the notation and the terminology of [K1]. Especially
log. structures are always considered in the étale topology. An fs log. strudture
on a scheme is a fine log. structuréd/ on X such that all stalks are saturated
([K2] (1.2)) or, equivalently, there exists, étale locally Ena chartP — I'(X, M)
with P saturated.
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1. Review of Grothendieck—Serre Duality

We will briefly review the results of [Ha] which we will use in the following sec-
tions. In this section, we assume that schemes are Noetherian and morphisms of
schemes are of finite type. Sheaves are considered in the Zariski topology.

For a scheme&, we will denote byD (X) the derived category of the category
of @x-modules and denote by.(X) the full subcategory oD (X) consisting of
complexes with coherent conomology. We will denotelby (resp.D~, resp.D?)
the full subcategory consisting of complexes bounded below (resp. bounded above
resp. bounded).

ForR € D™ (X) andF' € D(X), we say thatF'" is reflexivewith respect taR"
if the natural morphism

F' — R¥#Homx(RHomx(F',R’),R’)

is an isomorphism ([Ha] V Section 2). Aualizing complexon X is an object
R € DI (X) of finite injective dimension such that evefy € D.(X) or equiv-
alently the structure shedfy is reflexive with respect t&'. For a regular scheme
of finite Krull dimensionX, the structure sheafy is a dualizing complex.

PROPOSITION 1.1 ([Ha] V Corollary 2.3, Proposition 3.4, and Proposition 7.1).
For a schemeX and R* € DI (X) of finite injective dimensionk" is dualizing if
and only if, for every € X, there exists an integef(x) such that

0 fori # d(x)
Exty, (k(x),R;) =
i k(x) fori =d(x).

Furthermore, wherR' is dualizing,d is a codimension function oK, that is, for
any immediate specialization— y, d(y) = d(x) + 1.

For a dualizing compleR on X, we calld the codimension function associated
with R". It follows from this proposition that i’ admits a dualizing complex¥
is catenary and of finite Krull dimension ([Ha] V Corollary 7.2). Wh&nis a
Cohen—Macaulay connected scheme of finite type over a regular scheme, there
existsd such that#'(R") = 0 (i # d) for any dualizing complext” on X.

For a smooth morphismf: X — Y of relative dimensiom, we define the func-
tor % DX (Y) — D} (X) to be f*(—) ®" wx,y[n], wherewy,y = A"Qy,y ([Ha]
[l Section 2). f# preserves dualizing complexes ([Ha] V Theorem 8.3). For a finite
morphism f: X — Y, we define the functorf” DF(Y)— Df(X) to be
7 RHtome, (f.Ox, —), wheref is the morphism of ringed spacgs (X, Ox) —
(Y, f.0x) ([Ha] lll Section 6). f* preserves dualizing complexes ([Ha] V Propo-
sition 2.4). Whenf is a regular closed immersion of codimensionwe have a
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canonical isomorphisny® = Lf*(—) ®" wx/y[—n] with wx)y = (A"Nyy)~
([Ha] il Corollary 7.3).

For a scheme&X andx € X, define the quasi-coherent injecti#y-module
J (x) to bei,(I), wherei is a morphism Spe®x ) — X and] is an injective hull
of k(x) as anO@x_.-module ([Ha] Il Section 7). Aresidual complexK” on X is
a complex of quasi-coherent injectiv&,-modules bounded below with coherent
cohomology such that there is an isomorphignzK' = @..xJ(x) ([Ha] VI
Section 1). Denote by RéX) the category of residual complexes ah For a
dualizing complexr", define the Cousin compleX(R") by

(R)— -+ — H!

0
- —=> 0> i) 7i+1

ZO/Z]- (R)_) T

(R) — ‘]{%1/22
Where,%’;i/z,.ﬂ(R') is placed in degreeandZ’ = {x € X|d(x) > i} with d the
codimension function associated wikh. ThenE(R") is a residual complex. 1K
admits a dualizing complext gives an equivalence of the category of dualizing
complexes onX and RegX). Its quasi-inverse is given by the restriction of the
canonical functolC*(X) — D*(X) ([Ha] VI Proposition 1.1).

In the following, we assume that all schemes considered admit dualizing com-
plexes.

For a finite (resp. smooth) morphisift X — Y, define the functorf” (resp.
£9):RegY) — RegX) by f*(K") = E(f*Q(K") (resp f(K") = E(f*Q(K"))),
where is the functorK} (Y) — D} (Y) ([Ha] VI Section 2). This is well-defined
since f*(resp f*) preserves dualizing complexes.

By gluing these functors, we can construct a morphjsin RegY) — RegX)
for any morphismf: X — Y which is canonically isomorphic tg> (resp. f*)
when £ is finite (resp. smooth) and satisfies various compatibilities su¢p 8¢
=~ fAg¢2. ([Ha] VI Theorem 3.1.)

When f is finite, there is a canonical isomorphisfit (K") = T*Jfom(gy
(f«Ox, K*) and hence an isomorphisti. f*(K") = FHome,(f.Ox, K'). The
evaluation at 1 gives afly-linear morphism of complexgs;: f. fY(K) — K.

THEOREM 1.2 ([Ha] VI Theorem 4.2Jor each morphisny: X — Y, there exists
a morphism

Try: fuf®—1 (L3)
of functors fromRegqY) to the category of gradedy-modules(wherel denotes
the forgetful functoy, which satisfies

(1) For any morphismsf: X —Y andg: Y — Z, the following diagram com-
mutes.
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gufuf g — " g
@)agN* — L 1.
(2) Try coincides witho; when £ is finite.

Furthermore, thesér ; are unique.

THEOREM 1.4 (Residue theorem) ([Ha] VII Theorem 2.gt f: X — Y be
a proper morphism, and leX" be a residual complex ol. Then the trace map
Try: fuf2(K')— K’ is a morphism of complexes.

We can define a functof': D} (Y) — DI (X) for any morphismf: X — Y by

fH(F) = RHomx (Lf*(RHomy(F", K), f*(K))),

where K is a residual complex oii ([Ha] VII Corollary 3.4(a)). Recall that we
assume all schemes considered admit dualizing complexes. The fyidsoca-
nonically isomorphic tof® (resp. f*) when f is finite (resp. smooth) and satisfies
various compatibilities. Wherf is proper, we obtain from (1.3) and Theorem 1.4,
the trace morphism Tr Rf, f' — 1 ([Ha] VII Corollary 3.4(b)).

THEOREM 1.5 (Duality) ([Ha] VIl Corollary 3.4(c))For a proper morphisny :
X — Y, the composite

Rf.RHomx(F', f'G) — RHomy(Rf.F',Rf.f'G")

Try . R
— RHomy(Rf.,F',G")

is an isomorphism foF"e D_.(X) andG" € DX (Y).

2. Relative Dualizing Sheaf for a Log. Smooth Morphism

We will calculate £ @5 for a smooth morphism of fs log. schemgs (X, M) —
(S, N) satisfying certain conditions.

DEFINITION 2.1 ([K2], Def. (5.1)). An ideall of a monoidP is a subset ofP
satisfyingP1 < I. A prime idealp of a monoidP is an ideal whose complement
P\p in P is a submonoid. We will denote by Sgéd the set of all primes of.

It is easy to see SpeB) = SpecP/P*).
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DEFINITION 2.2. LetP be a monoid.

(1) ([K2] Definition (5.4)). We define the dimension di®) to be the maximal
length of a sequence of prime ideglsD p; 2 - - - 2 p, of P. If the maximum
does not exist, we define di?) = oo.

(2) For a prime ideap of P, we define the height fji) to be the maximal length
of a sequence of prime idegis= po 2 p1 2 --- 2 p, of P. If the maximum
does not exist, we define(p) = co.

PROPOSITION 2.3 ([K2] Proposition (5.5))et P be a finitely generated integral
monoid.

(1) SpecP) is a finite set.
(2) dim(P) = rankg(PSP/P*).
(3) For p € SpecP), we havadim(P\p) + ht(p) = dim(P).

DEFINITION 2.4. (1) Leth: Q — P be a morphism of monoids. We say a prime
p of P is horizontalwith respect taz if A1(Q) C P\p.

(2) For a morphismf: (X, M) — (Y, N) of log. schemes and € X, we say
a primep of Ms is horizontal with respect tof if it is horizontal with respect to
fﬁi Nm—) My.

Let f: (X, M) — (S, N) be a smooth morphism of fs log. schemes. Define the
sheaf of ideald ; of the sheaf of monoida/ by:

I',Iy) = {a € T'(U,M)| The image ofa in M5 is contained inp for
all pointsx € U and all primeg € SpecM;) of height 1 horizontal with respect
to f}.

