Total Character of a Group G with $(G, Z(G))$ as a Generalized Camina Pair

S. K. Prajapati and R. Sarma

Abstract. We investigate whether the total character of a finite group G is a polynomial in a suitable irreducible character of G. When $(G, Z(G))$ is a generalized Camina pair, we show that the total character is a polynomial in a faithful irreducible character of G if and only if $Z(G)$ is cyclic.

1 Introduction

Throughout this article, G denotes a finite group. Let $\operatorname{Irr}(G), \operatorname{nl}(G)$ and $\operatorname{lin}(G)$ be the set of all irreducible characters of G, the set of all nonlinear irreducible characters of G and the set of linear characters of G, respectively. Suppose that ρ is the direct sum of all the non-isomorphic irreducible complex representations of G. The character τ_{G} afforded by ρ is called the total character of G, that is, $\tau_{G}=\sum_{\chi \in \operatorname{Irr}(G)} \chi$. Since τ_{G} is stable under the action of the Galois group of the splitting field of $G, \tau_{G}(g) \in \mathbb{Z}$ for all $g \in G$. The dimension of the total character of a group seems to have remarkable connection with the geometry of the group. For instance, in the case of the symmetric group $G=S_{n}, \tau_{G}(1)$ is the number of involutions of S_{n} [9], whereas in the case of $G=\mathrm{GL}(n, q), \tau_{G}(1)$ is the number of symmetric matrices in $\operatorname{GL}(n, q)$ [3]. Degree of total character is discussed by many authors $[4,6,13,15,16]$.

A consequence of a well-known theorem due to Burnside and Brauer [5, Theorem 4.3] is that the total character of the group G is a constituent of $1+\chi+\cdots+\chi^{m-1}$ if χ is a faithful character which takes exactly m distinct values on G. M. L. Lewis and S. M. Gagola [2] classified all the solvable groups for which $\chi^{2}=\tau_{G}$ for some $\chi \in \operatorname{Irr}(G)$. Motivated by this, K. W. Johnson raised the following question (see [14]).

Do there exist an irreducible character χ of G and a monic polynomial $f(x) \in \mathbb{Z}[x]$ such that $f(\chi)=\tau_{G}$?
The aim of the article is to solve a weaker version of the same, i.e., to examine the existence of $f(x) \in \mathbb{Q}[x]$ and $\chi \in \operatorname{Irr}(G)$ such that $f(\chi)=\tau_{G}$. We call such a polynomial $f(x) \in \mathbb{Q}[x]$, if it exists, a Johnson polynomial of G. This problem has been studied for dihedral groups $D_{2 n}$ in [14]. In fact, the authors have proved that $D_{2 n}$ has a Johnson polynomial if and only if $8+n$.

To describe the classes of groups to which our results apply, we recall some definitions. A pair (G, N) is said to be a generalized Camina pair (abbreviated GCP) if

[^0]N is normal in G and, all nonlinear irreducible characters of G vanish outside N [12]. There are a number of equivalent conditions for $(G, Z(G))$ to be a GCP. An equivalent condition we will refer to is that a pair $(G, Z(G))$ is a GCP if and only if, for all $g \in G \backslash Z(G)$, the conjugacy class of g in G is $g G^{\prime}$.

In this article, we compute the total character τ_{G} of a group G for which $(G, Z(G))$ is a generalized Camina pair and prove a necessary and sufficient condition for the existence of a Johnson polynomial. Our main results can be stated as follows.

Theorem 1.1 Let $(G, Z(G))$ be a GCP. Then G has a Johnson polynomial if and only if $Z(G)$ is cyclic. In fact, if $Z(G)$ is cyclic, then a Johnson polynomial of G is given by

$$
f(x)=d^{2} \sum_{j=1}^{r}(x / d)^{l j}+d \sum_{\substack{j=1 \\ l+j}}^{m}(x / d)^{j},
$$

where $d=|G / Z(G)|^{1 / 2}, r=\left|Z(G) / G^{\prime}\right|, m=|Z(G)|$, and $l=\left|G^{\prime}\right|$. In particular, $f(x)=d^{2}(x / d)^{m}+d \sum_{j=1}^{m-1}(x / d)^{j}$ when $Z(G)$ is cyclic and $Z(G)=G^{\prime}$.

In the last section, we apply the above theorem to prove the following.
Theorem 1.2 If G is a non-abelian p-group of order p^{3} or p^{4}, then G has a Johnson polynomial if and only if $Z(G)$ is cyclic and $G^{\prime} \subseteq Z(G)$.

The character afforded by the regular representation shares certain properties with the total character of a group, and so the same question may be asked of it. We say that a group G has a regular-Johnson polynomial $f(x) \in \mathbb{Q}[x]$ if there is some $\chi \in \operatorname{Irr}(G)$ such that $\rho_{G}(g)=f(\chi(g))$, where ρ_{G} is the character of the regular representation of G. In the following theorem a group having a regular-Johnson polynomial is characterized.

Theorem 1.3 Let G be a finite group. Then G has a regular-Johnson polynomial if and only if G has a faithful irreducible character.

