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FINITE LATTICES OF PROJECTIONS IN FACTORS AND 
APPROXIMATELY FINITE C-ALGEBRAS 

S. C. POWER 

ABSTRACT. A unique factorisation theorem is obtained for tensor products of finite 
lattices of commuting projections in a factor. This leads to unique tensor product fac
torisations for reflexive subalgebras of the hyperfinite Hi factor which have irreducible 
finite commutative invariant projection lattices. It is shown that the finite refinement 
property fails for simple approximately finite C*-algebras, and this implies that there is 
no analogous general result for finite lattice subalgebras in this context. 

Recently we have made use of a refinement theory for antisymmetric connected re
flexive relations in the analysis of isomorphism classes of tensor products of triangular 
operator algebras [7]. In the present note we give an account of a similar analysis for the 
simplest nontriangular context, namely for subalgebras of factors determined by a finite 
lattice of commuting projections in the factor. In the case of the hyperfinite IIi factor 
such subalgebras are in bijective correspondence with directed finite graphs with vertex 
set supporting a probability measure induced by the trace. The unique factorisation the
ory of the direct product of such structures leads to a normal form for their subalgebras 
in terms of tensor indecomposable factors (Theorem 2.1). 

In contrast we show that in the class of simple approximately finite (AF)C*-algebras 
indecomposable tensor product factorisation need not be unique. Specifically there are 
simple AF C*-algebras A\, A2, A3, A4 with K0(Ai) = Z2, 1 < i < 4, such that each 
algebra is (8)-indecomposable, A10A2 = A3<g>A4,andyetAi is not isomorphic to A3 orA4. 
Thus we cannot expect unique factorisation for multiple tensor products of elementary 
non-self-adjoint subalgebras determined by a finite projection lattice; uniqueness already 
fails for trivial subalgebras associated with the trivial lattice { 0,1}. 

The direct or cardinal product of two reflexive binary relations R and S on the sets X 
and Y respectively is the relation R x S on X x Y such that (x\y\) (R x S) O2,yi) if and 
only if JCI R X2 and y\ S y2. The set theorists Chang, Jonsson and Tarskii have developed 
(in [2]) an important refinement and unique factorisation theory for binary relations in 
which, in particular, it is shown that if R is a connected antisymmetric reflexive binary 
relation with two indecomposable factorisations R\ x • • • x Rn and S\ x - — x Sm, then 
n = m and for some permutation 7r, and Rt is isomorphic to 57r(,-) for all 1. In the finite 
case there is naturally associated with such a relation R a subalgebra A(R) of the complex 
matrix algebra Mn(C ), where n is the cardinality of the underlying set X, and furthermore 
A(R\ x R2) coincides with the tensor product A(Ri) ® A(/?2). We see then that there is 
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a direct connection between the product structure of binary relations and the classifi
cation of tensor products of operator algebras. This connection, and its generalisations, 
were exploited in [7] to obtain classifications of finite and infinite tensor products of tri
angular operator algebras. An earlier analysis of this type was given by Arveson in [1, 
section 3] for certain reflexive operator algebras with commutative subspace lattices that 
were infinite tensor products of finite join-irreducible lattices. 

In the first section we discuss the representation theory for finite unital distributive 
lattices in factors and distinguish the notions of external (spatial) factorisations L\ <g> L\ 
and internal factorisations L\ <g)/ £%. The unique factorisation theorem for irreducible 
lattices in a II i factor is obtained rather easily from the binary relation theory mentioned 
above, and in section two this is applied in the hyperfinite context to obtain a unique 
factorisation theory for reflexive subalgebras with finite invariant projection lattice. 

1. Refinement for Representations of Finite Distributive Lattices. A faithful 
representation, or, more briefly, a realisation of a finite distributive lattice fAfis a lat
tice L of commuting self-adjoint projections in a unital operator algebra M, together 
with a faithful lattice isomorphism 9vi —• L. We assume always that ^Mis unital in the 
sense that it contains a greatest element 1 and a least element 0, and we assume that 
representations <M —> L are unital, with 0 —• 0 and 1 —• /. For convenience we often 
suppress the underlying isomorphism and speak of L as a realisation of 9vi. The lattice 
operations for L are given by P V Q = P + Q — PQ, P A Q = PQ. The commuting 
projection lattices L are also called finite commutative subspace lattices, since they are 
associated with reflexive algebras with commutative invariant subspace lattice. (See [3], 
Part IV). 