LEMMA 25. For x € X, (If)x = {a € Mx|a is contained inp for all primes
p € Spe¢Mx) of heightl horizontal with respect tg}.

Proof. The inclusionc is trivial. We will prove the converse. Put= f(x).
Since the question is étale local &and onS, we may assume that we have charts
P —T(X, M) andQ — I'(S, N) such thatP — M;/0% ; and Q — N;/O5 ; are
isomorphisms ([K1] Lemma (2.10)). Sina® is finitely generated, we may also

assume that the following diagram commutes, whedenotes the composite —

N5/O% < L M0 < P

P

(X, M/0%)

h }f*

Q — TI'(5.N/O3).
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Put Py = M5/0% 5 and Q7 = N:/Og; for y e X andr € S. Let g, (resp.¢,)
denote the composit® — I'(X, M) — Py (resp.Q — I'(S, N) — Q7). Then the
following diagram commutes when= f(y).

P Ll Py

1

0 —*— 0,

wherehy denotes the morphism induced py

Leta be an element of the right-hand set of the lemma. By replakibyg a suit-
able étale neighborhood af we may assume that there existe I'(X, M) and
¢ € P such that the stalk df atx is a and the images aof andc in I'(X, M/0O%)
coincide. We assett € I'(X, I5). It suffices to provep,(c) € p for all y € ¥ and
allp € SpedPy) of height 1 horizontal with respect tg.. We have an injective map
Spedy,): SpecP5) — SpecP); q — <p;1(q). SinceP§ = {1} and ¢, induces
an isomorphismP/wy—l({l}) = Py, we haveP;\{1} € SpecPy) and the image
of Specy,) is the set of all primes of contained irrp;l(Py\{l}). Hence<p;1(p)
is a prime of P of height 1 horizontal with respect tB and it suffices to prove
c € (p;l(p). Since the image aof under the isomorphism,: P = P; coincides
with the image ot € M, this follows from the assumption an O

COROLLARY 2.6.Assume that we have a chatt — I'(X, M), Q — I'(S, N),
h: Q — P of the morphismf such thatP and Q are saturated. Define the ideal
I C P by{a € P|ais contained irp for all primesyp of P of heightl horizontal
with respect td:}.

Then the sheaf of ideals is generated by the image bf

Proof. Let x € X. By Lemma 2.5,(1y)5 is the inverse image of the ideal
{a € Mz/O% la € pforall p € SpecM=/0O% ;) of height 1 horizontal with
respect tof 3: N7/ 0% —— — Mz/O% 1} of Mz/0% ;. Itis easy to see that the

S f ()
latter ideal coincides with the image bf O

COROLLARY 2.7.The ideall ;O of O is quasi-coherent.

DEFINITION 2.8. An fs log. scheméX, M) is calledregular if the underlying
schemeX is locally Noetherian and, for each pointe X, Oxx/I(x, M) is a
regular local ring and dit®y ) = dim(Ox /1 (X, M))+rank;(M"/ 0% ;). Here
1(x, M) denotes the ideal @y  generated by the image 8f:\ O +.

Anfslog. schemeX, M) is regular if and only if, étale locally o, there exists
a charth: P — I'(X, M) such thatP is saturated andX, Mzy,) is regular in the
sense of [K2] Definition (2.1), wher&fz,, is the log. structure in the Zariski topo-
logy associated té. Furthermore, if(X, M) is regular, the latter statement holds
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for every chartP — I'(X, M) with P saturated. Hence, we obtain the following
propositions from the corresponding ones in the Zariski case.

PROPOSITION 2.9 (cf. [K2] Theorem (4.1)Jhe underlying scheme of a regular
fs log. scheme is Cohen—Macaulay and normal.

PROPOSITION 2.10 (cf. [K2] Theorem (8.2For a smooth morphisraX, M) —
(S, N) of fs log. schemesgX, M) is regular if (S, N) is regular.

PROPOSITION 2.11 (cf. [K2] Theorem (11.6))et (X, M) be a regular fs log.
scheme. Then the sbt = {x € X|M; = O%:} is dense open iX and M =
Ox N j. O, wherej: U — X denotes the inclusion morphism.

PROPOSITION 2.12 (cf. [K2] Corollary (7.3))Let (X, M) be a regular fs log.
scheme. Then for € X andp € SpecM5), there exists a unique pointe X such
that

(1) x € {y}.

(2) The cospecialization maffs — M5 induces an isomorphismfz/(Mx\p) =
My/O% 5.

(3) dim(Ox 5) = ht(p) or equivalently/ (y, M) is the maximal ideal af x 5. Here
I(y, M) is the same as in DefinitioA8.

Let us consider a smooth morphisfn (X, M) — (S, N) of fs log. schemes
again.

LEMMA 2.13. Assume thatS, N) is regular. LetU be any étaleX-scheme and
let Sy be the set of points € U of codimensiorl such thatMz # 0%, and

Nyey = (9; yTeon Thenl'(U, Iy) = {a € T'(U, M)|ax ¢ O% ; forall x € Sy}.
Proof. Use Proposition 2.10 and Proposition 2.12. O

PROPOSITION 2.14Assume thatS, N) is regular. Define the sefy in the same
way as in Lemma.13. LetJ be the ideal o) x corresponding to the closed subset

Uses, X} C X with the reduced induced structure. Then we han@x = J.
Proof. This follows from Lemma 2.13 and [K2] Corollary (11.8). O

EXAMPLE 2.15. If S = Speck) with k a field, X — S is a usual smooth morph-
ism, M is a log. structure defined by a reduced divigoon X with relative normal
crossings, and is the trivial log. structure, then,Ox = Ox(—D).

EXAMPLE 2.16. LetS = SpecA) with A a discrete valuation ring and &t be
a semi-stable family oves, that is, a regular scheme of finite type ovewhose
special fiber is a reduced divisor with normal crossingsXorDefine the fs log.
structureM on X (resp.N on S) by the log. structure given by the special fiber
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(resp. the closed point). Then we obtain a smooth morplfisiaiX, M) — (S, N)
([K1] Examples (3.7) (2)). Letf,: (X,., M,) — (S,, N,) be the reduction off
modulom”, wherem is the maximal ideal ofA. Then we have;, = M,, and
hencel;, Oy, = Ox,.

DEFINITION 2.17. Letf: (X, M) — (Y, N) be a morphism of fs log. schemes.
We say thatf is universally saturatedf f is integral ([K1] Definition (4.3)) and,
for any morphismg: (Y’, N') — (Y, N) of fs log. schemes, the base change of
(X, M) by g in the category of log. schemes is an fs log. scheme.

The universally saturatedness can be checked fiber by fiber, that is, the morph-
ism f is universally saturated if and only if, for every geometric poinof Y
with the inverse image log. structuré of N, the base changg; of f by the
canonical morphisniy, N) — (Y, N) is universally saturated. If the log. structure
N is trivial, f is always universally saturated. The following two facts proven in
[T] will be helpful to understand universally saturated morphisms although we
will not use them in this paper: When is anF,-scheme for a prime, f is
universally saturated if and only if is of Cartier type ([K1] (4.8)). Whery is
smooth and integralf is universally saturated if and only if every fiber of the
underlying morphism of schemes gfis reduced.

Let f: (X, M) — (S, N) be a smooth morphism of fs log. schemes again.

LEMMA 2.18. AssumeS = Specgk) with k a field, N is the log. structure asso-
ciated toN— k; 1 +— 0, and f: (X, M) — (S, N) is universally saturated. Then
the underlying morphism of schem&s— § is smooth in codimensioh

Proof. Let x € X be of codimension 0. By taking a smooth lifting @f, M)
to Speck[N]) with the canonical log. structure and using Proposition 2.10, we
can verify thatM:/O% - = N. Since the morphistiN = N;/O5 ;. — My /0% ; is
universally saturated by assumption, this is an isomorphism. Hence, there exists a
chat(N—k; 1~ 0, P - I'(U, M), h: N— P) for an étale neighborhootl of
x such that the order of the torsion part of the cokernet®fis invertible ink,
the morphismU — Speck[P] ®n k) is étale, and the morphisii & P* — P
induced byk and the inclusion map is an isomorphism. The lemma follows from
this. O

LEMMA 2.19. Assume tha(S, N) is regular andf is universally saturated. Fur-
thermore assume thaf — S is smooth of relative dimension and S is regular.
Define the sefy in the same way as in Lemn2al3 and define the divisob by
Exesxm. Then we have a canonical isomorphisrgg/s = Q’;(/S(Iog(M/N))(—D).

