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Total Character of a Group G with
(G , Z(G)) as a Generalized Camina Pair

S. K. Prajapati and R. Sarma

Abstract. We investigatewhether the total character of a ûnite group G is a polynomial in a suitable
irreducible character of G. When (G, Z(G)) is a generalized Camina pair, we show that the total
character is a polynomial in a faithful irreducible character of G if and only if Z(G) is cyclic.

1 Introduction

_roughout this article,G denotes a ûnite group. Let Irr(G), nl(G) and lin(G) be the
set of all irreducible characters of G, the set of all nonlinear irreducible characters of
G and the set of linear characters of G, respectively. Suppose that ρ is the direct sum
of all the non-isomorphic irreducible complex representations ofG. _e character τG
aòorded by ρ is called the total character of G, that is, τG = ∑χ∈Irr(G) χ. Since τG is
stable under the action of the Galois group of the splitting ûeld of G, τG(g) ∈ Z for
all g ∈ G. _e dimension of the total character of a group seems to have remarkable
connectionwith the geometry of the group. For instance, in the case of the symmetric
group G = Sn , τG(1) is the number of involutions of Sn [9], whereas in the case of
G = GL(n, q), τG(1) is the number of symmetricmatrices in GL(n, q) [3]. Degree of
total character is discussed by many authors [4,6, 13, 15, 16].
A consequence of a well-known theorem due to Burnside and Brauer [5,_eorem

4.3] is that the total character of the group G is a constituent of 1+ χ+ ⋅ ⋅ ⋅ + χm−1 if χ is
a faithful character which takes exactly m distinct values on G. M. L. Lewis and S. M.
Gagola [2] classiûed all the solvable groups for which χ2 = τG for some χ ∈ Irr(G).
Motivated by this, K. W. Johnson raised the following question (see [14]).
Do there exist an irreducible character χ ofG and amonicpolynomial f (x) ∈ Z[x]
such that f (χ) = τG?

_e aim of the article is to solve a weaker version of the same, i.e., to examine the
existence of f (x) ∈ Q[x] and χ ∈ Irr(G) such that f (χ) = τG . We call such a poly-
nomial f (x) ∈ Q[x], if it exists, a Johnson polynomial of G. _is problem has been
studied for dihedral groups D2n in [14]. In fact, the authors have proved that D2n has
a Johnson polynomial if and only if 8 ∤ n.

To describe the classes of groups to which our results apply, we recall some deû-
nitions. A pair (G ,N) is said to be a generalized Camina pair (abbreviated GCP) if
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N is normal in G and, all nonlinear irreducible characters of G vanish outside N [12].
_ere are a number of equivalent conditions for (G , Z(G)) to be a GCP. An equiva-
lent condition we will refer to is that a pair (G , Z(G)) is a GCP if and only if, for all
g ∈ G ∖ Z(G), the conjugacy class of g in G is gG′.

In this article,we compute the total character τG of a groupG forwhich (G , Z(G))

is a generalized Camina pair and prove a necessary and suõcient condition for the
existence of a Johnson polynomial. Our main results can be stated as follows.

_eorem 1.1 Let (G , Z(G)) be a GCP. _en G has a Johnson polynomial if and only
if Z(G) is cyclic. In fact, if Z(G) is cyclic, then a Johnson polynomial of G is given by

f (x) = d2
r

∑
j=1

(x/d)l j
+ d

m

∑
j=1
l∤ j

(x/d) j ,

where d = ∣G/Z(G)∣1/2, r = ∣Z(G)/G′∣, m = ∣Z(G)∣, and l = ∣G′∣. In particular,
f (x) = d2(x/d)m + d∑m−1

j=1 (x/d) j when Z(G) is cyclic and Z(G) = G′.

In the last section, we apply the above theorem to prove the following.

_eorem 1.2 If G is a non-abelian p-group of order p3 or p4, then G has a Johnson
polynomial if and only if Z(G) is cyclic and G′ ⊆ Z(G).

