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Abstract

We consider certain affine Kac-Moody Lie algebras. We give a Lie theoretic interpretation of the
generalized Euler identities by showing that they are associated with certain filtrations of the basic
representations of these algebras. In the case when the algebras have prime rank, we also give
algebraic proofs of the corresponding identities.

1980 Mathematics subject classification (Amer. Math. Soc): 17 B 65, 05 A 19.

1. Introduction

In this paper we show that certain power series identities (viz. the generalized

Euler identities (cf. [1])) are associated with natural filtrations of the basic

modules for the affine Kac-Moody Lie algebras A^ (cf. [2]). This association

arises in the following way. If g is any Lie algebra, V is a g-module, S c g

generates g (as an algebra) and T c V is a generating set for V as a g-module

(i.e. U(Q) • T = V), then we may define

(1.1) V [ n = s p & n { s l s 2 ••• s r - t \ s l t . . . , s r € = S , t e T , r < / } .

Then

( 0 ) = F [ . 1 ] c F [ O ] c F [ 1 ] c
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[2 ] Affine algebras and identities 297

is a filtration of V. If V and each V{i] has a grading

(1.2) v=T.v.lf vw=ZvWrl

(by nonpositive integers) with each dim(F_7) < oo, then we may define the
corresponding characters

(1.3) x(V)=Il(dimV_l)q'

and

It is immediate that

(i-4) x(v)=

For a particular choice of g, V, S, T and a grading of V, it may be possible to
explicitly determine x ( D an^ e a c n x(V[i\/V[i-i])> m which case (1.4) will
become a power series identity. Certain interesting identities are known to arise in
this way (for example, see [4-9]).

Here, for a suitable choice of the generating sets, we define a filtration of the
basic modules of the affine Lie algebra A^\ We use this to give Lie algebraic
interpretations of a set of identities called the generalized Euler identities. In the
case when A^ has prime rank we also give a Lie theoretic proof of these
identities. But, as is well known, these identities have very simple combinatorial
proofs. However, it is not the proof of these identities but rather the Lie algebraic
approach which justifies the publication of this paper. We are grateful to R. L.
Wilson for his valuable suggestions and to G. Benkart for her advice and support.
We would like to thank the referee whose suggestions improved an earlier version
of this paper.

2. The setting

Let g = ot(n + 1,C) be the complex simple Lie algebra of (n + 1) X (n + 1)
trace zero matrices with complex entries. Consider the basis

of g, where

X\Pi + P i + l + • - • + / > / ) ~ EilJ+l'> •X-(/J; + j8 j + ,+ ••• +Pj) = ~ / + l , l
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298 Kailash C. Misra (3]

for 1 < i < j < n, with Etj denoting the (n + 1) X (n + 1) matrix unit; i.e. Etj is
the (n + 1) X (« + 1) matrix with 1 as the y-th entry and zero everywhere else.
Let b denote the Cartan subalgebra (CSA) of g with basis {j8l5 j82,..., y8n}.
Consider the bilinear form

(x,y) = tr(xy), for all x, y <= g,

on g. Let $ denote the set of roots of g with respect to b. The restriction of
( • , •> to b is nondegenerate and hence we may identify $ with a subset of b-
Then

Note that for all /? e $, xp e g is a root vector. Also note that (/?,/?) = 2,
<& x ±p) = 0, and <*,, *_,) = 1 for all $ e $.

Consider the automorphism v: g -» g defined by v(x) = e-1jce, for all x e g,
where e = E12 + £23 + ' ' ' +J^n,n+i + ^n+i,i- Note that v is an automorphism
of order n + 1 stabilizing b, and so J> acts on $. Under this action $ splits into n
distinct orbits each of cardinality n + 1. Choose the following orbit representa-
tives:

Yi = A , Y2 = A + &.. . . .Y. = ft + & + • • • + & .

Let ZB + 1 denote the additive group of integers modulo n + 1. Then, for all
^ 6 $ , /» G Zn + 1 , w e n a v e

(2.1) r'x, = x,,^.

Let w be a primitive (n + l)st root of unity. For p e Z n + 1 define

8 ( P ) = ( x e 8|«c = « M .