Proof Let G has a regular-Johnson polynomial $f \in \mathbb{Q}[x]$ with $\chi \in \operatorname{Irr}(G)$ such that $\rho_{G}(g)=f(\chi(g))$ for all $g \in G$, where ρ_{G} is the regular character. Now we will show that χ is faithful. On the contrary, let $g \neq 1 \in \operatorname{ker}(\chi)$. Then $0=\rho_{G}(g)=f(\chi(g))=$ $f(\chi(1))=\rho_{G}(1)$, which is a contradiction. Conversely, let $\chi \in \operatorname{Irr}(G)$ be a faithful character of G. Suppose that $f(x)=\prod_{g \neq 1 \in G} \frac{x-\chi(g)}{\chi(1)-\chi(g)}$. Then $f(\chi(g))=\rho_{G}(g)$ for all $g \in G$. The coefficients of $f(x)$ manifestly lie in the cyclotomic field $\mathbb{Q}[\xi]$, where $\xi=e^{2 \pi i / n}$ and $n=|G|$. Next we show that $f(x) \in \mathbb{Q}[x]$. Consider the Galois group $\mathbb{G}:=\operatorname{Gal}(\mathbb{Q}[\xi] / \mathbb{Q})$. Then $\mathbb{Z}_{n}^{\times} \cong \mathbb{G}$ by $r \mapsto \sigma_{r}(\xi):=\xi^{r}$, where \mathbb{Z}_{n}^{\times}consisting of all congruence classes $\bmod n$ of integers coprime to n. The Galois group \mathbb{G} acts on $\operatorname{Irr}(G)$ by $\sigma . \phi(g)=\operatorname{tr}(\sigma \rho(g))$, where $\phi \in \operatorname{Irr}(G)$ and ϕ is afforded by the representation ρ, and $\sigma \rho$ is defined by first realising ρ as matrices over $\mathbb{Q}[\xi]$, and then evaluating $(\sigma \rho)(g)=\sigma(\rho(g))$ entry-wise. Therefore we have $\sigma \cdot \phi(g)=\phi\left(g^{r}\right)$ if $\sigma=\sigma_{r}$ (as described above), where r is coprime to $n=|G|$. Since $g \mapsto g^{r}$ is a permutation of G fixing 1 , the coefficients of $f(x)$ are rational.

2 Further Notation and Preliminaries

Throughout this article, C_{n} denotes the cyclic group of order n. Suppose G is a finite group. Then $Z(G), G^{\prime}$ and $\mathrm{Cl}(G)$ denote respectively the center, the commutator subgroup and the set of conjugacy classes of G. If $a, b \in G$, then ${ }^{b} a=b^{-1} a b$, $[a, b]=a^{-1} b^{-1} a b$. Here $c d(G), d(G)$, and $\Phi(G)$ denote the set of irreducible character degrees, the minimal number of generators of G, and the Frattini subgroup of G, respectively. Suppose N is a normal subgroup of G. Then we denote by $\operatorname{Irr}(G \mid N)=$ $\operatorname{Irr}(G) \backslash \operatorname{Irr}(G / N)$. Here we start by recalling some basic results.

Lemma 2.1 ([5, Theorem 2.32(a)]) If G has a faithful irreducible character, then $Z(G)$ is cyclic.

Lemma 2.2 Let G be a non-abelian group. Then $\sum_{\chi \in \operatorname{lin}(G)} \chi(g)=0$ for each $g \in$ $G \backslash G^{\prime}$.

Proposition 2.1 exhibits the relationship between faithful characters and groups having Johnson polynomial.

Proposition 2.1 Let G be a finite group. Suppose $f(x) \in \mathbb{C}[x]$ and χ is a character of G such that $f(\chi)=\tau_{G}$. Then χ is a faithful character. In particular, an abelian group has a Johnson polynomial if and only if it is cyclic.

Proof Suppose $f(x) \in \mathbb{C}[x]$ and χ is a character of G such that $f(\chi)=\tau_{G}$ with $\operatorname{ker}(\chi) \neq\{1\}$. Since $\cap_{\phi \in \operatorname{Irr}(G)} \operatorname{ker}(\phi)=\{1\}, \tau_{G}(1) \neq \tau_{G}(g)$ for all $g \neq 1 \in G$. Take $g \neq 1 \in \operatorname{ker}(\chi)$. Then $\tau_{G}(1)=f(\chi(1))=f(\chi(g))=\tau_{G}(g)$, which is a contradiction. This shows that χ must be a faithful character. Hence an abelian group G having a Johnson polynomial implies that G is a cyclic group. For the converse, consider the polynomial $f(x)=\sum_{i=0}^{|G|-1} x^{i}$.

To show that G provides a negative answer to Johnson's question, we will later introduce a specific character and then attain a contradiction. For this, we need the following proposition, which is a simple observation.

Proposition 2.2 Let χ be an irreducible character of G. If $g_{1}, g_{2} \in G$ are such that $\chi\left(g_{1}\right)=\chi\left(g_{2}\right)$ but $\tau_{G}\left(g_{1}\right) \neq \tau_{G}\left(g_{2}\right)$, then there does not exist $f(x) \in \mathbb{C}[x]$ such that $f(\chi)=\tau_{G}$.

3 Groups with ($G, Z(G)$) a Generalized Camina Pair

In this section, we study the total character of a group G for which $(G, Z(G))$ is a generalized Camina pair (abbreviated as GCP). The notion of generalized Camina pair was first introduced by Lewis [12]. The groups with $(G, Z(G))$ a GCP were studied under the name $V Z$-groups by Lewis [11]. First, we record a couple of lemmata that will be useful.

Lemma 3.1 ([12, Lemma 2.1]) Let $g \in G$. Then the following statements are equivalent.
(i) The conjugacy class of g is the $\operatorname{coset} g G^{\prime}$.
(ii) $\chi(g)=0$ for all nonlinear $\chi \in \operatorname{Irr}(G)$.

Lemma 3.2 ([12, Lemma 2.4]) Let H be a normal subgroup of a group G such that (G, H) is a $G C P$. Then G^{\prime} is a subgroup of H.