_e character aòorded by the regular representation shares certain propertieswith
the total character of a group, and so the same questionmay be asked of it. We say that
a group G has a regular-Johnson polynomial f (x) ∈ Q[x] if there is some χ ∈ Irr(G)

such that ρG(g) = f (χ(g)), where ρG is the character of the regular representation
of G. In the following theorem a group having a regular-Johnson polynomial is char-
acterized.

_eorem 1.3 LetG be a ûnite group. _en G has a regular-Johnson polynomial if and
only if G has a faithful irreducible character.

Proof Let G has a regular-Johnson polynomial f ∈ Q[x] with χ ∈ Irr(G) such that
ρG(g) = f (χ(g)) for all g ∈ G, where ρG is the regular character. Now we will show
that χ is faithful. On the contrary, let g ≠ 1 ∈ ker(χ). _en 0 = ρG(g) = f (χ(g)) =
f (χ(1)) = ρG(1), which is a contradiction. Conversely, let χ ∈ Irr(G) be a faithful
character of G. Suppose that f (x) = ∏g≠1∈G

x−χ(g)
χ(1)−χ(g) . _en f (χ(g)) = ρG(g) for

all g ∈ G. _e coeõcients of f (x) manifestly lie in the cyclotomic ûeld Q[ξ], where
ξ = e2πi/n and n = ∣G∣. Next we show that f (x) ∈ Q[x]. Consider the Galois group
G ∶= Gal(Q[ξ]/Q). _en Z×n ≅ G by r ↦ σr(ξ) ∶= ξr , where Z×n consisting of all
congruence classesmod n of integers coprime to n. _eGalois groupG acts on Irr(G)

by σ .ϕ(g) = tr(σρ(g)), where ϕ ∈ Irr(G) and ϕ is aòorded by the representation
ρ, and σρ is deûned by ûrst realising ρ as matrices over Q[ξ], and then evaluating
(σρ)(g) = σ(ρ(g)) entry-wise. _erefore we have σ .ϕ(g) = ϕ(gr) if σ = σr (as
described above), where r is coprime to n = ∣G∣. Since g ↦ gr is a permutation of G
ûxing 1, the coeõcients of f (x) are rational.
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2 Further Notation and Preliminaries

_roughout this article, Cn denotes the cyclic group of order n. Suppose G is a û-
nite group. _en Z(G), G′ and Cl(G) denote respectively the center, the commu-
tator subgroup and the set of conjugacy classes of G. If a, b ∈ G, then ba = b−1ab,
[a, b] = a−1b−1ab. Here cd(G), d(G), and Φ(G) denote the set of irreducible char-
acter degrees, the minimal number of generators of G, and the Frattini subgroup of
G, respectively. Suppose N is a normal subgroup ofG. _enwe denote by Irr(G∣N) =

Irr(G) ∖ Irr(G/N). Here we start by recalling some basic results.

Lemma 2.1 ([5, _eorem 2.32(a)]) If G has a faithful irreducible character, then
Z(G) is cyclic.

Lemma 2.2 Let G be a non-abelian group. _en ∑χ∈lin(G) χ(g) = 0 for each g ∈

G ∖G′.

Proposition 2.1 exhibits the relationship between faithful characters and groups
having Johnson polynomial.

Proposition 2.1 Let G be a ûnite group. Suppose f (x) ∈ C[x] and χ is a character of
G such that f (χ) = τG . _en χ is a faithful character. In particular, an abelian group
has a Johnson polynomial if and only if it is cyclic.

Proof Suppose f (x) ∈ C[x] and χ is a character of G such that f (χ) = τG with
ker(χ) ≠ {1}. Since ∩ϕ∈Irr(G) ker(ϕ) = {1}, τG(1) ≠ τG(g) for all g ≠ 1 ∈ G. Take
g ≠ 1 ∈ ker(χ). _en τG(1) = f (χ(1)) = f (χ(g)) = τG(g), which is a contradiction.
_is shows that χ must be a faithful character. Hence an abelian group G having a
Johnson polynomial implies that G is a cyclic group. For the converse, consider the
polynomial f (x) = ∑∣G∣−1

i=0 x i .