Then

is a Zn+1-gradation of g. For x e g, write x = E f 6 j M t x ( ; ) , where x(p)

Then note that for all p e Zn + 1, x e g, we have

(2.2) , ( l £( / ) £ ( )
In particular, for all 8̂ G 0, ^8(0) = 0. If b is any r-invariant subalgebra of g,
define

Then

6 - © b(/))

https://doi.org/10.1017/S1446788700028585 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028585


[4] Affine algebras and identities

is a Zn+1-gradation of b. Then observe that

299

Further observe that

= fl(0)= ©
is a CSA of g. Consider the matrix P = (/»,-_,-), where ptJ = u'J, 0 < /, y < w.
Note that P"1 = [ l / (« + I)""1'-7']. Consider the automorphism 5: g -» g, defined
by 0(x) = PxP'1, for all x e g. Now observe that 6 maps § to t and maps the
root vectors with respect to I) to root vectors with respect to t. For j = 1,2,..., n,
let

(2.3)

i - l
E «-'V-D«"*v

EJ-irTT
l

n + 1

-E«-'Y,+ E E «-"-'»
i - l i=

- L «'Y* + E E «-"+'
1 - 1 i - l

Then { £y-, i^, f / / - | l < y ' < n } i s a set of canonical generators of g with respect to
t. Also note that, with respect to the CSA t of g, the vector

(2.4) E0 = -^\-t^%+t E «-'r'*J
is a lowest root vector, the vector

(2.5) iro = _ L _ _ 2

is a highest root vector, and

E (« ' -
i - l

Y,"

Let £ = ^"-o-^y The*1 % = C
B(E)>tbe centralizer of E in g. Thus & is a CSA in

apposition to t (cf. [5]). Consider the Lie algebra

(2.6) 8 = LJ 8(o « <' © Cc, (JT = i(modn + 1)),

where c is central, and where

[x ® t', y ® />] = [x, y]
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for all x e g ( / ) and y <= g O ) . In g, set

(2.7) ej = Ej®t, fj = Fj®rl and hJ = HJ9l + -^r[c

for j = 0,1,2,. . . , n. Then {ey, fj, h}| 0 < j < n } is a system of canonical genera-
tors for Q, viewed as the (twisted) affine Lie algebra A^\ Observe that c = £"=0/iy.
Let d be the derivation of g defined by the conditions

(2.8) d(c) = 0, d(x®ti) = i(x®ti), i s Z . j c e g ^ ,

so that

d{hj) = 0, d(ej) = eJ and d{fJ) = -f;.

Consider the semidirect product Lie algebra

(2.9) § = § XI Cd.

For i e Z , set

(2.10) Qi={xe~Q\[d,x] = ix}.

Note that for / =t 0, g, = g(-) ® f' and g 0 = g(0) ffl Cc © Crf. Furthermore,

(2.11) 8 = LJ 8,

is a 2-gradation of g. In a similar way define

(2.12) 5 = LJ&<o®f '®CceCd.

Observe that | 0 = CcffiCrf, since i) (0) = (0). Then the derived algebra

(2.13) 5 ' -[S,S]= LI&(o®''©Cc
jeZ

is an infinite dimensional Heisenberg subalgebra of g. For i e N , ( N denotes the
set of nonnegative integers), / # 0 (mod(n + 1)), choose

(2.14) M, = d i ag ( l , « - ' , w - 2 ' , . . . , a " " ' ) , «,- = d iag( l ,« ' , « 2 ' , . . . , « " ' ) .

Note that M, 6 Ej^, u, e b(_j), and for j = 1,2,..., n, (vj, M,> = (1 - u~'J) and

<Y,, »,-> = (1 - w°). Define

(2.15) Pl = M,. ® r', 9|- = <;, ® /" ' ,

for i $ 0 (mod(« + 1)) and i e M. Then [/>„ qj] = /cfi,-̂ -, and

(2.16) {p»q,,c\i # 0 (mod(« + l ) ) , i e N}

forms a basis of the Heisenberg subalgebra §'• Furthermore,

(2.17) { Pi,qi,c,d,(xyk)U)® tJ\i e IM,i # 0 (mod(» + l ) ) , y e Z,

A: = 1,2 «}
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is a basis of g. Let f be an indeterminate. For any /? e 4> (as in [5]), define the
elements

(2-18) jB(«- E

i = 0(mod(n

and

(219)

in 8(0. Let

(2.20) *(/?,?)= E *,
/ G Z

where Xt(fi) = ((xp)(i) ® f') is the homogeneous component of degree i of
£). Define

(2.21) «(f) = E f' and
ieZ IGZ

The following lemma now follows from Theorem 2.4(3) in [5].