Proof. SinceX is regular, it suffices to prove that, for every paindf codimen-
sion 1 inX, the cokernel of the canonical morphism

Q5.2 = x,5(10g(M/N)), (2.20)
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has length 1 as afiy .-module wherx € Sx and is O otherwise. Itis trivial iMz =
(9;‘(,? If M;/@*,; = N and Ny = (9;.%’ there exists a cha® — I'(U, M)
with an isomorphismP = N @ P* for an étale neighborhootd of x such that the
order of the torsion part ofP% is invertible on X and the morphism
U — S x Spe€Z[ P)) is étale. It follows that the cokernel of (2.20) is of length 1.
If Mz/O0% = Nand Nm/@;m = N, by the same argument as the proof of
Lemma 2.18, there exists a ch&a — I'(S, N), P - T'(U, M), h: N— P) for

an étale neighborhood of x such that the order of the torsion part of the cokernel
of h9%is invertible onU, the morphisnU — S x gpeezny SPEEZ[ P]) is étale, and

N @ P*— P induced byk and the inclusion map is an isomorphism. It follows
that (2.20) is an isomorphism. O

THEOREM 2.21 Assume tha®y,s(log(M/N)) has a constant rank, the morph-
ism f is universally saturated, and the underlying morphism of schemgg<bf
finite type. Furthermore, assume one of the following conditions.

(i) (S, N) is regular and the underlying schenseis Noetherian, regular and of
finite Krull dimension.

(i) S =SpecA/n™A),foradiscrete valuation ring\, a primer € A andm > 1,
and the log. structureV is isomorphic to the one associatedNo—~ A,,; 1 —
a for somea € A.

Then we have a canonical isomorphigh®s = 1,Q% ;(log(M/N))[n].

Here we regard the coherent shelgf2} ;(log(M/N)) as a sheaf on the Zariski
site.

Proof. (cf. [K2] Theorem (11.2)) In the first case, since the scheéfiie Cohen—
Macaulay (Proposition 2.9 and Proposition 2.10) afids is a dualizing com-
plex on X, f'Oyg has the formwy,s[n]. Since the smooth locus C X of the
morphism f contains all points of codimensiod 1 (Lemma 2.18), the homo-
morphismwy,y — j.j*wx,y is an isomorphism by Proposition 1.1 and EGA IV
Theorem 5.10.5. Hergdenotes the canonical inclusiéh— X. Fromj* f'Og =
(foj)Og= Qy slnl, we obtainwy,s = J« 82 /s By Lemma 2.19 and Proposi-
tion 2.14, we have

3 Qs = e 5(I0g(M/N))(—=D))
= JQYy,s(log(M/N)) = 1;Q%,5(10g(M/N)),

whereJ is the same as in Proposition 2.14. The second isomorphism follows from
the fact thatX is Cohen—Macaulay and contains all points of codimensica 1.

Next consider the second case. l%t= Spec¢A[T]) and letN’ be the log.
structure onS’ associated ttN — A[T']; 1 — T. Define the exact closed immer-
sioni: (S,N) — (§',N) by T — a and the identity orN. First assume that
there exists globally a smooth lifting": (X', M’) — (S’, N’) which is universally
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saturated. Lej be the morphisn@X M) — (X', M’). By the first case, we have an
isomorphismf" Oy = Q" X/ ¢(Iog(M’/N"))[n]. Hence by [Ha] lll Corollary 7.3
(cf. Section 1), we have an |somorph|sm

fli'oy = j'flog
= 1/Qy 5 (log(M'/N') ®e,, (ANy/x)In — 2.

Note thatX is Cohen—MacauIay. On the other hand, we have an isomorphism
'Oy =  (A%Ns/s)[—2]. Hence we obtain an isomorphisnf'Oy =
Iy X/S,(Iog(M’/N N®o,, Ox[n]. Sincel Oy ®o,, Ox = 1;0x by Lemma 2.22
and Lemma 2.5, we get the required isomorphism.
The restriction of this isomorphism to the smooth loéus— X) of f induces
the canonical isomorphism f'Og = Q5[n], and the homomorphism

Homy, (1;€2y,5(10g(M/N)), 12y ,5(10g(M/N))) — Homo,, (27, 5, 27;/5)

is injective sincel/ contains all points of codimension 0 (Lemma 2.18) a&hdb
Cohen-Macaulay. Hence we can glue these isomorphisms in the general case.

LEMMA 2.22. Let f: (X, M) — (S, N) be a smooth integral morphism of fs log.
schemes. Thefly /1,0y is flat overs.

Proof. By taking a chart and using Corollary 2.6, we can reduce to the following
fact, which is proved by a similar method of [K1] (4.1) £(ii). Let Q — P be an
injective morphism of finitely generated saturated monoids satisfying the condition
[K1] (4.2)(iv). Define the ideall of P in the same way as Corollary 2.6. Then
Z[P1/1Z[P]is flat overZ[ Q]. O

3. Poincaré Duality for de Rham Cohomology with Log. Poles

Let A be a discrete valuation ring, and fete A be a prime element. For a positive
integerm, let A,, be the reduction mod™ of A. In the following, we fixm and put

S = SpecA,,). Let N be the log. structure ofi associated t®l — A,,; 1 — a for
somea € A,,. We allow the trivial log. structure.

Let f: (X, M) — (S, N) be a smooth universally saturated morphism. Assume
that X is of constant dimension, that is Q'ogs = Qx,s(log(M/N)) has constant
rank n, and X is proper overS. By Theorem 2.21, we obtain a homomorph-
ism Try: H"(X, I,(Q'og )") — A,, from the trace magRf, f'Os — Os ([Ha] VII
Corollary 3.4, cf. Sectlon 1).

PROPOSITION 3.1The composite

I n— n I ny T
H"(X, 1;(Q93)" ) ~To H'(X, 1;(Q5%)") —L> A,

is 0.
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We will prove this proposition in the next section.

DEFINITION 3.2. For a locally freg9x-module E of finite rank with an integ-
rable connection (with log. poles§): E — E ®q, Q';(’?S we define the de Rham
cohomology and the de Rham cohomology with compact supports by

n | .
Hip - or(X/S, E) := H7y (X, E ®oy (Qx75)),
| .
legg-dR,c(X/S’ E) := H7, (X, IfE Qo, (Q)??S) )-

Remarl3.3. Since all terms of the de Rham complexes are cohérgmhodules,
the cohomology groups in the right-hand side do not change if we replace the
Zariski cohomology by the étale cohomology.

We will omit E whenE = Ox. We obtain from Proposition 3.1 a homomorph-
ism Try: Ht gr o(X/S) = A

THEOREM 3.4 Let E be alocally free9 x-module of finite type with an integrable
connectionV: E — E ®g, Q',‘(’?S Then the pairing induced by the cup product
and the trace maH,,,.4r(X/S, E) x Hlf,’;féR,c(X/S, E)— A, is perfect. Here
E = Jomg, (E, Ox).

Proof. By Theorem 2.21 and Theorem 1.5, we can prove this in the same way
as [B] VIl 2.1.5. O

4. Proof of Proposition 3.1

In this section, we always work on Zariski sites. We keep the notation of Section 3.
Here we do not assume thitis proper, but we assume thétis of finite type.

The objectf'(Oy) is represented by the Cousin complEXf'(OQs)) = f2(Os)
associated with the codimension function ¥rdefined by the dualizing complex
f1(Os) ([Ha] VI Proposition 1.1, cf. Section 1). By Theorem 2.24%(O5) is
canonically isomorphic to the complex

I |
= 0 Y 1 (T(Qge)") = His o (R — -

= H k(@Y = Hya (L Q5" > 0 -,
whereX“ denotes the set of points of codimensiéim X, and the term,, (1,
(Q',‘(’?S)") is placed in degree 0. Hence we obtain from the trace map (1.3) a morph-
ism Tr,: f*(,}f;’(lf(sz';?s)”)) — Og, for eachx € X". Since the Cousin complex

of If(sz';;?s)"—l gives an injective resolution dff(Q';’?S)"—l, Proposition 3.1 fol-
lows from the following proposition. Note that the trace map:TRf, f' — 1 is
deduced from the trace mapTr f, f* — 1 ([Ha] VIl Corollary 3.4 (b)).
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PROPOSITION 4.1 (cf. [B] VII Proposition 1.2.6for every closed point of X,
the compositef, (2 (1, (59" 1) —= f.(HI(1(Q55)") T, 94is 0.