Considering the set X of lattice homomorphisms from f^fto the trivial lattice { 0,1} 
we can view fAf as a lattice of subsets of X, and this will be convenient. Thus we consider 
a finite set X with an antisymmetric partial order x < y, which we also write as x R y, 
and consider ^Mas the lattice of all decreasing subsets E of X. Recall that E is decreasing 
if x belongs to E whenever x < y and y belongs to E. 

Suppose that L is a realisation of tM in the unital operator algebra M. An interval 
projection of L is a non zero projection of the form L\ — Li with L\ > L2, projections 
in L. An atomic interval, or atom, is an interval projection which dominates no other 
interval projection. Clearly the underlying set X — X(!M) for fW ĉan be identified with 
the set of atoms of L and furthermore x < y if and only if the corresponding atoms 
Q(x), Qiy) have the propery that LQ(x) = Q(x) whenever LQ(y) = Q(y). Thus if L(X, R) 
denotes the lattice fAf associated with X, R then the set of all realisations of 9A. in the 
operator algebra M corresponds simply to the set of parititionings of the identity by non 
zero projections Q(x), x in X. We say that two realisations L and U in M are equivalent if 
there is a unitary operator M in M such that (Ad u)(Q(x)) = Q'ix), where Q(x) and (?{x), 
x G X, are the atoms of L and L' respectively. The following lemma is immediate. 

LEMMA 1.1. Let L and £J be realisations of a finite distributive lattice in the unital 
operator algebra M. Then L and £J are equivalent if and only if the associated atomic 
projections Q(x) and Q'ix) are equivalent for each x. 
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We also say that the finite CSL lattices £ and £ ' are unitarily equivalent in M if 
there is a unitary v in M such that (Ad v)(£) = £'. Clearly two realisations M —> L 
and M —• L' are equivalent realisations if and only if the image lattices £ and £ ' are 
unitarily equivalent finite CSL lattices. 

It follows from the comparison theory for projections that if M is a IIi factor then the 
equivalence classes of realisations of the lattice L(X, R) are in bijective correspondence 
with faithful probability measures /x on X, the correspondence being given by /x({ x} ) = 
T(Q(X)) where r is the normalised trace on M. Similarly, the equivalence classes of 
realisations of L(X, R) in factors of type I and type II^ are in correspondence with the 
appropriate class of positive faithful extended real valued measures on X. In the type III 
case all realisations are unitarily equivalent. 

Define the tensor product ïM\ 0 9A.2 of two unital finite distributive lattices 9A\ — 
L(X, R), Mi — L(Y, S) as the lattice L(X xY,Rx S). Similarly, if L\ 0 £2 are realisations 
of 9A\ and 51^ respectively, then define L\ 0 £2 to be the associated realisation of fWi 0 
9^2 in M\ 0 M2 which is generated by the lattices L\ = { L\ 0 /: L\ G L\}, £2 = 
{10 L2'. £2 G £2} . The realisation L in M is said to admit an external (or spatial or 
tensor) factorisation if there are realisations £4 in M,, for / = 1,2 such that M — M\ 0 M2 
and L — L\ 0 £2-

On the other hand, there is a simpler notion of internal factorisation for a realisation L 
in an infinite-dimensional factor M. Write X = L\ 0 / JC2 if L has the complete invariant 
(X,R,n) and if there is a factorisation R = R\ x R2 with respect to coordinates X = 
Xi XX2 such that/x is a product measure/xi x/X2,and(Xi,/?i,^i)and(X2,/?2^2)arethe 
invariants for £1 and £2 respectively. For the internal factorisation the factor lattices are 
only determined up to unitary equivalence in M. In the II1 case the probability measures 
/zi and [i2 can be recovered from /ii x /12 as marginal measures and so L\ and L2 can 
be regarded as independent sublattices of L. In general, however, and in the 1^ case for 
example, the lattice L\ 0 / L2 need not have sublattices with the same order multiplicity 
type as A or £2- Of course this remark also applies to external tensor products. 