3.1 Remarks on a Group G with $(G, Z(G))$ a Generalized Camina Pair

Let $(G, Z(G))$ be a GCP. Suppose χ is a nonlinear irreducible character of G. Then

$$
\chi \downarrow_{Z(G)}=\chi(1) \lambda
$$

for some $\lambda \in \operatorname{Irr}(Z(G))$. Thus

$$
\begin{aligned}
|G|=\sum_{g \in G}|\chi(g)|^{2} & =\sum_{g \in Z(G)}|\chi(g)|^{2} \quad \quad \text { (since }(G, Z(G)) \text { is a GCP) } \\
& =\sum_{g \in Z(G)}|\chi(1) \lambda(g)|^{2} \\
& =\chi(1)^{2}|Z(G)| .
\end{aligned}
$$

Therefore the degree of any nonlinear irreducible character of G is $|G / Z(G)|^{1 / 2}$. Suppose n is the number of nonlinear irreducible characters of G. Then

$$
|G|=\sum_{\chi \in \operatorname{Irr}(G)} \chi(1)^{2}=\left|G / G^{\prime}\right|+n \cdot \chi(1)^{2} .
$$

Therefore the total number of nonlinear irreducible characters of G is

$$
|Z(G)|-\left|Z(G) / G^{\prime}\right|
$$

Let $\eta: G \rightarrow G / G^{\prime}$ be the natural homomorphism and let $\phi: \operatorname{Irr}\left(G / G^{\prime}\right) \rightarrow \operatorname{Irr}(Z(G))$ be defined by $\phi(\lambda):=\lambda \circ \eta$. Suppose $X:=\{\lambda \in \operatorname{Irr}(Z(G)) \mid \lambda \notin \operatorname{Image}(\phi)\}$ and $\widehat{\Phi}: X \rightarrow \mathrm{nl}(G)$ defined by

$$
\widehat{\Phi}(\lambda)(g):= \begin{cases}|G / Z(G)|^{1 / 2} \lambda(g) & \text { if } g \in Z(G) \tag{3.1}\\ 0 & \text { otherwise }\end{cases}
$$

Theorem 3.1 Suppose $(G, Z(G))$ is a GCP. With the notation in the preceding paragraph, the map $\widehat{\Phi}$ is a bijection. In other words,

$$
\operatorname{nl}(G)=\left\{\widehat{\Phi}(\lambda) \mid \lambda \in \operatorname{Irr}(Z(G)) \text { and } G^{\prime} \nsubseteq \operatorname{ker}(\lambda)\right\} .
$$

Proof Clearly $\widehat{\Phi}$ is one-to-one. Let $\chi \in \operatorname{nl}(G)$. Then $\chi \downarrow_{Z(G)}=|G / Z(G)|^{1 / 2} \lambda$, where $\lambda \in \operatorname{Irr}(Z(G))$. We must show that $\lambda \in X$. Suppose $\lambda \notin X$. Then $G^{\prime} \subseteq \operatorname{ker}(\lambda)$. Hence $\chi \downarrow_{Z(G)}\left(G^{\prime}\right)=|G / Z(G)|^{1 / 2}=\chi(1)$. Thus $\chi \in \operatorname{lin}(G)$, which is a contradiction. Hence $\widehat{\Phi}$ is a bijection.

In the following proposition we discuss the total character τ_{G} of G.

Proposition 3.1 Let $(G, Z(G))$ be a $G C P$. Then the total character τ_{G} is given by

$$
\tau_{G}(g)= \begin{cases}\left|G / G^{\prime}\right|+\left(|Z(G)|-\left|Z(G) / G^{\prime}\right|\right)|G / Z(G)|^{1 / 2} & \text { if } g=1 \tag{3.2}\\ \left|G / G^{\prime}\right|-\left|Z(G) / G^{\prime}\right| \cdot|G / Z(G)|^{1 / 2} & \text { if } g \in G^{\prime} \backslash\{1\} \\ 0 & \text { otherwise }\end{cases}
$$

Proof Set $\mathcal{A}:=\operatorname{Irr}(Z(G)) \backslash \operatorname{Irr}\left(Z(G) / G^{\prime}\right)$. By Theorem 3.1, $\operatorname{nl}(G)=\{\widehat{\Phi}(\lambda) \mid \lambda \in$ $\mathcal{A}\}$ and $\chi(1)=|G / Z(G)|^{1 / 2}$ for all $\chi \in \operatorname{nl}(G)$.

If $g=1$, then $\tau_{G}(1)=\left|G / G^{\prime}\right|+\left(|Z(G)|-\left|Z(G) / G^{\prime}\right|\right)|G / Z(G)|^{1 / 2}$. If $g \in G \backslash Z(G)$, then by the hypothesis of the proposition and Lemma 2.2, we get

$$
\tau_{G}(g)=\sum_{\chi \in \operatorname{Irr}(G)} \chi(g)=\sum_{\chi \in \operatorname{lin}(G)} \chi(g)=0 .
$$

For $g \neq 1 \in Z(G)$, we have

$$
\begin{equation*}
0=\sum_{\psi \in \operatorname{Irr}(Z(G))} \psi(g)=\sum_{\phi \in \operatorname{Irr}\left(Z(G) / G^{\prime}\right)} \phi(g)+\sum_{\lambda \in \mathcal{A}} \lambda(g) . \tag{3.3}
\end{equation*}
$$

If $g \neq 1 \in G^{\prime} \subseteq Z(G)$, then

$$
\begin{aligned}
\tau_{G}(g) & =\sum_{\chi \in \operatorname{lin}(G)} \chi(g)+\sum_{\chi \in \operatorname{nl}(G)} \chi(g) \\
& =\left|G / G^{\prime}\right|+|G / Z(G)|^{1 / 2} \sum_{\lambda \in \mathcal{A}} \lambda(g) \\
& =\left|G / G^{\prime}\right|-\left|Z(G) / G^{\prime}\right| \cdot|G / Z(G)|^{1 / 2} \quad \text { (by (3.3)). }
\end{aligned}
$$

Finally, if $g \in Z(G) \backslash G^{\prime}$, then by Lemma 2.2 and (3.3), we get $\tau_{G}(g)=0$. This completes the proof.