LEMMA 2.1 Let fx, f2 ^e rtvo commuting indeterminates.
(1) For 1 < j < n, we have

(2) For 1 < y < n, we have

+
(« + 1)

Consider the abelian subalgebra

! = t e Cc e Cd

of g. There is a triangular decomposition

8 = n"© I © ft+

where

ft-= © 8-, and n + = © 8,-
00 oo
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For a dominant integral weight X e I* (i.e. X(/i,) e M, and we assume
X(d) = 0) define a (I + ft+)-module structure on C by setting

n + - l = (0), h-l=\(h)l, fo ra l lAe l .

Then the induced module

(2.22)

(where U denotes the universal enveloping algebra functor) is the Verma module
with highest weight X and highest weight vector 1 ® 1. Note that

M(X) = f/(ft-)-(l ® 1)

is a vector space isomorphism. Let

(2.23) W(X) = £ l/(ft-)/,x<*«>+1 -(1 ® 1).
i = 0

Then W(X) is the unique maximal proper g-submodule of M(\), and

(2.24) L(X) = M(X)/W(\)

is the unique (up to isomorphism) irreducible highest weight module with highest
weight \. If v0 is a highest weight vector in L(\), then

(2.25) /W.)+i -vo = O.

The Z-gradation on g induces a Z-gradation on M(\) and also on W(X). Hence
the standard module L(X) has a direct sum decomposition

where, for each j , dim(L(X)_7-) < oo. For an indeterminante q, define the
(principally specialized) character by

(2-26) X(L(X)) = £ (dim{L(\)-j))qJ.
7>0

Then x(^(M) has a well-known product expansion (cf. [7, Formula 1.1]).
Consider the linear functional Xj e I*, defined by Xy(A,-) = 8,:J and Xj(d) = 0,
j = 0,1,2, . . . ,«. The irreducible highest weight modules L(Xy) are called the
basic g-modules with highest weight Xy. It can easily be checked that

(2.27) x{L(Xj))= U (1-9*)"1-
k>\
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18] Affine algebras and identities 303

PROOF. In this proof, t will range through all positive integers # 0 (mod(n + 1)),
while s will range through all positive integers. Observe that, by Theorem 3.1, we
have

(?*')•
Now using the Campbell-Baker-Hausdorff formula (i.e. exp(a) exp(Z>) =
exp(6) exp(a) exp([a, b]) if [a, b] commutes with a and b), we have

•exp(l(l - «-')

•exp(l(l - «-')L(^)fr'

•exp(l

-(o* n (i-?)V((i-«?)(i-«-1?))

•exp(E I v'A,

REMARK. For the above proof, we could also have quoted Proposition 3.4 of [5].
For k > 0, let us set

(3.1)
- uvjvv)[\ - a vjvv)

(3.2) / 4 ( F 1 , F 2 , . . . , F A ) - C X P L £ F/Z,
\ r>0

/#0(mod(nH
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and

(3.3) gk(v1,v2,...,pk) = Pk(vl,v2,...,vk)fk(vl,p2,...,vk).

For a e N K , where K = {l,2,...,k} (i.e., a: K -» N), denote pf (1>^(2) • • • vfk)

by r a and let |a| = Ef=1a(z). Observe that

(3-4) A ( " i , "2. • • • . "* )= I ' % , «
a(l)»0

and

(3-5) «*("!, "2. • • • . " * ) " L "Va.

a(2)»0
«(1)+ • • • +a(k)>0

where fk a e C[>»], where gka G C[>>], and where both have degree -\a\. Define
F(A:] to be the span of all the elements xxx2 • • • xr • 1, 0 < r < k, where each x,
is one of the Xj(yx), j e Z. Then by Lemma 2.1, we have

(3-6) 0 = V{_X] c F[0] c F m c • • • c V,

and

(3-7) K = U F [ t ] .

Furthermore, by Proposition 3.2 and equation (3.5), we have

(3.8) K[fc, = span{gr >J0 « r < * , a e l \ l * } .