In view of the stability of the hyperfinite II1 factor under spatial tensor product the 
external and internal factorisation of finite CSL lattices can be identified. There are simi
larly close connections between these factorisations in the case of IIQO hyperfinite factors. 
In the type III case factorisation theory is purely lattice theoretic. 

We now formulate the fundamental refinement theorem for connected reflexive an
tisymmetric binary relations obtained by Chang, Jonsson and Tarskii [2]. See also the 
simplified development in [7, section 2]. 

Let Ri C Xi x Xi be a (not necessarily finite) reflexive binary relation on the set X,, 
1 = 1,2. Then the direct or cardinal product R\ x 7?2 is the reflexive binary relation on 
X\ x X2 consisting of the pairs ( ( ^ I , ^ ) , ^ , ^ ) ) such that (JC/,JCJ) G Rt for / = 1,2. We 
also write x R y to indicate (JC, v) G R. A relation R on the set X is connected if for every 
pair of points x, v in X there is a sequence JCI , . . . , xr such that x — x\, y = xr and either 
xi R xi+i or jc/+i R xi for each / = 1, . . . , r — 1. Write R » S to indicate that the binary 
relations R on X and S on Y are isomorphic (by means of a bijection X —•> Y). A family 
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7 of reflexive binary relations, which is closed under direct products, is said to have the 
finite refinement property, if whenever R\ x • • • x Rn « S\ x • • • x Sm, with all factor 
relations in ^F, it follows that there exist relations 7^ in J such that 5/ ft* Ta x • • • x Tin, 
1 < i < m, and /?, « Ty x • • •x 7my, 1 <y < n. 

A stronger property is the strict refinement property for 7 which ensures that when
ever 0 : R\ x • • • x Rn —» Si x • • • x Sm is a binary relation isomorphism, as before, then 
the product relations have a common refinement, compatible with 0, in the following 
sense; there exist direct factorisations X; = Xn x • • • x Xin and Y}• = Yy x • • • x Ymj, and 
relations Ttj on X,y and Uy on K/,, such that /?,- = 7h x • -xTin, and 5 /= UyX-- • x £/m;, 
for 1 < / < m, 1 < y < ra, and 0 admits a factorisation 9 = Y[™=i Hf=l 0^ where 0tj maps 
7(/ onto Uij. 

It is easy to see, for example, that equivalence relations have the refinement property, 
but not the strict refinement property. 

THEOREM 1.2. The family of connected antisymmetric reflexive binary relations has 
the strict finite refinement property. 

An immediate consequence of Theorem 1.2 is that if a connected antisymmetric re
flexive binary relation is written as a finite product of directly indecomposable relations 
then this representation is unique up to order and isomorphism of the factor relations. 
For finite relations of course the existence of such factorisations is immediate and it is 
this unique factorisation property that we exploit for representations of finite distributive 
lattices in the next theorem. 

The unique factorisation will be used in the following form: If n : X\ x • • • x Xn —• 
Y\ x - • • x Ym is a bijection inducing an isomorphism between R = R\ x • • • x Rn and 
S = Si x • • • x Sm, with the factor relations finite connected reflexive antisymmetric 
and directly indecomposable, then n = m and there are isomorphisms 7r, from (X,-,/?,-) to 
(Y^,), S<T(;)), for some permutation a, such that TT factors as n = 7Ti X • • • x 7rn (with the 
range coordinates reordered). 

A representation 9A. —> L with L a unital commutative projection lattice in the 
operator algebra M is said to be indecomposable (or Af-indecomposable) if whenever 
L — L\ <g>f Li (up to unitary equivalence) it follows that either L\ or Li is the trivial 
lattice {0,1}. Similarly, we say that the finite distributative unital lattice !M is inde
composable if it admits no nontrivial tensor factorisation. If 96 is indecomposable, then 
certainly every realisation of 96 is indecomposable, but simple examples show that 94. 
may be decomposable and have indecomposable representations. On the other hand 96 
is said to be irreducible if, in the standard representation 96 — L(X, R), the finite relation 
R is connected, and this is equivalent to the irreducibility of any (and hence all) realisa
tions of 96. Here a realisation L is said to be irreducible if whenever / = L\ + Li with 
L\ and L2 orthogonal projections in X, it follows that L\ — I or Li = I. 