With these technical results we give the proof of Theorem 1.1.

Proof of Theorem 1.1 Suppose that $Z(G)=\langle g\rangle$ is a cyclic group of order m. Since $(G, Z(G))$ is a GCP, by Lemma 3.2, $G^{\prime} \subseteq Z(G)$. Let $G^{\prime}=\left\langle g^{k}\right\rangle,\left|G^{\prime}\right|=l$, and $\left|Z(G) / G^{\prime}\right|=r$. Set $\zeta_{m}=e^{\frac{2 \pi i}{m}}$. The homomorphism $\lambda_{\zeta_{m}}: Z(G) \rightarrow \mathbb{C}^{*}$ given by $g \mapsto \zeta_{m}$ defines a faithful linear character. Hence $Z(G) \cong \operatorname{Irr}(Z(G))=\left\langle\lambda_{\zeta_{m}}\right\rangle$. The set of irreducible characters of $Z(G)$ whose kernel contains G^{\prime} is $\left\{\lambda_{\zeta_{m}}^{l}, \lambda_{\zeta_{m}}^{2 l}, \ldots, \lambda_{\zeta_{m}}^{r l}\right\}$. Hence $\operatorname{nl}(G):=\left\{\widehat{\Phi}\left(\lambda_{\zeta_{m}}^{i}\right) \mid i=1, \ldots, m\right.$ and $\left.l+i\right\}$, where $\widehat{\Phi}$ is the map defined in (3.1). Obviously $|\operatorname{nl}(G)|=|Z(G)|-\left|Z(G) / G^{\prime}\right|$. Let

$$
f(x)=d^{2} \sum_{j=1}^{r}(x / d)^{l j}+d \sum_{\substack{j=1 \\ l+j}}^{m}(x / d)^{j},
$$

where $d=|G / Z(G)|^{1 / 2}$.
Assertion If $\chi=\widehat{\Phi}\left(\lambda_{\zeta_{m}}\right)$, then $f(\chi)=\tau_{G}$.

Proof of the Assertion If $g=1$, then

$$
\begin{aligned}
f(\chi(1)) & =d^{2} \sum_{j=1}^{r}(\chi(1) / d)^{l j}+d \sum_{\substack{j=1 \\
l+j}}^{m}(\chi(1) / d)^{j} \\
& =d^{2} r+d(m-r) \\
& =\left|G / G^{\prime}\right|+|G / Z(G)|^{1 / 2}\left(|Z(G)|-\left|Z(G) / G^{\prime}\right|\right) \\
& =\tau_{G}(1)
\end{aligned}
$$

Let $a \neq 1 \in G^{\prime}$. Then $a=g^{k q}$ where $1 \leq q \leq(l-1)$. So

$$
\begin{aligned}
f\left(\chi\left(g^{k q}\right)\right) & =d^{2} \sum_{j=1}^{r}\left(\chi\left(g^{k q}\right) / d\right)^{l j}+d \sum_{\substack{j=1 \\
l+j}}^{m}\left(\chi\left(g^{k q}\right) / d\right)^{j} \\
& =d^{2} \sum_{j=1}^{r}\left(e^{\frac{2 \pi i k q}{r}}\right)^{j}+d \sum_{\substack{j=1 \\
l+j}}^{m}\left(e^{\frac{2 \pi i k q}{m}}\right)^{j} \\
& =d^{2} \cdot r+d\left(-\left|Z(G) / G^{\prime}\right|\right) \\
& =\left|G / G^{\prime}\right|-\left|Z(G) / G^{\prime}\right| \cdot|G / Z(G)|^{1 / 2} \\
& =\tau_{G}\left(g^{k q}\right)
\end{aligned}
$$

(by (3.2)).

Finally, let $g^{s} \in Z(G) \backslash G^{\prime}$. Then s is not a integer multiple of k. Now by using the similar arguments as in the above case we get $f\left(\chi\left(g^{s}\right)\right)=0=\tau_{G}\left(g^{s}\right)$. This completes the assertion.

On the other hand, if $Z(G)$ is non-cyclic, then G has no faithful irreducible character. Therefore, from Proposition 2.1, G has no Johnson polynomial. This completes the proof.

Remark 3.1 Since the set of character values of $\widehat{\Phi}\left(\lambda_{\zeta_{m}}^{i}\right)$ does not depend on i when $(i, m)=1$, we have $f\left(\widehat{\Phi}\left(\lambda_{\zeta_{m}}^{i}\right)\right)=\tau_{G}$.

As a consequence of Theorem 1.1, we get the following:
Corollary 3.1 Every extra-special p-group has a Johnson polynomial.
Proof Suppose G is an extra-special p-group. Then $Z(G)=G^{\prime}$ and $|Z(G)|=p$ and by [8, Theorem 2.18], $(G, Z(G))$ is a GCP. Therefore by Theorem 1.1, the polynomial

$$
f(x)=p^{n} \sum_{j=1}^{p-1}\left(x / p^{n}\right)^{j}+p^{2 n}\left(x / p^{n}\right)^{p}
$$

is a Johnson polynomial of G and $f(\chi)=\tau_{G}$ for every $\chi \in \operatorname{nl}(G)$.