To show that G provides a negative answer to Johnson’s question, we will later in-
troduce a speciûc character and then attain a contradiction. For this, we need the
following proposition, which is a simple observation.

Proposition 2.2 Let χ be an irreducible character of G. If g1 , g2 ∈ G are such that
χ(g1) = χ(g2) but τG(g1) ≠ τG(g2), then there does not exist f (x) ∈ C[x] such that
f (χ) = τG .

3 Groups with (G , Z(G)) a Generalized Camina Pair

In this section,we study the total character of a groupG forwhich (G , Z(G)) is a gen-
eralized Camina pair (abbreviated as GCP). _e notion of generalized Camina pair
was ûrst introduced by Lewis [12]. _e groups with (G , Z(G)) a GCP were studied
under the name VZ-groups by Lewis [11]. First, we record a couple of lemmata that
will be useful.
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Lemma 3.1 ([12, Lemma 2.1]) Let g ∈ G. _en the following statements are equiva-
lent.
(i) _e conjugacy class of g is the coset gG′.
(ii) χ(g) = 0 for all nonlinear χ ∈ Irr(G).

Lemma 3.2 ([12, Lemma 2.4]) Let H be a normal subgroup of a group G such that
(G ,H) is a GCP. _en G′ is a subgroup of H.

3.1 Remarks on a Group G with (G , Z(G)) a Generalized Camina Pair

Let (G , Z(G)) be a GCP. Suppose χ is a nonlinear irreducible character of G. _en

χ↓Z(G) = χ(1)λ

for some λ ∈ Irr(Z(G)). _us

∣G∣ = ∑
g∈G

∣χ(g)∣2 = ∑
g∈Z(G)

∣χ(g)∣2 (since (G , Z(G)) is a GCP)

= ∑
g∈Z(G)

∣χ(1)λ(g)∣2

= χ(1)2
∣Z(G)∣.

_erefore the degree of any nonlinear irreducible character of G is ∣G/Z(G)∣1/2. Sup-
pose n is the number of nonlinear irreducible characters of G. _en

∣G∣ = ∑
χ∈Irr(G)

χ(1)2
= ∣G/G′

∣ + n.χ(1)2 .

_erefore the total number of nonlinear irreducible characters of G is

∣Z(G)∣ − ∣Z(G)/G′
∣.

Let η∶G → G/G′ be the natural homomorphism and let ϕ∶ Irr(G/G′) → Irr(Z(G))

be deûned by ϕ(λ) ∶= λ ○ η. Suppose X ∶= {λ ∈ Irr(Z(G)) ∣ λ ∉ Image(ϕ)} and
Φ̂∶X → nl(G) deûned by

(3.1) Φ̂(λ)(g) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

∣G/Z(G)∣1/2λ(g) if g ∈ Z(G),
0 otherwise.

_eorem 3.1 Suppose (G , Z(G)) is a GCP. With the notation in the preceding para-
graph, themap Φ̂ is a bijection. In other words,

nl(G) = {Φ̂(λ) ∣ λ ∈ Irr(Z(G)) and G′
⊈ ker(λ)}.

Proof Clearly Φ̂ is one-to-one. Let χ ∈ nl(G). _en χ↓Z(G) = ∣G/Z(G)∣1/2λ, where
λ ∈ Irr(Z(G)). Wemust show that λ ∈ X. Suppose λ ∉ X. _en G′ ⊆ ker(λ). Hence
χ↓Z(G)(G′) = ∣G/Z(G)∣1/2 = χ(1). _us χ ∈ lin(G), which is a contradiction. Hence
Φ̂ is a bijection.

In the following proposition we discuss the total character τG of G.
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Proposition 3.1 Let (G , Z(G)) be a GCP. _en the total character τG is given by

(3.2) τG(g) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∣G/G′∣ + (∣Z(G)∣ − ∣Z(G)/G′∣)∣G/Z(G)∣1/2 if g = 1,
∣G/G′∣ − ∣Z(G)/G′∣.∣G/Z(G)∣1/2 if g ∈ G′ ∖ {1},
0 otherwise.