A considerably stronger notion than the irreducibility of the finite unital distributive 
lattice 96 is join-irreducibilityin which the identity 1 cannot be the join of any two proper 
lattice elements. Arveson [1] has obtained the following unique factorisation theorem 
(and refinement property) for this particular class of lattices by direct methods. 
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THEOREM 1.3. Let 9\{ be an irreducible finite unital distributive lattice. Then !M 
admits an indecomposable tensor product factorisation <M = 9A\ 0 • • • 0 9v(n, and such 
a representation is unique up to order and isomorphism of the factor lattices. 

PROOF. This is immediate from the unique factorisation property of connected re
flexive antisymmetric binary relations and the definition of tensor products of finite dis
tributive lattices. • 

There is also, of course, a refinement theorem for these lattices, but it is the above 
result together with the strict form of the uniqueness of factorisations, which is used in 
the following proof. 

THEOREM 1.4. Let Lbe a nontrivial irreducible finite unital commuting projection 
lattice in the Hi factor M. Then there is an internal factorisation L = L\ 0 / • • • 0 / £>,, 
where L\,... ,Ln are indecomposable nontrivial commuting projection lattices in 9Ày 

and furthermore such factorisations are unique up to the order and the unitary equiva
lence classes of the factor lattices. 

PROOF. Let L — L\ 0 / • • • 0 / £„, L — 9^ 0 / • • • 0 / fÂ i be two indecomposable 

internal factorisations of L as in the statement of the theorem. (The existence of such 
factorisations is clear.) The associated coordinate sets Xt = X(Lï) and Yj = X(%£j) 
are finite sets, which are not singletons, carrying the induced relations Rt and Sj and the 
probability measures jx, and Vj respectively, for 1 < i < n, 1 <j< m. Thus there is a 
bijection if from Xi x • • • x Xn to Y\ x • • • x Ym which identifies the product measures 
Hi x • - • x nn and v\ x • • • x vm and effects an isomorphism between the relations 
R = Ri x -" x Rn and S — S\ x • • • x Sm. Each Rt and each 5/ is finite, and so there 
exist indecomposable direct factorisations 

R( = Ri{ x ••• xRUn., 1 < / < n , 

Sj = Sjt\ X • • • X Sjjn-, 1 ̂ 7 ^ W> 

together with underlying factorisations Xt = Xit\ x • • • x X;A, Yj = Yjy\ x • • x F jn . 
Since L\ is indecomposable the measure \i\ does not admit a factorisation m\ xwi2 with 
respect to any proper partitioning of the n, coordinates into two sets. 

Since L is irreducible its underlying relation R is connected and so by Theorem 1.2, 
and the discussion following it, the families 

A = {XtyA <k<nh 1 < i < n} , 

B = { Yj*: l<k<mj9l <j < m} , 

have the same cardinality, there is a bijection n:A —> B and there are bijections my. 
Xi7k —-• niXtf) inducing isomorphisms between R^ and Sjj, where Yjj = n(Xuk). Fur
thermore, it follows from the strict refinement theorem that these maps can be chosen so 
that the automorphism 

n n* 
i,k 
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is the identity map on X(L). 
We assert that for each 1 < i < n there is a j = a(i) such that m, = nt and 

{7r(Xijc): 1 < k < rii} — {Yjy, 1 < k < rrij}. If this were not so then, relabelling, 
we can assume that n(X\j) = Y\j for 1 < / < t, and 7r(XifI-) = Yjiki withy, ^ 1 for 
t < i < nu where 1 < t < nt. Let Zi be the algebra of elementary cylinder sets as
sociated with coordinates in X i j , . . . ,Xi,,, let Z2 be the corresponding algebra for the 
coordinates in X\it+i,... ,Xi>n, and let Z = Zi x Z2 be the generated algebra of sets of 
the form E x X2 x • • • x Xn. The restriction of // to Z is identifiable with /xi. Since 
/i = 1/1 x • • • x z/m, however, it follows that /ii admits a factorisation m\ x ni2 with 
respect to Z = Zi x Z2, with m\ the restriction of 1/2 x • • • x vm. This contradiction of 
the indecomposability of L\ establishes the assertion. 