LEMMA 4.2. Letu: U — X be an étale morphism of finite type, and tebe a
closed point ofX such thatk(x') = k(x) for all x’ € u=(x). Putg = f o u. By
Theoren®.21, we have isomorphisms

FROs = EU QY. g205 = E(I(QY%)".

Hence, from the trace mappr,: u,g%(Os) = uu® f205— f20Og, we obtain
a morphismTr, . 1w, K, (I, (R5%)") — HI(L(Qy5)", for x' € u= (x). Let

f,...,t, € my, be aregular sequence, let € I(,-(Q';(’?S toandletr, ... 1 €

my v andw’ € Ig(Q'g?S);, be their inverse images. Then

/
w w
Thu (t’ t'>:t ta’
Tt L

Proof. Put Z = SpecOyx../(t1,...,t;)) andZy = Z xx U. Let v (resp.i,
resp.j) be the morphismZz, — Z (resp.Z — X, resp.Zy — U). By as-
sumption, Z; is isomorphic to a finite disjoint union of copies @f We have a
canonical isomorphisn?* f20g = If(sz'f(’?s)” ®oy wz/x ([Ha] lll Corollary 7.3,
cf. Section 1). Hence, the degree 0 part of the trace mapi it f2 95 — f20Os
gives a homomorphism,(1,(Qy%)" ®o, wz/x) — H!(I;(Qy%)". The image
of w ® (t1 A --- A ty)” under this morphism i& /(1 - - - t;) (cf. [B] VII The proof
of Lemma 1.2.5). The same fact holds fgt©@ and j. Hence the lemma follows
from Tr, Tr; =Tr; Tr,,. O

Proof of Propositiord.1. (Part 1) We first prove the claim in the casas trivial.
By [Ha] VI Theorem 5.6, we can reduce to the case where the residue field of
A is separably closed. Then, by Lemma 4.2, we may assumeXthatof the
form SpecA,,[P]), where P is a finitely generated saturated monoid such that
Pior = {1}. Using a finite rational polyhedral decomposition(#®P)g ([KKMS] |
Section 1, 2) which containB, we obtain a ‘compactification’ ofX, M), that is,
anS-morphism(X, M) — (X, M) of fs log. schemes whose underlying morphism
is an open immersion such that (X, M) — S is smooth, its underlying morphism
of schemes is proper, and is the inverse image o#/. Furthermore, by [K2]
(10.4), we obtain a log. étale morphigm (X', M') — (X, M) whose underlying
morphism of schemes is proper such that, ) is log. smooth overS, X is
smooth overs, and

I50% = Rg, (I70%). (4.3)

([K2] Theorem (11.3), Lemma 2.13 and Lemma 2.22). Hgére= f3.
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Since we do not treaX in the following, we omit the upper bar of the symbols
for simplicity. SinceX is proper overs, it is enough to prove that the homomorph-
ism

n n— d n n
H"(X, I;(Q33)" ™Y —— H"(X, I;(2y%)") (4.4)
is 0. By (4.3), we have a commutative diagram

n I n— n I n
H" (X, I5(Qy7)" ™) — = H"(X, I;(Qy75)")

| |

I _ I
Hn(X/’ If/(Q)c()g/S)n l) _d> Hn(X/, If/(Q)?g/S)n)

| |

— d
H"(X', Q7% H" (X', Q%/9)-

The bottom arrow is 0 because the composite
ney!/ on—1 d nyv/ n Try
H"(X', Q%75) — H"(X', Q5 /5) —— An

is 0 ([B] VII 1.2.6) and the trace map is an isomorphism. Hence, the homomorph-
ism (4.4) is O. O

LEMMA4.5. LetS’ beSpecA,,[¢]) and letN’ be the log. structure of’ defined by
N— A,[t]; 1 — t. Define the exact closed immersigh N) < (§’, N') byt

a and the identity oN. Assume that we are given a smooth liftifig (X', M') —
(8’, N’) of the morphismy which is universally saturated. Lgtbe the composite
of fand(S’, N’) — S. Leti be the exact closed immersiol, M) — (X', M').
By Theoren®.21, we have canonical isomorphisms

fR0s = E(1;Q% 5(log(M/N))[n),
8405 = E(I,Q! s (log(M"))[n + 1)).

From the degre@® part of the trace morphisnfir;: i, f20s = i,i%g*Os — g2 O,
we obtain a morphism

oy 09 (1 5 (0g(M/N))) — HIHH (1, (log(M))),

for each closed point of X.

Let x be a closed point oX, lets], ..., , be elements afhy , such that the
imagest, ..., 1, in my, form a regular sequence, and let I.,»/Q';(,/S,(Iog
(M'/N")),. Then we have

173} dr A ow
Tr » = - N
t--t, (t—a)y---t
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Here @ denotes the image of» under the homomorphisnt; Q% (log
(M'/N")x — ISy ,5(10g(M/N))..

Remark4.6. By applying Proposition 2.14 to a lifting gf to Spe€A[¢]) with
the log. structure associated¥o— A[r]; 1 — ¢ and using Lemma 2.18, we can

verify that the homomorphisreey, ¢ (log(M'/N")) — Q’;(T/S(Iog(M )); @ — df A

w induces an isomorphisiy %, /S,(Iog(M’/N’)) =] Q’;j/fg(log(M’)). Hence the
right-hand side of the above equation makes sense.

SUBLEMMA 4.7. Under the notation and assumption of Lemr§, the iso-
morphism

1,2 5(0g(M/N)nl = f'O5 =i'g'0s
= (1, Q! s (log(M"))[n + 1))

= 1,25k (log(M") ®o,, Nx/x[n]

isgiven byo +— (df A w) ® (t —a) forw € Ifzsz’;(//s,(log(M’/N/)).

Proof. By restricting to the smooth loci of the morphisnf$ and f, we can
reduce to the corresponding fact for usual schemes. See the argument at the end of
the proof of Theorem 2.21. O

Proof of Lemmat.5. By Sublemma 4.7, it is enough to prove that the degree 0
part of the morphism

i, Ex(I,Q%! s(Iog(M")) ®¢,, Nx,x[n])

Tr,

=i lAE;((I Q' ,/S(Iog(M Nn+ 1) — E% (1, ,/S(Iog(M Nn + 1))

is given by
H (1,251 (10g(M")) ®e,, Nx/x) — Hit (1,2 s (log(M")))

w® (t—a) w (4.8)
H
ety (t_a)ti...tl;

Herex is a closed point ok, 7, ..., #, € mx , is a lifting of a regular sequence
1
f,....t, emy, andw € I Q’}(TS(Iog(M M-

Let Z be the closed subscheme)ofdeflned by a regular sequenge. . ., 1, €
my .. Then we have the following commutative diagram.

https://doi.org/10.1023/A:1001020809306 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001020809306

26 TAKESHI TSUJI

12

Eexty (Oz, Extg (Ox, X))

|

Exty, (Oz, K ®o,, J\V/X/X’)

|

Homey (Oz, H; (K Qo,, J\V/X/X’)) — JHomp,, (Oz, ﬂf“(ﬂ))-

Exty 1Oz, X)

Here X = [,Qf /S(Iog(M’)) and the bottom arrow is the morphism induced by
(4.8). The image of

0@ ((t—a) ANty A--- A1) € K @ (NN x)" = Extgt 1Oz, K),

under the composite of the left arrow (resp. right arronu® (t —a)")/(t1- - - t,,)
(resp.w/((t — a)t;---t,)) (cf. [B] VIl The proof of Lemma 1.2.5). This implies
the claim. O

Proof of Propositiord.1. (Part II) We will prove the proposition in the general
case. By the same reason as in Part I, we may assume that the residue field of
A is separably closed. By Lemma 4.2, we may assume that the assumption of
Lemma 4.5 is satisfied. It suffices to prove that, éore I.,»Q’g;(log(M/N))x

and a regular sequeneg ...,t, € my,, My (dw/ty---1,)) = 0. Leto €
I,/Q’}{/S,(Iog(M’/N )y andt € my , be liftings ofw ands;. Then we have
w dt A
d — _
(tl o tn> t, Z t, ’
l<z<n

( —dt A o ) dr A do’ Z dr Adt! Ao

/ - > .
(t—ay -t t—ay -t l<<n(t—a)tl tEet

By Lemma 4.5, the latter is the image of the former under, TiHence

o) o
s -ty

since T, Tr; , = Try, and the proposition has already been proved wheis
trivial. O

5. Poincaré Duality for Log. Crystalline Cohomology

Let k be a perfect field of characteristjg, and letW be the ring of Witt vectors
with coefficients ink. Fix an integer > 1 and putW,, = W/p™W. Let S be the
scheme Sp€®,,), and letN be the log. structure afiassociated t&l — W,,,; 1 +—
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a for somea € W,,. Note that we allow the trivial log. structure. L& = Speck)
and let Ny be the inverse image a¥. Let f: (X, M) — (So, Ng) be a smooth
universally saturated morphism (Definition 2.17) of relative dimensidret y be
the canonical PD-structure on the idead.