Proof Set A ∶= Irr(Z(G)) ∖ Irr(Z(G)/G′). By _eorem 3.1, nl(G) = {Φ̂(λ) ∣ λ ∈

A} and χ(1) = ∣G/Z(G)∣1/2 for all χ ∈ nl(G).
If g = 1, then τG(1) = ∣G/G′∣+(∣Z(G)∣− ∣Z(G)/G′∣)∣G/Z(G)∣1/2. If g ∈ G∖Z(G),

then by the hypothesis of the proposition and Lemma 2.2, we get

τG(g) = ∑
χ∈Irr(G)

χ(g) = ∑
χ∈lin(G)

χ(g) = 0.

For g ≠ 1 ∈ Z(G), we have

(3.3) 0 = ∑
ψ∈Irr(Z(G))

ψ(g) = ∑
ϕ∈Irr(Z(G)/G′)

ϕ(g) + ∑
λ∈A

λ(g).

If g ≠ 1 ∈ G′ ⊆ Z(G), then

τG(g) = ∑
χ∈lin(G)

χ(g) + ∑
χ∈nl(G)

χ(g)

= ∣G/G′
∣ + ∣G/Z(G)∣

1/2
∑
λ∈A

λ(g)

= ∣G/G′
∣ − ∣Z(G)/G′

∣.∣G/Z(G)∣
1/2 (by (3.3)).

Finally, if g ∈ Z(G) ∖ G′, then by Lemma 2.2 and (3.3), we get τG(g) = 0. _is
completes the proof.

With these technical results we give the proof of_eorem 1.1.

Proof of_eorem 1.1 Suppose that Z(G) = ⟨g⟩ is a cyclic group of order m. Since
(G , Z(G)) is a GCP, by Lemma 3.2, G′ ⊆ Z(G). Let G′ = ⟨gk⟩, ∣G′∣ = l , and
∣Z(G)/G′∣ = r. Set ζm = e

2πi
m . _e homomorphism λζm ∶ Z(G)→ C∗ given by g ↦ ζm

deûnes a faithful linear character. Hence Z(G) ≅ Irr(Z(G)) = ⟨λζm ⟩. _e set of ir-
reducible characters of Z(G)whose kernel contains G′ is {λ l

ζm , λ
2 l
ζm , . . . , λ

r l
ζm}. Hence

nl(G) ∶= {Φ̂(λ i
ζm) ∣ i = 1, . . . ,m and l ∤ i}, where Φ̂ is the map deûned in (3.1).

Obviously ∣nl(G)∣ = ∣Z(G)∣ − ∣Z(G)/G′∣. Let

f (x) = d2
r

∑
j=1

(x/d)l j
+ d

m

∑
j=1
l∤ j

(x/d) j ,

where d = ∣G/Z(G)∣1/2.

Assertion If χ = Φ̂(λζm), then f (χ) = τG .
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Proof of the Assertion If g = 1, then

f (χ(1)) = d2
r

∑
j=1

(χ(1)/d)l j
+ d

m

∑
j=1
l∤ j

(χ(1)/d) j

= d2r + d(m − r)

= ∣G/G′
∣ + ∣G/Z(G)∣

1/2
(∣Z(G)∣ − ∣Z(G)/G′

∣)

= τG(1) (by (3.2)).

Let a ≠ 1 ∈ G′. _en a = gkq where 1 ≤ q ≤ (l − 1). So

f (χ(gkq
)) = d2

r

∑
j=1

(χ(gkq
)/d)l j

+ d
m

∑
j=1
l∤ j

(χ(gkq
)/d) j

= d2
r

∑
j=1

(e
2πikq

r )
j
+ d

m

∑
j=1
l∤ j

(e
2πikq

m )
j

= d2 .r + d(−∣Z(G)/G′
∣)

= ∣G/G′
∣ − ∣Z(G)/G′

∣.∣G/Z(G)∣
1/2

= τG(gkq
) (by (3.2)).