LEMMA 3.3. For all k > 0, we have

PROOF. Let W[k] = span{/r a | 0 < r < A : , a e M ^ } . Observe that the identity

gr(v1,v2,...,vr)= £ »/agra

l-<*(2)+ • • • + a ( r ) » O

may be viewed as a formal power series in the indeterminates vx/v2,
v2/vz,...,vr_x/vrand vr, since
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The generalized Euler identities state that (cf. [1])

(2-28) 11 (l-gkY1 = l+ £ cmJq>,
( d (

where

cm i~ t n e number of partitions of / into m parts in
which each integer appears as a part at most n times.

3. The spanning theorem

Let C[y] denote the polynomial algebra C[ym \ m > 0, m $ 0 (mod(w + 1))] on
infinitely many variables ym, m # 0 (mod(n + 1)), m e IM, and give C[y]
the structure of a graded algebra by setting deg(j>m) = -m, for all m > 0,
m # 0 (mod(n + 1)).

Now define on C a structure of (50 + J)+)-module by setting

(3.1) ($ +

and consider the induced fj-module

Then as vector spaces

v = u{i>-) = s(i>-) = c[y],

where S is the symmetric algebra functor. Also the (principal) gradation on V
with respect to the degree operator d coincides with the gradation on C[y]. Now
we can identify V = C[j>], with the elements pt acting as the operators i9/9.y,, the
elements qt acting as the multiplication operators L (_y,), c acting as the identity
operator and d acting as the zero operator. The following theorem is the
well-known vertex operator construction of the fundamental representation of g
due to Kac, Kazhdan, Lepowsky and Wilson [3].

THEOREM 3.1 {cf. [5]). Fix j = 0 , 1 , 2 , . . . , « . Let f be an indeterminate and
denote by

*«(?*)> Ac = 1,2,...,it, w e Z ,
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the coefficients of the Laurent series

where i ranges over all positive integers # 0 (mod(n + 1)), and where ak =
««*>/((«* " IX" + I)2)- Then the map Xm(yk) -* X^yk), m e Z, A: =
1,2, . . . , n, extends the representation of % on V — C[y] to a representation of g on
V. Moreover, for

and for k = l,2,...,n, the module V is the basic Q-module L(\j) with highest
weight \j G ! * , and 1 e Vis a highest weight vector.

Note that for an indeterminate f, we have used and will continue to use the
standard formal power series notation for the log series, the exponential series,
and the binomial series.

Let fx, £2, ? 3 , . . . be a (possibly finite) set of commuting formal indeterminates,
and let W be any vector space. Denote by W{^,f2>---} the vector space of
formal Laurent series in fx, f2> • • • with coefficients in W, i.e. the space of all
(possibly infinite) formal sums

with each vhh... e W. Observe that

PROPOSITION 3.2. Let $lt f2,..., ft be a set of commuting formal indeterminates
and let V = L(\j). Then in ^{?i,?2> ••-,?*}> we have

n (* ~ vu/vv) / v v- / \
K H < 0 < * (1 - uvjvv){l - w lt>Jrv) V , 1<(<A: I

where v,; = f/"1, wAere z, = (1 - u~')yt/t, so that degz, = -r, w/iere ax =
nuJ/((n + l)2(w — 1)), anrf w/iere f r«/iy through all positive integers # 0
(mod(« + 1)).
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Also any formal power series in vx, v2,...,vr can be expressed as a formal power
series in vx/v2, v-^/Pj,..., vr_x/vr, vr, since

v \ a ( lV v \ "(l ) I v \a(l)

Furthermore, Pr(vvv2,...,vr) is a formal power series in the indeterminates
v\/vi> v2/v3>--->vr-i/vr with constant coefficients. Therefore, as formal power
series, the coefficients of gr(vv v2,..., vr) are linear combinations of coefficients
of fr(yi, v2,..., vr). Hence it follows that V[k] c W[ky Now the lemma follows,
since, as a formal power series, Pr{vx, v2,..., vr) is invertible.

For / > 0, define

(3.9) V[kl_, = span{/r)a |0 < r < k, \a\ = / } .

Let A(k, /) = {a e N*| \a\ = /,0 < a(l) < • • • < a(k)}. Since / , is symmetric,
it follows from (3.9) that

(3.10) V[kl_, = span{/r a |0 < r < A:,a G A(k,l)}.

Also note that

(3.11) VWrl/V{k.lXrl = span{/,,„ + K [ t _ l w | « e ^(fc, / )}.