We will define an idealKy,s of Ox/s on (X/S)'C"fy’S = ((X,M)/(S, N,

POs. ¥)erys and on(X/S)gSe == (X, M)/(S. N. pOs. y))reys (See Defini-
tion 6.2 for the definition of the restricted crystalline site.) Define the shbgk
of monoids on the crystalline sites BY(U, T, My, 8), Mx,s) = I'(T, Mr), and
define the ideaIX/S of MX/S by F((U T, M7, 4), IX/S) {aeT"((U, T, My, d),
Mys)| the image ol in Mr /07 = Mx/0O%+ is contained irp for all points
x € T and allp € Spe€Mx/0% ) of height 1 honzontal with respect W5/
(95 f(x)_)M /O% +}-
LEMMA 5.1. For each PD-thickening(U, T, Mz, §), the stalkk of Iy :=
(IX/S)(UTMT 5 atx € T,is{a € Mrz| The image ot in Mrz = Mx/O%;
is contained inp for all primesp € SpecM;/0% ;) of heightl horizontal with
respect toNf(x)/@* o M=/ 0% ).

Proof. The same as Lemma 2.5. O

COROLLARY 5.2.Let (U, T, My, ) and It be the same as in Lemn&al. As-
sume that we are given a chaft — I'(T, M) with P saturated, and an ele-
mentr € P whose image i (X, M/0%) coincides with the image df under
N—T'(S,N/O%) — TI'(X, M/0O%). Define the ideal of P by:

I = {a € P|a is contained in all primep € SpegP) of heightl which does
not contains }.

Then we havé; = 107.

We define the ideaKX/S of (9X/S by IX/S(9X/S-

LEMMA 5.3. Let E be a quasi-coheren®y,s-module or(X/S)'F‘jgrys. ThenKx,sE
is a quasi-coheren® x,s-module. Especiallyk x,s E is a crystal.

Proof.By Corollary 5.2,(Kx,sE) is a quasi-coherer®@;-module for everyr'.
Hence, it suffices to prove th&ty,sE is a crystal. Since the question is étale local
on X, we may assume that we have an exact closed immersioN,a/) into a
smooth fs log. schem@, L) over(S, N). Let (D, Mp) be the PD-envelope of this
exact closed immersion with respectjtoThen we can verify that the connection
V: Ep — Ep ®, Qy/s induces that oK x,s E) p, which defines a crystaf. We
claim Ky/sE = F. Since we work on the restricted crystalline sikeis anOyxs-
submodule ofE. Hence, it suffices to show that, for any morphigm 7' — D in
(X/S)'ngryg the morphismf*(Kx,s)p — (Kx,s)r is surjective. This follows from
Lemmab.1. O
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Let Ox/s: ((X/S)'ngrys)” — ((X/S)Lor?,s)” be the canonical morphism of topoi.

DEFINITION 5.4. LetE be a locally freg9 x,s-module of finite rank omX/S)'c?gs.
We define the crystalline cohomology and the crystalline cohomology with com-
pact supports by:

Hiogrorys(X /S, E) = H'(X/ )55 E) = H'(X/S)parys Q/sE):

crys Rerys
Hiygoryso(X/S. E) = H'(X/$)$% Kx/sE)

= Hi((X/S)IF(ngryS, Kx/s(Q%/sE)).

We omit E whenE = Oy/s. By reducing to the casg = Sy, we can prove that
these cohomology groups are finitely generated &gmwhenX is proper ovek.
(cf. [B] VIl Theorem 1.1.)

PROPOSITION 5.5Assume thai is proper overk. Then there is a canonical
morphism called trace morphisifr ng’é_crySC(X/S) — W,,. We will prove this
proposition in Section 8.

THEOREM 5.6.Assume thak is proper overk. For a locally freeOx,s-module
E of finite rank on(X/S)L??,S, the pairing induced by the cup product and the
trace morphismHy, .. «(X/S, E) x Hlf,’éférYSC(X /S, E)— W, is perfect. Here
E = Homo,,s(E, Oxs).

Proof. We can reduce to Poincaré duality for de Rham cohomology of
(X, M)/(So, Np) in the same way as [B] VII 2.1. O

This theorem can be applied to the special fiber of a semi-stable family (Example
2.16 withn = 1). In this caseHy-crys = Hiog-crys.:

Remark5.7. Suppose that there still exists a trace morphispn: THlﬁ'é_crysc
(X/S)— W,,, compatible withm which induces Poincaré duality and satisfies
Tre(p(x)) = p"e(Try(x)) without assuming thay is universally saturated, or
equivalently, thatf is of Cartier type. Then, it implies that the Frobenius endo-
morphism onQ ® Iiﬂ mHl’;Jg_crys(X/ W,.) is bijective, which is not true in general
as follows.

Choose an integefprime top and let(X, M) be the scheme Sp@g71/(T¢))
endowed with the log. structure associated\te> k[T]/(T¢); 1 + T. Assume
that Ny is non-trivial and letf: (X, M) — (Sg, No) be thek-morphism induced by
e: N— N. Thenf is étale andX is finite overSp. However,ngg_crys(X/ W) =
W,.[T1/(T*¢) and the Frobenius endomorphism is giveniby> T7?.

In the casef is of Cartier type, O. Hyodo and K. Kato proved in [Hyo-K] (2.23),
(2.24) that the Frobenius endomorphism@m® Hj,,.,<(X/ W) is bijective.
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6. Local Cohomology for Log. Crystalline Topos

Since the definitions and fundamental properties of local cohomology for log. crys-
talline topoi are completely parallel to those for classical crystalline topoi ([B] VI
1), we will just give a sketch of them.

In this section, a sheaf of families of supports is considered in the étale topology,
that is, for a schemé&, a sheaf of families of supportd on X is a sheaf of sets
on Xg such that for any étal&-schemel, ®(U) is a family of supports o/,
and for any morphism of étalg€-schemesf: U’ — U, the restriction mag (f):
O U)— d(U') is given byZ — f~1(2Z).

Let (S, N) be a fine log. scheme with a PD-idedl y), and let(X, M) be a
fine log. scheme oves, N). Assume thay extends taX and that there exists an
integern > 0 such thak©®s = 0.

WhenX — S is locally of finite type, we define the restricted crystalline site as
follows.

DEFINITION 6.1 (cf. [B] IV Definition 1.7.1). Assume thaX is locally of finite
type overS. Let(U, T, My, §) be an object ofX/S)ads = (X, M)/(S, N, I, ¥)erys
We say thatlU, T, My, §) is afundamental thickening there exists an(S, N)-
closed immersion: (U, M|U) — (Y, L) into a smooth fine log. scheme over
(S, N) such that(U, T, M7, §) is isomorphic to the PD-envelope bfvith respect
toy.

DEFINITION 6.2 (cf. [B] IV Definition 2.2.1). Assume thaX is locally of finite
type overS. We define theestricted crystalline site

(X/S)Roys= (X, M)/(S. N, I, 7)Rerys

to be the full-subcategory c(TX/S)L??,S consisting of fundamental thickenings en-
dowed with the induced topology.

Note that the above definition is slightly different from that of [B] IV 2. When
we consider the restricted crystalline gife/ S)'ngrys, we always assume that— §
is locally of finite type. In the following, we writd ((X, M)/(S, N), F) for
L((X/S)&9s F) (resp.T((X/S)nays F)) for a sheaf of Abelian group# on
(X/8)85s (resp.(X/S)pd ).

Let ¢ be a family of supports ork. For a sheaf of Abelian groupg on
(X/S)a5s (resp. (X/S)peys, we define I, (X, M)/(S.N), F) to be {s €
r'(X,M)/(S,N), F)| For each(U, T, M7, §), there exist&Z € ¢ such that the
support of the sectios; of F; defined bys is contained int=1(Z), whereu is the
morphismU — X}. This is left exact orF. We denote b)H‘j,((X, M)/(S,N), F)
its derived functors.