Table 1

Group	Order	Presentation	Polynomial $f(x)$
G_{1}	p^{3}	$\left\langle a, b \mid a^{p^{2}}=b^{p}=1,[a, b]=a^{p}\right\rangle$	$f_{1}(x)=p \sum_{j=1}^{p-1}(x / p)^{j}$
G_{2}	2^{3}	$\left\langle a, b \mid a^{4}=b^{4}=1, a^{2}=b^{2}=[a, b]\right\rangle$	$+p^{2}(x / p)^{p}$
G_{3}	p^{3} odd	$\begin{aligned} & \langle a, b, c\| a^{p}=b^{p}=c^{p}=1,[a, b]=c, \\ & [a, c]=[b, c]=1\rangle \end{aligned}$	$\begin{aligned} & f_{3}(x)=p \sum_{j=1}^{p-1}(x / p)^{j} \\ & \quad+p^{2}(x / p)^{p} \end{aligned}$
G_{4}	p^{4}	$\left\langle a, b \mid a^{p^{3}}=b^{p}=1,[a, b]=a^{p^{2}}\right\rangle$	$\begin{aligned} & f_{4}(x)=p^{2} \sum_{j=1}^{p}(x / d)^{p j} \\ & \quad+p \sum_{j=1, j \neq t . p}^{p^{2}}(x / p)^{j} \end{aligned}$
G_{5}	p^{4}	$\begin{gathered} \langle a, b, c\| a^{p^{2}}=b^{p}=c^{p}=1,[a, b]=[a, c]=1, \\ \left.[b, c]=a^{p},[a, b]=[a, c]=1,[b, c]=a^{p}\right\rangle \end{gathered}$	$\begin{aligned} & f_{5}(x)=p^{2} \sum_{j=1}^{p}(x / d)^{p j} \\ & \quad+p \sum_{j=1, j \neq t . p}^{p^{2}}(x / p)^{j} \end{aligned}$
G_{6}	p^{4}	$\left\langle a, b \mid a^{p^{2}}=b^{p^{2}}=1,[a, b]=a^{p}\right\rangle$	Does not exist
G_{7}	p^{4}	$\begin{aligned} & \langle a, b, c\| a^{p^{2}}=b^{p}=c^{p}=1,[a, b]=a^{p}, \\ & [a, c]=[b, c]=1\rangle \end{aligned}$	Does not exist
G_{8}	p^{4}	$\begin{gathered} \langle a, b, c\| a^{p^{2}}=b^{p}=c^{p}=1,[a, b]=c, \\ [a, c]=[b, c]=1\rangle \end{gathered}$	Does not exist
G9	2^{4}	$\begin{gathered} \langle a, b, c\| a^{4}=b^{4}=c^{2}=1,[a, b]=a^{2}, \\ \left.a^{2}=b^{2},[a, c]=1,[b, c]=1\right\rangle \end{gathered}$	Does not exist
G_{10}	p^{4} odd	$\begin{aligned} & \langle a, b, c, d\| a^{p}=b^{p}=c^{p}=d^{p}=1,[a, b]=c, \\ & [a, c]=[a, d]=[b, c]=[b, d]=[c, d]=1\rangle \end{aligned}$	Does not exist
$G_{11}=D_{16}$	2^{4}	$\left\langle a, b \mid a^{8}=b^{2}=1,[a, b]=a^{6}\right\rangle$	Does not exist
G_{12}	2^{4}	$\left\langle a, b \mid a^{8}=b^{2}=1,[a, b]=a^{2}\right\rangle$	Does not exist
G_{13}	2^{4}	$\left\langle a, b \mid a^{8}=b^{4}=1,[a, b]=a^{6}, a^{4}=b^{2}\right\rangle$	Does not exist
G_{14}	p^{4} odd	$\begin{gathered} \langle a, b, c\| a^{p^{2}}=b^{p}=c^{p}=1,[a, b]=a^{p}, \\ [a, c]=b,[b, c]=1\rangle \end{gathered}$	Does not exist
G_{15}	p^{4} odd	$\begin{gathered} \langle a, b, c\| a^{p^{2}}=b^{p}=1,[a, b]=a^{p}, \\ \left.a^{p}=c^{p},[a, c]=b,[b, c]=1\right\rangle \end{gathered}$	Does not exist
G_{16}	p^{4} odd	$\begin{gathered} \langle a, b, c\| a^{p^{2}}=b^{p}=c^{p}=1,[a, b]=a^{p}, \\ \left.c^{p}=a^{\alpha p},[a, c]=b,[b, c]=1\right\rangle \end{gathered}$ α denotes a quadratic non-residue $\bmod p$	Does not exist
G_{17}	$p^{4}, p>3$	$\begin{gathered} \langle a, b, c, d\| a^{p}=b^{p}=c^{p}=d^{p}=1, \\ {[a, b]=c,[b, c]=d,[a, c]=1,} \\ [a, d]=[b, d]=[c, d]=1\rangle \end{gathered}$	Does not exist
G_{18}	3^{4}	$\begin{gathered} \langle a, b, c\| a^{9}=b^{3}=c^{3}=1,[a, b]=c, \\ \left.[a, c]=1,[b, c]=a^{6}\right\rangle \end{gathered}$	Does not exist

4 An Application

$4.1 \quad p$-Groups of Order $\leq p^{4}$

We quote some known results that we use in the sequel.
Lemma 4.1 ([5, Lemma 2.9]) Let H be a subgroup of G. Suppose χ is a character of G. Then $\left\langle\chi \downarrow_{H}, \chi \downarrow_{H}\right\rangle \leq|G / H|\langle\chi, \chi\rangle$ with equality if and only if $\chi(g)=0$ for all $g \in G \backslash H$.

Lemma 4.2 ([1, Theorem 20]) If G is a p-group, then for each $\chi \in \operatorname{Irr}(G), \chi(1)^{2}$ divides $|G: Z(G)|$.