Finally, let g s ∈ Z(G) ∖ G′. _en s is not a integer multiple of k. Now by using the
similar arguments as in the above casewe get f (χ(g s)) = 0 = τG(g s). _is completes
the assertion.

On the other hand, if Z(G) is non-cyclic, then G has no faithful irreducible char-
acter. _erefore, from Proposition 2.1, G has no Johnson polynomial. _is completes
the proof.

Remark 3.1 Since the set of character values of Φ̂(λ i
ζm) does not depend on i when

(i ,m) = 1, we have f (Φ̂(λ i
ζm)) = τG .

As a consequence of_eorem 1.1, we get the following:

Corollary 3.1 Every extra-special p-group has a Johnson polynomial.

Proof Suppose G is an extra-special p-group. _en Z(G) = G′ and ∣Z(G)∣ = p and
by [8,_eorem 2.18], (G , Z(G)) is a GCP. _erefore by _eorem 1.1, the polynomial

f (x) = pn
p−1

∑
j=1

(x/pn
)
j
+ p2n

(x/pn
)
p

is a Johnson polynomial of G and f (χ) = τG for every χ ∈ nl(G).

https://doi.org/10.4153/CMB-2015-074-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-074-5


398 S. K. Prajapati and R. Sarma

Table 1

Group Order Presentation Polynomial f (x)
G1 p3

⟨a, b ∣ ap2
= bp

= 1, [a, b] = ap
⟩ f1(x) = p∑p−1

j=1 (x/p)
j

+ p2
(x/p)p

G2 23
⟨a, b ∣ a4 = b4 = 1, a2

= b2
= [a, b]⟩ f2(x) = x2

+ x
G3 p3 odd ⟨a, b, c ∣ ap

= bp
= cp = 1, [a, b] = c,

[a, c] = [b, c] = 1⟩
f3(x) = p∑p−1

j=1 (x/p)
j

+ p2
(x/p)p

G4 p4
⟨a, b ∣ ap3

= bp
= 1, [a, b] = ap2

⟩ f4(x) = p2
∑

p
j=1(x/d)

p j

+ p∑p2

j=1, j≠t .p(x/p)
j

G5 p4
⟨a, b, c ∣ ap2

= bp
= cp = 1, [a, b] = [a, c] = 1,

[b, c] = ap , [a, b] = [a, c] = 1, [b, c] = ap
⟩

f5(x) = p2
∑

p
j=1(x/d)