For two families of supportg C ¢ on X, we definel',,, (X, M)/(S, N)), F)
to be the quotient',((X, M)/(S, N), F)/ Ty (X, M)/(S, N), F), and we denote
by H;,, (X, M)/(S, N), F) its derived functors.
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For a sheaf of families of supporfis on X and a sheaf of Abelian grougs on
(X))o (resp.(X/S)'F?grys), we define the subsheBf, (F) C F by L (F)((U, T,
My,8)) = {s € F(U,T, M7, 8))| The sections has its support inb(U) as a
section ofFr}. This is left exact onF. We denote by#¢; (F) its derived functors.

Finally, for two sheaves of families of suppodsC @, we definel’y, , (F) to
be the quotien,, (F)/L, (F), and denote by, ., (F) its derived functors.

For a family of supportg on X, we define the sheaf of families of suppogts
by ¢(U) = {Z|Z is a closed subset d@f such that there exists an open covering
U = U,;U; andZ; € ¢ such that; N Z c u=%(Z;)}. Hereu: U — X denotes the
structure morphism.

For a closed subset c X, we definep, to be the set of closed subsetsHf
and put

ry:=r,,  L[,=TIg, Hj :=H, Hy = H .
For two closed subset8 c Y c X, we definel’y,,,Ty,,, Hy,, and #, ,
similarly.

For a family of supportg on X, we have

H)(F) = lim H}(F), HL(F) = lim 3, (F) (6.3)
Zeg Zeg

and similar isomorphisms faf; ,, and,%’(;/v; (cf. [Ha] IV Section 1).
More generally, wheiX is locally Noetherian, for a subsgt C X stable under

specialization (i.ex € Z andx’ e {x} impliesx’ e Z), we define the family
of supportsp; on X by {Y|Y is a closed subset of and there exists an open
coveringX = U;U; and a finite sefx;; A € A;} C Z for eachi such thatr N U;

is contained iNUsex, {x,}} and definel'z, H., L, #,,Tz/2, Hé/z,,LZ/Z/, and
#,,,, in the same way.

Flasque sheaves are acyclic for the four functors defined above (cf. [B] VI
1.1.6). Hence, for a sheaf of rings on (X/S)&9s (resp.(X/S)'F?grys) and anA-
module F, the local cohomology of" considered in the category d@f-modules
coincides with that ofF as sheaves of Abelian groups since injectisenodules
are flasque.

For a flasque shedf on (X/S)a% (resp.(X/S)'ngrys) and an objecT € (X/S)53
(resp.(X/S)'ngrys), Fr is flasque orfg (cf. [B] VI Proposition 1.1.5). From this, we
obtain the following proposition.

PROPOSITION 6.4 (cf. [B] VI Proposition 1.1.7)et ¥ c & be two sheaves of
families of supports orX and let F be a sheaf of Abelian groups QD(/S)L??,S
(resp.(X/S)sdye). Then, for all(U, T, Mz, 8) € (X/S)85s (resp.(X/S)pgyd, we
have isomorphisms

Jfép(F)T = %étq>‘U(FT), '}db/\y(F)T = Jfég@y/\my(FT)-
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We need the following propositions.

DEFINITION 6.5. Assume thak is locally noetherian. For a sheaf of Abelian
groupsF on (X/S)&3s (resp.(X/S)Egryg and a pointc € X, we define# (F) :=
Hoyamen (-

PROPOSITION 6.6Assume thak is locally noetherian and leZ’ c Z C X be
two subsets stable under specialization. AssumezthatZ\7Z', 7’ € {z},7 # z
impliesz’ € Z'. Then, for any sheaf of rings on (X/S)59s (resp.(X/S)'F?c@’,ys) and
an A-moduler, there exists a canonical-linear isomorphisn@®. ., , #.(F) =

F.,,,(F).
/Z

Proof.Using Proposition 6.4, we can reduce to the corresponding claim for étale
cohomology. O

PROPOSITION 6.7 (cf. [B] VI Proposition 1.1.11)et (®;);cn be a family of
sheaves of families of supports @nsuch that®;,; ¢ ®; and®; = 0@ > 0).
Then, for a sheaf of ringd on (X/S)l:oé’,s (resp.(X/S)'F?grys) and anA-moduleF,

there is a spectral sequence #fmodulese?? = Jf’g:/"@pﬂ(F) = Hg, (F).

For an open immersioft V — X, we denote byjcrys the morphism of topoi
(V/S)g99™ = (X/9)§99 ™/ Verys = (X/5)§59™

(resp ((V/S)meyd™ = (X/S)iagyd ™/ Verys = (X/S) 3oy )

where Vs denotes the sheaf of sets definediiyU, T, My, §), Verys) = Homy
(U, V). Let Y be the closed subscheme Kfdefined by the ideal generated by
some sections,, ..., 7; € I'(X, Ox). LetU,, (1 <ig < --- < iy <d) bethe
locus where,,, ..., 1, are invertible and lej;, ; be the inclusiorU;, ; — X.
For a sheaf of Abelian groups on (X/S)ed (resp.(X/S)'F‘jgrys), we define the
complexCy, ,,(F)to be

Ctkl rd(F) = @ (jio,...,ikcrys)*(jio,...ikcrys)*F

1<ig<<ixy <d

.....

with the differential homomorphisms defined by the usual alternating sums.

PROPOSITION 6.8 (cf. [B] VI Proposition 1.2.9)et F be anOx,s-module such
that, for each(V, T, My, 8) € (X/S)'C"fy’S (resp.(X/S)'F‘jg,yS), Fv.1.07.5) IS @ quasi-
coherent®@7-module. ThenkL, (F) is canonically isomorphic to the complex
0— F— (..., (F)— 0, whereF is placed in degre®. Especially, ifF is quasi-
coherent,,%;’(F) is quasi-coherent, and if is a quasi-coherent x,s-module on

(X/S)'F‘jgrys, then¢}, (F) are quasi-coherent for afl.
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7. Cousin Complex on Log. Crystalline Topos

LEMMA 7.1. Let X be a locally noetherian scheme and {etc ¢ be two fam-
ilies of supports onX. Let F be a quasi-coheren® x-module. Lete denote the
projection Xz, — X7, ThenRe, (H: . _(F)) = H! - (F) and, for any étale

] eto/y Zarg/y
morphismu: U — X,
i ~ * i
Jféw/d;(F”UZar: (uzar) RZar,@/x/N/(F)’

where the left-hand side is the sheaf@,, obtained by restriction.

Proof. We prove the claim for%j,Y/Z(F)(o = ét Zar) for closed subschemes
Y and Z of X such thatZ c Y. The general case follows from this and the
isomorphism

H L GF)E DMy, (F) (e = 6t Zan.

Yep,Zey
Via g

For any®x-moduleF on X, we have a canonical homomorphism

EZar,Y/z(g*F) - 8*£éty/z(F), (7-2)

which makes the following diagram commute.

0 8*£ét,z(F) _— S*Eéty(F) _— 8*£ét,y/z(F)

0—— LZar,Z(‘g*F) - £Zar,Y(‘9*F) - LZar,Y/Z(S*F) — 0

Since the functors’;, /7, Lay,z, @nde, preserve flasque sheaves and flasque
sheaves are acyclic for these functors, the homomorphism (7.2) induces a morph-
ism of functors

RLz4y/7Re— ResRL gy /7 (7.3)

If F is flasque, the homomorphism (7.2) is an isomorphism singe (F) is
flasque and hencﬁls*(LétZ(F)) = 0. This implies that the morphism (7.3) is
an isomorphism.

SinceRe,.§ = G for a quasi-coheren® x-moduleg on Xg;, it remains to prove
that #, , (F) is quasi-coherent i is quasi-coherent. This follows from the
following sublemma. O

SUBLEMMA 7.4. Let X be a scheme and lét c X be the closed subscheme
defined by the ideal generated by a sequence of sedtions, t; € I'(X, Ox).

LetUj, ., C X be the maximal open subsetXfwherer, ..., is invertible

.....
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for1<ip <--- < iy <dandletj, ; betheinclusiorU;, ; — X.LetF be
a quasi-coherent) x-module onXg and letC;, _,, (F) be the complex whosggh
usual alternating sum of the+ 2 homomorphisms. TheRl,, , (F) is canonically
isomorphic to the complek — C;, ., (F), whereF is placed in degreé.

Let (S, N) be as in the beginning of Section 5.

COROLLARY 7.5. Let g: (Y,L)— (S, N) be a smooth universally saturated
morphism, and lef, be as in Sectio2. Then, for any locally fre®y-module of
finite rank F and any integed > 0, we have%étxd/xdﬂ(lgF) =0( # d),
whereX“ denotes the set of points of codimensicin X.

Proof. By Lemma 7.1, it suffices to prove the corresponding claim for Zariski
cohomology. We may assunieis quasi-compact. Then, sinég®y is a dualizing
complex onY by Theorem 2.21, the claim follows from [Ha] V Proposition %8.