We have now shown the existence of isomorphisms 7rt from (X,-,/?/) to (Tao> £,(/)) 
such that the identity map factors as 7ri X • • • x ixn. Since the factors of a probability mea
sure can be recovered as marginal measures (when these factor measures are themselves 
probability measures) and since the identity map is measure preserving, it follows that 
717 identifies //,- with va^ for each /, and this completes the argument. 

REMARK. The last theorem can be interpreted graph theoretically, by viewing the 
complete invariant (R,fi) as a directed finite graph supporting the probability measure 
/i. The methods above show that this class of connected probability graphs has the finite 
refinement property and unique factorisation. 

2. Subalgebras of the hyperfinite Hi factor. Let R be the hyperfinite Hi factor 
and let I b e a finite lattice of commuting projections in R. Then A = Alg L is the 
algebra of elements a with pap = ap for all p in L. It is easy to see that A is relatively 
reflexive in the sense that A = Alg(Lat A) where Lat A is the lattice of projections in 
R which are invariant for A. For convenience we call such algebras FCSL subalgebras 
of R. An FCSL subalgebra A is irreducible if C*(A) = R and is said to be essentially 
indecomposable if whenever A = A\ ® A2, withAi, A2 algebras of the same class, then 
A\ — A or A2 = A. Note that we always have A — A <S> R- Two FCSL subalgebras of 
R are said to be conjugate if they are conjugated by a unitary operator in R. In a similar 
way we define FCSL subalgebras of Af„(C), and the notions of conjugacy, irreducibility, 
and indecomposability. 

By way of a concrete example consider the lattice L of projections pk = q\ + • • • +qk, 
1 < k < n, where q\ + • • • + qn is a partition of the identity in R. If the normalised 
trace r has rational values on the projections qi then Alg L has the form R 0 A where A 
is the FCSL subalgebra of Mm(C) for some m, associated with the lattice of projections 
Pk — Q\ + * * * + Qk, 1 < k < n-, where r{qï)m = rank g/, 1 < i < n. Clearly we can 
choose m minimally so that A is indecomposable. On the other hand if riqi) is irrational 
for some i then Alg L is essentially indecomposable. 

THEOREM 2.1. Let Abe a proper irreducible FCSL subalgebra of the hyperfinite Hi 
factor R. Then 

A = R®A\ <g> •••(£)A r 
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where each of the algebras A\,..., Ar is a properly non-self-adjoint essentially indecom
posable FCSL subalgebra ofR. Furthermore these algebras are uniquely determined up 
to conjugacy. 

UB\,..., Bs are FCSL subalgebras of R then each probability measure \i on { 1, . . . , s} 
gives rise to the FCSL subalgebra (B\ 0 • • • 0 Bs, /x) for which the trace is normalised so 
that r ( (0, . . . , 1/, 0 , . . . , 0)) = n({j} ). Combining this with the theorem it follows that 
we can obtain a normal form for a general FCSL subalgebra A of R, namely, 

A = R <g> ( ( (A u <g> • • • <g> Ai,ri) 0 • • • 0 (A,,i <g> • • • ® AJfrj)),/x), 

where the probability measure /x on { 1, . . . , s} and the factor algebras are uniquely de
termined (up to the appropriate permutation). 