p j

+ p∑p2

j=1, j≠t .p(x/p)
j

G6 p4
⟨a, b ∣ ap2

= bp2
= 1, [a, b] = ap

⟩ Does not exist
G7 p4

⟨a, b, c ∣ ap2
= bp

= cp = 1, [a, b] = ap ,
[a, c] = [b, c] = 1⟩

Does not exist

G8 p4
⟨a, b, c ∣ ap2

= bp
= cp = 1, [a, b] = c,

[a, c] = [b, c] = 1⟩
Does not exist

G9 24
⟨a, b, c ∣ a4 = b4 = c2 = 1, [a, b] = a2 ,
a2

= b2 , [a, c] = 1, [b, c] = 1⟩
Does not exist

G10 p4 odd ⟨a, b, c, d ∣ ap
= bp

= cp = d p
= 1, [a, b] = c,

[a, c] = [a, d] = [b, c] = [b, d] = [c, d] = 1⟩
Does not exist

G11 = D16 24
⟨a, b ∣ a8 = b2

= 1, [a, b] = a6
⟩ Does not exist

G12 24
⟨a, b ∣ a8 = b2

= 1, [a, b] = a2
⟩ Does not exist

G13 24
⟨a, b ∣ a8 = b4 = 1, [a, b] = a6 , a4 = b2

⟩ Does not exist
G14 p4 odd ⟨a, b, c ∣ ap2

= bp
= cp = 1, [a, b] = ap ,

[a, c] = b, [b, c] = 1⟩
Does not exist

G15 p4 odd ⟨a, b, c ∣ ap2
= bp

= 1, [a, b] = ap ,
ap

= cp , [a, c] = b, [b, c] = 1⟩
Does not exist

G16 p4 odd ⟨a, b, c ∣ ap2
= bp

= cp = 1, [a, b] = ap ,
cp = aαp , [a, c] = b, [b, c] = 1⟩

Does not exist

α denotes a quadratic non-residuemod p
G17 p4 , p > 3 ⟨a, b, c, d ∣ ap

= bp
= cp = d p

= 1,
[a, b] = c, [b, c] = d , [a, c] = 1,
[a, d] = [b, d] = [c, d] = 1⟩

Does not exist

G18 34
⟨a, b, c ∣ a9 = b3

= c3 = 1, [a, b] = c,
[a, c] = 1, [b, c] = a6

⟩

Does not exist

4 An Application

4.1 p-Groups of Order ≤ p4

We quote some known results that we use in the sequel.

Lemma 4.1 ([5, Lemma 2.9]) LetH be a subgroup ofG. Suppose χ is a character ofG.
_en ⟨χ↓H , χ↓H⟩ ≤ ∣G/H∣⟨χ, χ⟩ with equality if and only if χ(g) = 0 for all g ∈ G ∖H.

Lemma 4.2 ([1, _eorem 20]) If G is a p-group, then for each χ ∈ Irr(G), χ(1)2

divides ∣G ∶ Z(G)∣.
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Lemma 4.3 Let G be a non-abelian group of order p4. _en cd(G) = {1, p}.

Proof Since Z(G) ≠ 1, ∣Z(G)∣ = p or p2. _erefore ∣G/Z(G)∣ = p3 or p2. So by
Lemma 4.2, the result follows.

_e list of all non-abelian p-groups of order p3 and p4 [10, Table 1] is displayed in
Table 1 along with a Johnson polynomial (if exists). Now we prove _eorem 1.2. To
prove the theorem, we use the classiûcation of non-abelian p-groups of order p3 and
p4, and follow the notation in Table 1.

Proof of_eorem 1.2 Suppose G
′
⊆ Z(G) then G = G i (1 ≤ i ≤ 10). By Lemmata

4.3 and 4.1, for these groups (G , Z(G)) is a GCP. _erefore, for G i (1 ≤ i ≤ 10) use
_eorem 1.1 to determine a Johnson polynomial (Z(G i) is cyclic if 1 ≤ i ≤ 5 and
non-cyclic otherwise).

Next suppose G′ ⊈ Z(G). _en G = G i (11 ≤ i ≤ 18). Wemust show that for these
groups there is no Johnson polynomial. For the groups G = G i (11 ≤ i ≤ 13), one can
easily check that G has no Johnson polynomial.

Next for G = G i (14 ≤ i ≤ 18), the nilpotency class of G is 3. _erefore G/Z(G)

is non-abelian and Z(G) ⊂ G′. Hence ∣Z(G)∣ = p. As ∣G/G′∣ ≥ p2, we deduce that
∣G′∣ = p2. Since there is a normal abelian subgroupN (say) of index p, every nonlinear
irreducible characters of G must be induced from N . _erefore, χ(G ∖ N) = 0 for all
χ ∈ nl(G) and cd(G) = {1, p}. Since G/Z(G) is an extra-special group of order p3,
G/Z(G) has p − 1 nonlinear irreducible characters of degree p which vanish outside
Z(G/Z(G)) = G′/Z(G) in G/Z(G). For χ ∈ nl(G/Z(G)) we have