Lemma 4.3 Let G be a non-abelian group of order p^{4}. Then $\operatorname{cd}(G)=\{1, p\}$.
Proof Since $Z(G) \neq 1,|Z(G)|=p$ or p^{2}. Therefore $|G / Z(G)|=p^{3}$ or p^{2}. So by Lemma 4.2, the result follows.

The list of all non-abelian p-groups of order p^{3} and $p^{4}[10$, Table 1$]$ is displayed in Table 1 along with a Johnson polynomial (if exists). Now we prove Theorem 1.2. To prove the theorem, we use the classification of non-abelian p-groups of order p^{3} and p^{4}, and follow the notation in Table 1.

Proof of Theorem 1.2 Suppose $G^{\prime} \subseteq Z(G)$ then $G=G_{i}(1 \leq i \leq 10)$. By Lemmata 4.3 and 4.1, for these groups $(G, Z(G))$ is a GCP. Therefore, for $G_{i}(1 \leq i \leq 10)$ use Theorem 1.1 to determine a Johnson polynomial $\left(Z\left(G_{i}\right)\right.$ is cyclic if $1 \leq i \leq 5$ and non-cyclic otherwise).

Next suppose $G^{\prime} \nsubseteq Z(G)$. Then $G=G_{i}(11 \leq i \leq 18)$. We must show that for these groups there is no Johnson polynomial. For the groups $G=G_{i}(11 \leq i \leq 13)$, one can easily check that G has no Johnson polynomial.

Next for $G=G_{i}(14 \leq i \leq 18)$, the nilpotency class of G is 3. Therefore $G / Z(G)$ is non-abelian and $Z(G) \subset G^{\prime}$. Hence $|Z(G)|=p$. As $\left|G / G^{\prime}\right| \geq p^{2}$, we deduce that $\left|G^{\prime}\right|=p^{2}$. Since there is a normal abelian subgroup N (say) of index p, every nonlinear irreducible characters of G must be induced from N. Therefore, $\chi(G \backslash N)=0$ for all $\chi \in \operatorname{nl}(G)$ and $\operatorname{cd}(G)=\{1, p\}$. Since $G / Z(G)$ is an extra-special group of order p^{3}, $G / Z(G)$ has $p-1$ nonlinear irreducible characters of degree p which vanish outside $Z(\mathrm{G} / \mathrm{Z}(\mathrm{G}))=G^{\prime} / Z(G)$ in $G / Z(G)$. For $\chi \in \operatorname{nl}(G / Z(G))$ we have

$$
\begin{equation*}
\chi \downarrow_{Z(G / Z(G))}=p \lambda \tag{4.1}
\end{equation*}
$$

for some $\lambda \in \operatorname{Irr}(Z(G / Z(G))) \backslash 1_{Z(G / Z(G))}$, where $1_{Z(G / Z(G))}$ is the trivial character of $Z(G / Z(G))$. In particular, we have all the nonlinear irreducible characters of G having $Z(G)$ in their kernel. Now, let $\psi \in \operatorname{Irr}(G \mid Z(G))$. Since $|Z(G)|=p, \psi$ is faithful and hence ϕ is not G-invariant, where ϕ is an irreducible constituent of $\psi \downarrow_{G^{\prime}}^{G}$. Therefore, by Clifford's theorem $\psi \downarrow_{G^{\prime}}^{G}=\sum_{1}^{p} \phi_{i}$, where $\phi_{1}=\phi$ and p is the index of the inertia group N of ϕ in G. Now $\phi_{i} \downarrow_{Z(G)}^{G^{\prime}}=\lambda$, where $\lambda \in \operatorname{Irr}(Z(G)) \backslash 1_{Z(G)}$ for each $1 \leq i \leq p$. Therefore, by using the fact $\psi(1)=p$, we have

$$
\psi \downarrow_{G^{\prime}}^{G}=\sum_{\beta \in \operatorname{Irr}\left(G^{\prime} / Z(G)\right)} \beta \phi_{1}=\rho_{G^{\prime} / Z(G)} \phi_{1},
$$

where $\rho_{G^{\prime} / Z(G)}$ is the regular character of $G^{\prime} / Z(G)$. Hence for each $\psi \in \operatorname{Irr}(G \mid Z(G))$, we have $\psi\left(G^{\prime} \backslash Z(G)\right)=0$.

Now if $g \in G^{\prime} \backslash Z(G)$, then

$$
\begin{align*}
& \tau_{G}(g)=\sum_{\chi \in \operatorname{lin}(G)} \chi(g)+\sum_{\chi \in \operatorname{nl}(G / Z(G))} \chi(g)+\sum_{\chi \in \operatorname{Irr}(G \mid Z(G))} \chi(g) \tag{4.2}\\
& \quad=\left|G / G^{\prime}\right|+\sum_{\lambda \in \operatorname{Irr}(Z(G / Z(G))) \backslash 1_{Z(G / Z(G))}} p \lambda(g)+\sum_{\chi \in \operatorname{Irr}(G \mid Z(G))} \chi(g) \quad \text { (by (4.1)) } \\
& \quad=p^{2}-p+0=p^{2}-p .
\end{align*}
$$

Now suppose G has a Johnson polynomial $f(x)$ such that $f(\chi)=\tau_{G}$, where $\chi \in$ $\operatorname{nl}(G)$. Therefore χ is faithful and $\chi \in \operatorname{Irr}(G \mid Z(G))$. By (4.2), we have

$$
f(0)=f(\chi(g))=\tau_{G}(g)=p^{2}-p
$$

for all $g \in G^{\prime} \backslash Z(G)$. Again for $h \in G \backslash N$ we have, $f(0)=f(\chi(h))=\tau_{G}(h)=0$. Therefore, from Proposition 2.2, G has no Johnson polynomial for $G=G_{i}(14 \leq i \leq$ 18). This completes the proof.