PROOF. If AI andA2 are FCSL subalgebras of/? or Afn(C), for some AT, then Lat(Ai® 
A2) = (LatAj) <g) (LatA2). For the hyperfinite factor we identify the external and inter
nal factorisation of projection lattices. The lattice L = LatA of the irreducible FCSL 
subalgebra A is an irreducible projection lattice and so by Theorem 1.4 there is an inde
composable external factorisation 

L = £1 <g> • • • <g> %• 

which leads to the factorisation A = B\ (&•—(& Br where B\ — Alg £,-, 1 < i < r. 
Either Bt is essentially indecomposable, or, as in the example preceding Theorem 2.1, 
Bj — R 0 Ai where A/ is an indecomposable FCSL subalgebra of Mm(C ) for some m. 
The uniqueness of the representation follows from the uniqueness of the factorisation of 
L. m 

REMARK 1. There is a simple analogue of Theorem 2.1 for irreducible FCSL sub-
algebras of a UHF C*-algebra which can be obtained by the same argements. Each such 
algebra admits a unique representation of the form B (g) A\ ® • • • <S) Ar where B is a UHF 
C*-algebra and A\,..., Ar are irreducible indecomposable FCSL subalgebras of complex 
matrix algebras. 

REMARK 2. The strict finite refinement property holds for reflexive connected an
tisymmetric relations on countable sets. Consequently, as above, in the case of factori
sations of finite length, we can obtain the uniqueness of indecomposable factorisations 
of connected countable probability graphs, together with a corresponding result for the 
associated subalgebras of the hyperfinite II1 factor. These are in fact the irreducible sub
algebras which have purely atomic relative invariant projection lattices. There is also 
a similar generalisation for UHF C*-algebras, and this time there are interesting inde
composable factor algebras. We remark that in these contexts the existence of infinite 
indecomposable factorisations presents new difficulties and is not guaranteed. (See Re
mark 2.10 in [7] where nonexistence of such factorisations is shown using [6].) 
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3. Nonrefinement for simple AF C*-algebras. Let C be a class of (isomorphism 
equivalence classes of) norm-closed unital operator algebras which contains the trivial 
algebra C and is closed under the formation of spatial tensor products A\ <g> A2. For 
definiteness let us say that we are considering isomorphisms which are completely iso
metric. Thus C is a unital abelian semigroup of isomorphism types. An element A of 
C is 0-indecomposable if whenever A = A\ ® A2 with A\,A2 in C it follows that 
A\ = C or A2 = C We say that C has the finite refinement property if whenever 
A\ <g> • • • <S> Ar = B\ ® - - <S> Bs in C it follows that there are algebras C,y in C, for 
l<i<r,l<j< s, such that At = Cn <g> • • • ® Cis, 1 < 1 < r, andfi, = Cy® • • -® Q 
for 1 < j < s. Clearly this property implies the uniqueness, up to permutation, of ®-
indecomposable factorisations. 

If C = UHF, the class of Glimm algebras, then C has the finite refinement property 
(in fact the infinite refinement property) as an elementary conseqequence of Glimm's 
theorem. If C is the class of finite-dimensional C*-algebras then the refinement property 
fails for rather elementary reasons (cf. Remark 2.9 of [7]). In view of these remarks it 
is natural to consider classes of simple C*-algebras, or in the non-self-adjoint context, 
classes of algebras A for which C*(A) is simple. However we have the following. 

THEOREM 3.1. The class of simple approximately finite C* -algebras does not have 
the unique factorisation property. 

Our counterexample is based on AF C*-algebras whose ordered #0 groups have the 
form (Z 2 ,P a) , where a is a positive irrational determining the positive cone Pa = 
{(n,m): an + m > 0} . Every countable totally ordered group is an ordered Ko group 
of an AF C*-algebra by [5, Theorem 2.2], and in the case of (Z2 ,P a) , the continued 
fraction expansion algorithm for a can be used to specify an AF C*-algebra Aa with 
K0(Aa) = (Z 2 ,P a) (See [5, Theorem 2.2], and [4].) 

PROPOSITION 3.2. Let Aa, Ap be approximately finite C*-algebras with Ko(Aa) = 
(Z2 ,P a) , K0(Ap) = (Z 2 , /^) , as ordered groups. Then K0(Aa 0 Ap) = (Z4 ,0) where 
(«1,^2, «3,^4) G Q if and only ifa/3 n\ + an2+ (3ni +/Î4 > 0. 