(4.1) χ↓Z(G/Z(G)) = pλ

for some λ ∈ Irr(Z(G/Z(G))) ∖ 1Z(G/Z(G)), where 1Z(G/Z(G)) is the trivial character
of Z(G/Z(G)). In particular, we have all the nonlinear irreducible characters of G
having Z(G) in their kernel. Now, let ψ ∈ Irr(G∣Z(G)). Since ∣Z(G)∣ = p, ψ is
faithful and hence ϕ is not G-invariant, where ϕ is an irreducible constituent of ψ↓GG′ .
_erefore, by Cliòord’s theorem ψ↓GG′ = ∑

p
1 ϕ i , where ϕ1 = ϕ and p is the index of the

inertia group N of ϕ in G. Now ϕ i↓
G′
Z(G) = λ, where λ ∈ Irr(Z(G)) ∖ 1Z(G) for each

1 ≤ i ≤ p. _erefore, by using the fact ψ(1) = p, we have

ψ↓GG′ = ∑
β∈Irr(G′/Z(G))

βϕ1 = ρG′/Z(G)ϕ1 ,

where ρG′/Z(G) is the regular character ofG′/Z(G). Hence for eachψ ∈ Irr(G∣Z(G)),
we have ψ(G′ ∖ Z(G)) = 0.

Now if g ∈ G′ ∖ Z(G), then

(4.2) τG(g) = ∑
χ∈lin(G)

χ(g) + ∑
χ∈nl(G/Z(G))

χ(g) + ∑
χ∈Irr(G∣Z(G))

χ(g)

= ∣G/G′
∣ + ∑

λ∈Irr(Z(G/Z(G)))∖1Z(G/Z(G))

pλ(g) + ∑
χ∈Irr(G∣Z(G))

χ(g) (by (4.1))

= p2
− p + 0 = p2

− p.
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Now suppose G has a Johnson polynomial f (x) such that f (χ) = τG , where χ ∈

nl(G). _erefore χ is faithful and χ ∈ Irr(G∣Z(G)). By (4.2), we have

f (0) = f (χ(g)) = τG(g) = p2
− p

for all g ∈ G′ ∖ Z(G). Again for h ∈ G ∖ N we have, f (0) = f (χ(h)) = τG(h) = 0.
_erefore, from Proposition 2.2, G has no Johnson polynomial for G = G i (14 ≤ i ≤
18). _is completes the proof.

4.2 Minimal Non-abelian Groups and p-IFC-groups

Anon-abelian groupG is called aminimal non-abelian group if everyproper subgroup
of G is abelian. For a prime p and n ≥ 2,m ≥ 3 deûne

G(n,m) = ⟨a, b ∣ apn
= bpm

= 1, [a, b] = apn−1
⟩.

_en G(n,m) is a metacyclic group and its order is pn+m . Again for a prime p and
n,m ∈ N deûne

G(n,m, 1) = ⟨a, b ∣ apm
= bpn

= 1, [a, b] = c, [a, c] = [b, c] = 1⟩.

_en G(n,m, 1) is not a metacyclic group and its order is pn+m+1. First we recall a
result on minimal non-abelian p-groups.

_eorem 4.1 ([17, Lemma 2.1]) Let G be aminimal non-abelian p-group. _en G is
isomorphic to Q8 ,G(n,m) or G(n,m, 1).

Proposition 4.1 SupposeG is aminimal non-abelian p-group. _en G has a Johnson
polynomial if and only if G is isomorphic to Q8.

Proof Total character of Q8 = ⟨a, b ∣ a4 = 1, a2 = b2 , b−1ab = a−1⟩ is given by
τQ8(1) = 6, τQ8(a

2) = 2, and τQ8(a) = τQ8(b) = τQ8(ab) = 0. If χ is the faithful
irreducible character of Q8, then one can verify that χ2 + χ = τQ8 so that x2 + x is a
Johnson polynomial of Q8. Now observe that Z(G(n,m)) = ⟨ap , bp⟩ ≅ Cpn−1 ×Cpm−1

and Z(G(n,m, 1)) = ⟨ap , bp , c⟩ ≅ Cpn−1 × Cpm−1 × Cp are non-cyclic. _erefore, they
do not have any faithful irreducible character. Hence by Proposition 2.1,G(n,m) and
G(n,m, 1) have no Johnson polynomials.