Let f: (X, M) — (So, No) andKx,s be as in Section 5.

PROPOSITION 7.6or any locally free® x,s-moduleE of finite rank or(X/S)'ngrys
and any integet/ > 0 ﬂ;d/xd+1(KX/SE) =0(@G #d) and Jf’;,,/xd+1(KX/SE) is a
crystal of@x,s-module, wherex? denotes the set of points of codimensicin X.
Proof. By Proposition 6.8 and (6.3¥!, (K x,sE) is a crystal. Hencé‘(’;d/xdﬂ
(Kx/sE) is a crystal. So the vanishing of the cohomology of degrged follows

from Corollary 7.5 and Proposition 6.4. O
By Proposition 6.7, we obtain the following corollary.

COROLLARY 7.7.Under the assumption of Propositigts, we have a resolution
of KX/SE

Kx/;sE — Jfgo/xl(KX/SE)_)ﬂ)]('l/xz(KX/SE)

- _>f%§d/xd+1(KX/SE)_>

8. Construction of the Trace Morphism

DEFINITION 8.1. For a locally Noetherian scherie a sheaf of Abelian groups
on X, (e = ét Zar), and a poinix of X, we define#; .(F) := %ﬁ)m/(m\{x})(ﬂ.

We have an isomorphisi¥,, . (F) = i, Hy,,  (F), wherei, is the morphism
x — X ([Ha] IV Section 1 Variation 8 Motif F).

Let (S, N) be the same as in Section 5, anddet(Y, L) — (S, N) be a smooth
universally saturated morphism whose underlying morphism of schemes is of
finite type. Assume that is of constant dimension. We define the complex
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3, (1,(25%)) (e = ét Zan for y € Y to be
=0 L (1,0y) — Hi (L (%)Y
S o I Q)" > H (L (%)) = 0 -+,

where J(’j,y(lg@y) is placed in degree 0. Lat, denote the morphism of topoi
Y — Yz, Then by Lemma 7.1,

Rey, (34, (I(Qp5))) = Hbar, (1,(Q5%)). (8.2)

On the other hand, we obtain from Proposition 4.1 a morphism

RSyt R"gzan (HFary (L, (2555)) — Os,

for each closed point € Y.

Let (So, Ng) be the same as in Section 5 and fet (X, M) — (So, No) be a
smooth universally saturated morphism whose underlying morphism of schemes
is of finite type. Assume thak is of constant dimension. Let ex denote the

morphism of topoiX;, — X7, and leticy,s be the projectiom(X/S)Egrys)” — X

LEMMA 8.3. Letx € X be a point. Lelg: (Y, L) — (S, N) be a smooth lifting of
an open neighborhood c X of x. Then we have a canonical isomorphism

_ ; ~ . | .
R(exiix/s)« Hi(Kxs) = v H bar (Ig(Q2y)5)),

wherei, denotes the morphisim: x — X.
Proof. Let j denote the morphisiy < X. Since we have an isomorphism

. — ; ~ - . I .
JTIR(extin/s)s HL(Kx/s) = it H banx (Ig(Ry)5))

by Proposition 7.6, Proposition 6.4, and (8.2), whérelenotes the morphism
x — U, itis sufficient to prove that the morphism

R(gXﬁX/S)*%;(KX/S) — Rj*j_l(R(gXﬁX/S)*%;(KX/S))
is an isomorphism. Since the question is Zariski localXonwe may assume
that there exists a lifting’: (Y’, L") — (S, N) of f globally. Then we have an
isomorphism
— i ~ - . | .
R(extins)«Hi(Kx/s) = ixaH bar Ly (Ryp1)5) )

The claim follows from this. O

Let fx/s: (X/S)qayd™ — (Szan™ be the compositgzae xiix,s.
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PROPOSITION 8.4 (cf. [B] VII Proposition 1.2.8jor a closed poink € X, there
exists a unigue homomorphism®§-modulesRes;: R”" fx/s«(H) (Kx/s)) = Os
such that, for any smooth universally saturated lifting (Y, L) — (S, N) of an
open neighborhood of x, the following diagram commutes

Ress
R" fxs:(Hy (Kx/s)) il Os
¢||Lemma 83 H (8.5)
n . I . Res x
R" g a5 (HFary (I (%)) —=— O

Proof. The existence of a neighborhood and a lifting follows from [K1] Propos-
ition (3.14). Choos&/ andg and define Res, by the commutative diagram (8.5).
Since, for any affine open neighborhoédof X and any two liftings(Y, L) and
(Y’, L"), there is an(§S, N)-isomorphism(Y, L) = (Y’, L’) compatible with the
embeddings ofU, M|U) (loc. cit.), this definition does not depend on the choice
of U andg. O

LEMMA 8.6 (cf. [B] VIl Lemma 1.4.1).R'uy,s. commutes with direct sums.

Proof. Since the question is étale local ah we may assume that there exists
a closed immersion ofX, M) into a smooth fs log. schem@, L) over (S, N).
Then there exists an isomorphism

Rﬁx/s*?f = (ﬁx’x) —> ‘?:'(X,Dx(Y)) — ‘?'(X,Dx(Yz)) — .. .)’

(cf. [B] V Proposition 1.3.1) and each term of the complex commutes with direct
sums. 0

Let X¢ be the set of points of codimensiarof X.

LEMMA 8.7 (cf. [B] VII Proposition 1.4.2).Assume thaX is quasi-compact.
(1) Forall i and j, the homomorphism

B R fxys(HLK /) = R frysHi i (Kxys))

xexi\xi+1

is an isomorphism.
(2) FOI'a”i,R"fX/S*(Jeli/XHl(KX/S)) :0’ J > n.

Proof. (1) This follows from Proposition 6.6, Lemma 8.6 and the fact that
R f7ar and Rey,, commute with direct sums. Note th&tis Noetherian.

(2) By (1), itis enough to prove&’ fx s.(H#:(Kxs)) = 0forx € X andj > n.
This follows from Lemma 8.3. a
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By Lemma 8.7 and Proposition 8.4, we obtain@glinear homomorphism
Res: R" fx;s«(Hyn(Kx/s)) = Os. (8.8)

PROPOSITION 8.9 (Residue Theorem) (cf. [B] VIl Proposition 1.A83ume that
X is proper overk. Then the composite

Re
R" fxs:(Hn1)xn (Kx/s)) = R" fx/s5:(Hxn (Kx/5)) =, 0
is 0.
In the following until the end of the proof of Proposition 8.9, we simply write

X,Y,...,instead of(X, M), (Y, L), ..., for log. schemes. We will need an ana-
logue of [B] VII 1.3 for fine log. schemes.

LEMMA 8.10. Let X and S be fine log. schemes, l¢gt X — S be a log. smooth
morphism, letl be an ideal 09 such that/? = (0), and letSy — S be the exact
closed immersion defined by Let X, := X x5 So and leti be the exact closed
immersionXg — X.

(1) Define the presheahurs(X/ Xo) on (Xo)et by
(U, Auts(X/Xo)) = {o € Autg(X|U)| o 0 i|U = i|U}.
Then there is a canonical isomorphism
Auts(X/Xo) = Homeo, ("5, 10x).
EspeciallyAuts(X/ Xo) can be regarded as a quasi-coheregg,-module.
Let Zo — X, be an exact closed immersion and Adbe an arbitrary positive
integer. Letug: Wy < Xg (resp.u: W < X) be the exact closed immersion
whose underlying morphism of schemes givescthenfinitesimal neighborhood

of Zg in X (resp.X). Letj be the morphisnivy < W.
(2) Define the presheatuzs(W/ Wp) on (Wp)et by

T(V, Auts(W/Wo)) = {t € Autg(W|V)| T 0 j|V = j|V].
Then there is a canonical isomorphism
Auts(W/Wo) = Homo, (55, 10w).
EspeciallyAuts(W/Wp) can be regarded as a quasi-coher&hy,-module.
(3) The homomorphismtuzs(X/Xo) — ug.Auts(W/ Wo) defined by restric-

tion is a homomorphism ax,-modules. Iff is integral, this is surjective as a
morphism of sheaves.

https://doi.org/10.1023/A:1001020809306 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001020809306

POINCARE DUALITY FOR LOGARITHMIC CRYSTALLINE COHOMOLOGY 37

Proof. (1) and (2) follows from [K1] Proposition (3.9). The surjectivity in (3)
follows from an analogue of [B] VIl Lemma 1.3.2 for fine log. schemes in the same
way as [B] VII Corollary 1.3.3. Left to the reader for details. O

DEFINITION 8.11 (cf. [B] VII Definition 1.3.1). LetX andS be fine log. schemes,
let /- X — S be a log. smooth morphism, let <— X be an exact closed im-
mersion, and lek be an arbitrary positive integer. L& <> X be the exact
closed immersion whose underlying morphism of schemes givegtihafinites-
imal neighborhood o in X. Let S — S’ be an exact closed immersion, et
be the ideal of®s defining S and letS, < S’ be the exact closed immersion
defined by/"*+!. We say that arf,-fine log. schemé¥, with an S-isomorphism
W = W, x5, S is adeformation of order if it satisfies the following condition.
For eachy € Z, there exist an étale neighborhobif x in X as a scheme and a
log. smooth liftingU,, — S,, of f|U such that there is afj,-isomorphism between
W,|U andW, which induces the identity o |U. HereW, is thekth infinitesimal
neighborhood ofZ|U in U, endowed with the inverse image log. structure.