PROOF. Recall first that the tensor product of two ordered abelian groups is the group 
tensor product together with the positive cone generated by elementary tensors g\ ® g2 

with gi, g2 in the positive cones of the factor groups. It follows that if G\,G2 are two 
subgroups of R, with the relative ordering, then this ordered group tensor product is 
simply their product in R together with the relative order. It now follows that (Z 2, Pa ) 0 
(Z2, Pp ) is isomorphic to (Z4, Q). It is elementary to check that Ko(A ® 2?) = Ko(A) ® 
KQ{B), as ordered groups, when A, B are AF C*-algebras (cf. [5, section 5.1]), and so the 
proposition follows. • 

Let 7 E Rk and let Q(T) = {n e lk:(n,J_) > 0} . Let X £ GL(*,Z), let 
9:n —• (XT)~ln be the associated group automorphism of Tk, and let 6_ = X1. Then 
0:(Zk

J Q(J)) —• (Z*, Qui) is an isomorphism of ordered groups, since 0 < (n,J_) if 
and only if 0 < (n,X~l6_) = (0(n),7_) • Moreover, if u is an order unit for (Z*, Q(lj) 
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then 0 (w) is an order unit for (Z *, Q(àj) and 8 implements an isomorphism between the 
scaled order groups with these units. 

Roughly speaking there is enough freedom through such isomorphisms of (Z 4, Q(lj) 

to obtain an ismorphismbetween (ï2 ,Q(otx, a2))®{l-2 ,Q{f5\, fiij) and (Z2,g(<*,î><*2)) 
<g> (Z2,ÔO?/,/^)) m certain cases where (Z2,Q(ai,a2)) is not isomorphic to either 
factor group of the second tensor product. The following example illustrates this. 

PROPOSITION 3.3. The scaled ordered dimension groups 

Gi = (Z 2 ,G( l ,V2) , ( l , l ) )®(Z 2
> e( l ,>/3) , ( l ,0) ) 

and 

G 2 - ( Z 2 , Ô ( l , V 3 + \ / 6) , ( l ,O) )0 (Z 2 , e ( l , v
/ 2) , ( l , l ) ) 

are isomorphic. 

PROOF. Le t ! = ( l , v ^ , V 3 , \ / 6 ) , £ = (1, V̂ 3 + v
/6,v /2,(v /3 + v W ^ ) so that by 

the last proposition Gx = (Z4,<2(1))> G2 = (Z4,<2(£_)). 
Let 

" 1 0 0 0-1 
0 0 1 1 
0 1 0 0 
0 0 2 lJ 

x = 

and observe that X G GL(4, Z ) and X1 = £_. Moreover the order units for Gi and G2 are 
« = ( 1,1,0,0) and v = ( 1,0,1,0), respectively, and (XT)~lu = v. By our earlier remarks 
0:n—+ (XT)~l(n) establishes the desired isomorphism. 

PROOF OF THEOREM 3.1. Let A\ ® A2, A3 ® A4 be the AF C*-algebras associated 
with Gi and G2 respectively, where, as a scaled ordered dimension group, KQ(A\) — 
(Z 2 ,2(1 , >/2),(l, 1)) etc. Thus Aj (8) A2 = A3 ® A4. Furthermore these are indecom
posable factorisations. Indeed if A\ = C 0 D, with C and D AF C*-algebras, then, 
Z2 = K0(Ax) = lim„tfo(Cn ® D„) = (lim, ^ (G , ) ) 0 (limn #0(Dn)) =HX®H2 say, 
for some abelian groups H\, H2. Thus //1 or //2 is Z and so A\ — M* 0 A for some 
AF algebra A and some integer k which divides the order unit (1,1) of A\. Since this 
order unit is minimal in (2(1, y/l) it follows that k = 1. Similarly, A2, A3 and A4 are 
<g)-indecomposable. 

Finally, note that y/3 + y/6 is not equivalent to a = \/2 or a = \ / 3 , in the sense that 

ra + s 

for some element 
r s 

in GL(2, Z). Consequently A3 is not isomorphic to Ai or A2. 
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