A p-group G is said to be a p-IFC-group if the Frattini subgroup of every proper
subgroup of G is cyclic.

_eorem 4.2 ([17,_eorem 3.1]) Suppose that G is a p-IFC-group with ∣G′∣ ≤ p and
p odd.
(i) If ∣G′∣ = 1, then G is abelian, and one of the following holds.

(a) G ≅ Cpn × Em
p , where n,m are non-negative and Φ(G) is a cyclic group of

order pn−1 .
(b) G ≅ Cp2 × Cp2 and Φ(G) = E2

p .
(ii) If ∣G′∣ = p and d(G) = 2, then one of the following holds.

(a) G ≅ Modpn+1 = ⟨a, b ∣ apn
= bp = 1, [a, b] = apn−1

⟩, where n ≥ 2 is a positive
integer.
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(b) G = ⟨a, b ∣ ap2
= bp2

= cp = 1, [a, b] = c, [c, a] = [c, b] = 1⟩, where n ≥ 1 is a
positive integer.

(c) G = ⟨a, b ∣ ap2
= bp2

= 1, [a, b] = ap⟩.
(iii) If ∣G′∣ = p and d(G) ≠ 2, then Φ(G) is cyclic.

Proposition 4.2 Let p be an odd prime. Suppose G is p-IFC-group with ∣G
′
∣ ≤ p.

(i) If ∣G′∣ = 1, then G has no Johnson polynomials.
(ii) If ∣G′∣ = p and d(G) = 2, then G is a Johnson polynomial if and only if G ≅

Modpn+1 .
(iii) If ∣G′∣ = p and d(G) ≠ 2, then G need not have a Johnson polynomial.

Proof If ∣G′∣ = 1, then by _eorem 4.2, G is a non-cyclic abelian group and hence
by Proposition 2.1 G has no Johnson polynomials. Now suppose G ≅ Modpn+1 so that
∣G′∣ = p and d(G) = 2. Here Z(G) = ⟨ap⟩, ∣G/Z(G)∣ = p2 and G′ = ⟨apn−1

⟩. By
Lemma 4.2, the degree of every nonlinear irreducible character is p and so by Lemma
4.1 (G , Z(G)) is GCP. Hence by _eorem 1.1 the following polynomial

f (x) = p2
pn−2

∑
j=1

(x/p)l j
+ p

pn−1

∑
j=1
p∤ j

(x/p) j

is a Johnson polynomial. Next suppose ∣G′∣ = p and d(G) = 2 andG ≇ Modpn+1 . _en
by _eorem 4.2, either G = ⟨a, b ∣ ap2

= bp2
= cp = 1, [a, b] = c, [c, a] = [c, b] = 1⟩ or

G = ⟨a, b ∣ ap2
= bp2

= 1, [a, b] = ap⟩. In the former case, Z(G) = ⟨ap , bp , c⟩, and in
the latter, Z(G) = ⟨ap , bp⟩. Hence, in either case the center is non cyclic. _erefore,
it does not have faithful irreducible character and hence by Proposition 2.1, none of
these groups has a Johnson polynomial.
Finally to justify the third statement of the theorem we will produce examples.

Suppose p is an odd prime. Let G1 = ⟨a, b, c ∣ ap = bp = cp = 1, [a, b] = c, [a, c] =
[b, c] = 1⟩ and G2 = ⟨a, b, c ∣ ap2

= bp = cp = 1, [a, b] = ap , [a, c] = [b, c] = 1⟩. _e
groups G1 and G2 are both p-IFC-groups. Observe that Φ(G1) = G′

1 = Z(G1) = ⟨c⟩,
Φ(G2) = G′

2 = ⟨ap⟩, Z(G2) = ⟨ap , c⟩, d(G i) ≠ 2, and (G i , Z(G i)) is a GCP for
i = 1, 2. Hence by _eorem 1.1, G1 has a Johnson polynomial but G2 has no Johnson
polynomials.
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