4.2 Minimal Non-abelian Groups and p-JFe-groups

A non-abelian group G is called a minimal non-abelian group if every proper subgroup of G is abelian. For a prime p and $n \geq 2, m \geq 3$ define

$$
G(n, m)=\left\langle a, b \mid a^{p^{n}}=b^{p^{m}}=1,[a, b]=a^{p^{n-1}}\right\rangle .
$$

Then $G(n, m)$ is a metacyclic group and its order is p^{n+m}. Again for a prime p and $n, m \in \mathbb{N}$ define

$$
G(n, m, 1)=\left\langle a, b \mid a^{p^{m}}=b^{p^{n}}=1,[a, b]=c,[a, c]=[b, c]=1\right\rangle .
$$

Then $G(n, m, 1)$ is not a metacyclic group and its order is p^{n+m+1}. First we recall a result on minimal non-abelian p-groups.

Theorem 4.1 ([17, Lemma 2.1]) Let G be a minimal non-abelian p-group. Then G is isomorphic to $Q_{8}, G(n, m)$ or $G(n, m, 1)$.

Proposition 4.1 Suppose G is a minimal non-abelian p-group. Then G has a Johnson polynomial if and only if G is isomorphic to Q_{8}.

Proof Total character of $Q_{8}=\left\langle a, b \mid a^{4}=1, a^{2}=b^{2}, b^{-1} a b=a^{-1}\right\rangle$ is given by $\tau_{Q_{8}}(1)=6, \tau_{Q_{8}}\left(a^{2}\right)=2$, and $\tau_{Q_{8}}(a)=\tau_{Q_{8}}(b)=\tau_{Q_{8}}(a b)=0$. If χ is the faithful irreducible character of Q_{8}, then one can verify that $\chi^{2}+\chi=\tau_{Q_{8}}$ so that $x^{2}+x$ is a Johnson polynomial of Q_{8}. Now observe that $Z(G(n, m))=\left\langle a^{p}, b^{p}\right\rangle \cong C_{p^{n-1}} \times C_{p^{m-1}}$ and $Z(G(n, m, 1))=\left\langle a^{p}, b^{p}, c\right\rangle \cong C_{p^{n-1}} \times C_{p^{m-1}} \times C_{p}$ are non-cyclic. Therefore, they do not have any faithful irreducible character. Hence by Proposition 2.1, $G(n, m)$ and $G(n, m, 1)$ have no Johnson polynomials.

A p-group G is said to be a p - $\mathcal{J F C}$-group if the Frattini subgroup of every proper subgroup of G is cyclic.

Theorem 4.2 ([17, Theorem 3.1]) Suppose that G is a p-JFE-group with $\left|G^{\prime}\right| \leq p$ and podd.
(i) If $\left|G^{\prime}\right|=1$, then G is abelian, and one of the following holds.
(a) $G \cong C_{p^{n}} \times E_{p}^{m}$, where n, m are non-negative and $\Phi(G)$ is a cyclic group of order p^{n-1}.
(b) $G \cong C_{p^{2}} \times C_{p^{2}}$ and $\Phi(G)=E_{p}^{2}$.
(ii) If $\left|G^{\prime}\right|=p$ and $d(G)=2$, then one of the following holds.
(a) $G \cong \operatorname{Mod}_{p^{n+1}}=\left\langle a, b \mid a^{p^{n}}=b^{p}=1,[a, b]=a^{p^{n-1}}\right\rangle$, where $n \geq 2$ is a positive integer.
(b) $G=\left\langle a, b \mid a^{p^{2}}=b^{p^{2}}=c^{p}=1,[a, b]=c,[c, a]=[c, b]=1\right\rangle$, where $n \geq 1$ is a positive integer.
(c) $G=\left\langle a, b \mid a^{p^{2}}=b^{p^{2}}=1,[a, b]=a^{p}\right\rangle$.
(iii) If $\left|G^{\prime}\right|=p$ and $d(G) \neq 2$, then $\Phi(G)$ is cyclic.

Proposition 4.2 Let p be an odd prime. Suppose G is p-JFC-group with $\left|G^{\prime}\right| \leq p$.
(i) $I f\left|G^{\prime}\right|=1$, then G has no Johnson polynomials.
(ii) If $\left|G^{\prime}\right|=p$ and $d(G)=2$, then G is a Johnson polynomial if and only if $G \cong$ $\operatorname{Mod}_{p^{n+1}}$.
(iii) If $\left|G^{\prime}\right|=p$ and $d(G) \neq 2$, then G need not have a Johnson polynomial.

Proof If $\left|G^{\prime}\right|=1$, then by Theorem 4.2, G is a non-cyclic abelian group and hence by Proposition 2.1 G has no Johnson polynomials. Now suppose $G \cong \operatorname{Mod}_{p^{n+1}}$ so that $\left|G^{\prime}\right|=p$ and $d(G)=2$. Here $Z(G)=\left\langle a^{p}\right\rangle,|G / Z(G)|=p^{2}$ and $G^{\prime}=\left\langle a^{p^{n-1}}\right\rangle$. By Lemma 4.2, the degree of every nonlinear irreducible character is p and so by Lemma $4.1(G, Z(G))$ is GCP. Hence by Theorem 1.1 the following polynomial

$$
f(x)=p^{2} \sum_{j=1}^{p^{n-2}}(x / p)^{l j}+p \sum_{\substack{j=1 \\ p+j}}^{p^{n-1}}(x / p)^{j}
$$

is a Johnson polynomial. Next suppose $\left|G^{\prime}\right|=p$ and $d(G)=2$ and $G \nVdash \operatorname{Mod}_{p^{n+1}}$. Then by Theorem 4.2, either $G=\left\langle a, b \mid a^{p^{2}}=b^{p^{2}}=c^{p}=1,[a, b]=c,[c, a]=[c, b]=1\right\rangle$ or $G=\left\langle a, b \mid a^{p^{2}}=b^{p^{2}}=1,[a, b]=a^{p}\right\rangle$. In the former case, $Z(G)=\left\langle a^{p}, b^{p}, c\right\rangle$, and in the latter, $Z(G)=\left\langle a^{p}, b^{p}\right\rangle$. Hence, in either case the center is non cyclic. Therefore, it does not have faithful irreducible character and hence by Proposition 2.1, none of these groups has a Johnson polynomial.