LEMMA 8.12. Keep the notation and assumption of Definit®bhl. Furthermore
assume thatf is integral and the underlying scheme Xfis affine. Letn be a
positive integer and leW,_; be a deformation of ordet — 1 of W. Then, there
is a deformation of ordern W, with an S,_;-isomorphismW,_, = W, x s,S,_1
which induces the identity oW. Furthermore such a deformation is unique up to
isomorphisms.

Proof. There existdV, étale locally onX, and two deformation®, andW, are
isomorphic étale locally oX by Lemma 8.10 (3) (cf. [B] VII Proposition 1.3.4).
Hence the lemma follows from Lemma 8.10 (2). O

COROLLARY 8.13 (cf. [B] VII Corollary 1.3.7) Keep the notation and assump-
tion of Definition8.11. Assume thaf is integral, the underlying scheme #fis
separated, and the underlying scheme&a$ noetherian of dimensioch Then, for
all n, there exists a deformation of orderof W.

Proof of Proposition8.9. The proof is essentially the same as that of [B] VII
Proposition 1.4.5. By Lemma 8.7, it is sufficient to prove that for asyX”—1\ X",
the composite

R" fx s« H(Kxys) — Ran/S*Jf{%\{Z}(KX/S)

= ED R" fx s+ Hy (Kx/5) = Os

xe{z}\{z}

is 0, where the last morphism is the sum of Res
Fix z € X" 1\X" anda € R" fx;s: H#" *(Kx,s). Choose and fix an affine open
neighborhood’/ C X of z and a log. smooth lifting: V — § of f|U such thatv
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has an fs. log. structure. By Lemma 8.3, there is a surjedﬁ;gglz(lg(ﬁeﬁs)") —

R"fx/s*e}f;‘l(Kx/s). Let b be a lifting ofa under this surjection.

Let i, be the morphismy — V and letZ be the closure ofz} in X with the
reduced induced closed subscheme structurek beta positive integer such thiat
is killed by thekth power of the defining ideal of the closed immersionU — V
as a section of the quasi-coherm-moduleiz*Hg’a‘,’lz(Ig(sz"c,’?s)”).

Leth: W — S be a deformation of ordern — 1 (Definition 8.11) of thekth
infinitesimal neighborhood® of Z c X. Since the dimension df is 1, such a
deformation exists (Corollary 8.13). Furthermore, by Lemma 8.12, we may assume
that we are given ag-exact closed immersion: W N U < V such that the
following diagram commutes arif NU becomes &th infinitesimal neighborhood
of ZNU < V by this morphisnu.

ZONU — wnuU

u

U V.

By Theorem 2.21, we have isomorphisms
(MW NU)A0s5 = utg”0y
= w*Home, (Ownv, g 0s)
= T Homo, (Owny, E(I(Q)%)" [n])

and, hence, an isomorphism

([W N2 05) L Z 7 Home, (Owny. i Hig (I(Q5)M).  (8.14)

Zar,z

Hereu denotes the morphism of ringed spa¢BsN U, Owny) = (V, u.(Owny)).
Since the codimension functiahassociated to the dualizing compléxh“ )
is d(x) = codimz(x) — 1, we have isomorphisms

(h*05)° = @rer\( (B 0s)Y, (8.15)
(hh20) L= (MW NU)(hW NU)204) 72 (8.16)

By the choice ok and the isomorphisms (8.14) and (8.16), we can regasl an
element o1, (h* )1, which we denote by’

Claim.For anyx € Z\{z}, the image of: under the composite

_ 5 Res:.
R" fx/seH Y(Kx/s) — R" fx/ss H" (Kxs) ik

O (8.17)
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coincides with the image af under the composite

h(h2 09 s h(h205)? T2 0. (8.18)

Here§ denotes the-component of the homomorphism’fy/s*,}f;—l(Kx/S) —
R" fx sty 1o (Kx/s) (resp.h,(h*Os)~t — h,(h*05)°) and Reg, denotes the
restriction of the trace map to thecomponent.

Sinceh'dis proper/ is also proper. Hence, by the Residue Theorem (Theorem
1.4), the sum of the images af under the homomorphisms (8.18) is 0. Hence the
proposition follows from this claim.

We will prove the claim in the following. Take an affine open neighborhtod
of x in X and a log. smooth lifting’": V' — S of f|U’ such thatV’ has an fs log.
structure. LetW’ be thekth infinitesimal neighborhood of N U’ in V' endowed
with the inverse image of the log. structure Bf, and leth’ be the morphism
W' — S.PutU” = UNU'. Then, by Lemma 8.12, [K1] Proposition (3.14) (1) and
Lemma 8.10 (3), there exist aftisomorphismey: W = W N U’ compatible
with the embeddings af N U’ and anS-isomorphismey: V' NU" = Vv NU"
compatible with the embeddings bf’ such that the restriction afy to W N U”
coincides with the morphism induced by.

Let e(b) be the image ob under the isomorphism

-1 lo ~ -1 lo
H;al’,z(lg(szv?s)n) = H;ar’z(Ig|VﬂU//(QV%UN/S)n)
£V -1 lo
- Hgar,z(Ig’\V’ﬂU”(QvgmU”/s)”)

= Hy (L (@),
Then the image of under the morphism (8.17) coincides with the image @f
under the composite

n— | 8 [ Regy
HZar,lz(Ig’(Q\(/)’g/S)n) - Hgar,x(lg’(g\?’g/s)n) — Os.

Lete(a’) be the image of’ under the isomorphism

he (205" = (W N U (W N U205t Vs h. (W05t

Then the image of’ under the morphism (8.18) coincides with the image (af)

. l (3 A 0 Re%’,x
under the composite, (K> Os) ™t — h (K> O5)? s Os.
The image ok (a’) under the isomorphism

1, (W O5)™ = Homy,,, (O, iL, Hyzt (I (2955)")

%

coincides with the element defined bgb), wherei’ is the morphism’: z — V',
Hence the image of(a’) under the trace map Jr h.(h'*O0s)~t — gL(g'*Os) 7%,
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whereu’ is the exact closed immersioW’ < V’, coincides with the image
of ¢(b) under the inclusioﬂig’a}i(Ig/(Q"‘,’Q/S)”) — g/(g"®05)7L. Therefore the
claim follows from the following commutative diagram (Theorem 1.2 (1) and
Theorem 1.4).

B2 5™ e H(H05)0 —+ O

Tl'u/ Tl’u/ ‘
Re/x

gL(g 09— gl(g205)° —x 0.

Let E(Kx/s) be the Cousin complex

—-0— Jfgo/xl(KX/S) — Jf)]él/xz(KX/S)

= e o H 0 (Kxys) = Hin(Kxys) = 0— -

Then the morphisnKx,s — E(Kx/s) gives a resolution oKy ,s (Corollary 7.7),
and we obtain the spectral sequence

Ey) = ijX/S*('}f;i/XHl(KX/S)) = R* fxs:Kx/s.
By Lemma 8.7 (2), we obtain an exact sequence
R" fxyse( s xu(Kxys) = R" fxysu(Hin (Kx/s)
— R? fy/s.(Kx/s) — 0.
Hence, by Proposition 8.9, we obtain the following theorem.

THEOREM 8.19 (cf. [B] VIl Theorem 1.4.6)Assume thalX is proper overk.
Then there exists a uniqugs-linear homomorphism (called trace morphisiiy:
Rz"fx/s*(KX/S) — Og such that, for all closed points, the following diagrams
commute.

Res .

Os

Tre
R” fx/s:(Kx/s) 4 Os.

R" fx ;s (Hy (Kx/s))
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