Finally to justify the third statement of the theorem we will produce examples. Suppose p is an odd prime. Let $G_{1}=\langle a, b, c| a^{p}=b^{p}=c^{p}=1,[a, b]=c,[a, c]=$ $[b, c]=1\rangle$ and $G_{2}=\left\langle a, b, c \mid a^{p^{2}}=b^{p}=c^{p}=1,[a, b]=a^{p},[a, c]=[b, c]=1\right\rangle$. The groups G_{1} and G_{2} are both p-JFC-groups. Observe that $\Phi\left(G_{1}\right)=G_{1}^{\prime}=Z\left(G_{1}\right)=\langle c\rangle$, $\Phi\left(G_{2}\right)=G_{2}^{\prime}=\left\langle a^{p}\right\rangle, Z\left(G_{2}\right)=\left\langle a^{p}, c\right\rangle, d\left(G_{i}\right) \neq 2$, and $\left(G_{i}, Z\left(G_{i}\right)\right)$ is a GCP for $i=1,2$. Hence by Theorem 1.1, G_{1} has a Johnson polynomial but G_{2} has no Johnson polynomials.

Acknowledgement The authors thank the anonymous referee for his/her useful comments and suggestions, including the statement of Theorem 1.3.

References

[1] Y. Berkovich, Groups of prime power order. Vol. 1, de Gruyter Expositions in Mathematics 46, Walter de Gruyter, Berlin, 2008.
[2] S. M. Gagola, Jr. and M. L. Lewis, Squares of characters that are the sum of all irreducible characters. Illinois J. Math. 42(1998), no. 4, 655-672.
[3] R. Gow, Properties of the finite linear group related to the transpose-inverse involution. Proc. London Math. Soc. 47(1983), no. 3, 493-506. http://dx.doi.org/10.1112/plms/s3-47.3.493
[4] R. Heffernan and D. MacHale, On the sum of the character degrees of a finite group. Math. Proc. R. Ir. Acad. 108(2008), no. 1, 57-63. http://dx.doi.org/10.3318/PRIA.2008.108.1.57
[5] I. M. Isaacs, Character theory of finite groups. Pure and Applied Mathematics 69. Academic Press, New York, 2000.
[6] I. M. Isaacs, M. Loukaki, and A. Moreto, The average degree of an irreducible character of a finite group. Israel J. Math. 197(2013), no. 1, 55-67. http://dx.doi.org/10.1007/s11856-013-0013-z
[7] G. James and M. Liebeck, Representations and characters of groups. Second edition. Cambridge University Press, New York, 2001.
[8] G. Karpilovsky, Group representations. Vol. 1. Part B, In: Introduction to group representations and characters. North-Holland Mathematics Studies, 175. North-Holland, Amsterdam, 1992, pp. i-xiv, 621-1274.
[9] V. Kodiyalam and D. N. Verma, A natural representation model for symmetric groups. arxiv:math/0402216.
[10] S. Lemieux, Finite exceptional p-groups of small order. Comm. Algebra 35(2007), no. 6, 1890-1894. http://dx.doi.org/10.1080/00927870701246924
[11] M. L. Lewis, Character tables of groups where all nonlinear irreducible characters vanish off the center. In: Ischia group theory 2008. World Sci. Publ. Hackensack, NJ, 2009, pp. 174-182. http://dx.doi.org/10.1142/9789814277808_0013
[12] _, The vanishing-off subgroup. J. Algebra 321(2009), no. 4, 1313-1325. http://dx.doi.org/10.1016/j.jalgebra.2008.11.024
[13] K. Magaard, and H. P. Tong-Viet, Character degree sums in finite nonsolvable groups. J. Group Theory 14(2011), no. 1, 53-57.
[14] E. Poimenidou and H. Wolfe, Total characters and Chebyshev polynomials. Int. J. Math. Math. Sci.(2003) , no. 38, 2447-2453.
[15] J. Soto-Andrade, Geometrical Gelfand models, tensor quotients and Weil epresentations. Proc. Symp. Pure Math. 47, Smer. Math. Soc., Providence, RI, 1987, pp. 306-316.
[16] H. P. Tong-Viet, On groups with large character degree sums. Arch. Math. (Basel) 99(2012), no. 5, 401-405. http://dx.doi.org/10.1007/s00013-012-0446-3
[17] J. Zhang and X. Li, Finite p-groups all of whose proper subgroups have cyclic Frattini subgroups. J. Group Theory 15(2012), no. 2, 245-259.
Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, INDIA
e-mail: skprajapati.iitd@gmail.com ritumoni@maths.iitd.ac.in

[^0]: Received by the editors April 4, 2014; revised November 5, 2015.
 Published electronically January 28, 2016.
 Author S.K.P. was supported by the Council of Scientific and Industrial Research (CSIR), India.
 AMS subject classification: 20 C 15 .
 Keywords: finite groups, group characters, total characters.