LEMMA 3.4. Modulo V[k_l],

(1) A(0,»2 ^ ) s 0 , fork>\, and

(2) /*(«""„+!, """^n + l- • • • > «"n +l- "n + l, "n + 2> • • • . Vk) = 0.

/ o r A: Js « + 1. Furthermore, fk is a symmetric function of vv v2,..., vk.

PROOF. TO prove (2), observe that, for t # 0 (mod n), we have

«"' + «<"-«' + ••• +w'+ 1 = 0.
The rest is clear.

Let
5 = {a e^(A: , / ) | a ( l ) > 0,a(i + n) > a{i) for i = 1,2,...,(A: - n)}.

THEOREM 3.5. For k, I > 0,

/ is defined in (2.29).

PROOF. Since \B\ = ck,, we will prove the theorem if we prove that

{/*.. + *Vi],-/l« e fi) spansFWJ
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Now order A(k, /) by the lexicographic ordering. Then to prove the theorem it is
enough to show that if a e A(k, I) and a £ B, then fka is congruent modulo
V[k_l]_, to a linear combination of fkp with /? e A{k, I) and /} < a.

Lemma 3.4(1) implies that if a(l) = 0, then fka e Vlk-i],-i- Let fk_, =
£ H - /"7*,« , l e t « = («(« + 2), . . . , <*(*)), and let r = (rn+2, . . . , vk). Then

/ * , - / Z^ "l yn + l " Jk,a-

By Lemma 3.4(2), we have
0 = A , - / ( w " » ' n + l> • • • . V l - l > "n + 2 . • • • . " * )

_ V , , « « ( l ) + ( " - l ) « ( 2 ) + • • + a ( n ) a ( l ) + ••• + a ( n + l ) . S 5 r
Z—i w K n + 1 r Jk,a

• • • +a(nH

But since the monomials

are independent, it follows that

• +a(n + l) = /-|«|

Now define the functions e, e M* by e,(y) = 8,y for I ^j ^ k. Replacing a by
/? + il(e1 — e2) + • • • +/'„(£„ — en+i), where /? is any element of NK, and re-
arranging the order of summation, we obtain from (*) that, modulo Vlk_ ^_,)

i2 + /S(2)

2 - w ' 1 + A , / 3 + ( l ( e i - e 2 ) + ••• + i n ( E n - £ n + 1)

11—0(1)

By symmetry this is true for any consecutive w-tuple of P(i)'s. Hence we have

(**) E
'»—0(7) 0(7 + n-l)

'2 + 0 0 + 1)

2 - " ' ' J fk,P + il(eJ-eJ+l)+ ••• + i . ( e / + B + 1 - e / - + J = ^ .
i i — 0 ( 7 )
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In the case when P(j) = P(j + n) (i.e. 0(j) = fi(j! + 1) = • • • = 0 0 + n)), if
/"„ / = 1,2,...,n, are not all zero, then, for a suitable permutation a of
{1,2,..., k}, we have

(j8 + ^ ( e , - eJ+1) + ••• +in(ej+n_1 - ej+n))oO<E A(k,l),

and it is less than /} in the lexicographic ordering. Furthermore, in equation (**),
fk p occurs only once with nonzero coefficient (namely, when ix = i2 = • • • = in

= 0). All other terms in (**) are multiples of some fky with y < /? (since fk is
symmetric and /?(./) = fi(j + 1) = • * • = P(j + "))• Hence the theorem fol-
lows.

4. The independence theorem

Now let 2l[[z,|f > 0, / ^ 0 (mod(n + 1))]], denote the Z-module consisting of
all formal integral linear combinations of products of the elements z,w = zs

t/s\.
Then 91 [z,]] is an algebra over Z. If a, b lie in the maximal ideal of nonunits of
%[[z,]], then we define a(s) = as/s\ e 2I[[z,]] for all s £ Z , s > 0. Then
(a + bYs) = E J . o ^ ' W " 0 and e xP(a) = ^f-oa'0 are elements of 9t[[z,]].

Let p = n + 1 be a prime number. Let F be any field of characteristic p. Let

Now for k > 0, we have

(4-1) A K ' 2 r

where y: {t e Z \t > 0, ? # 0 (mod(« + 1))} -» M is such that all but finitely
many y(t) are zero. Furthermore, ||y|| = Y.,ty(t), and

Let

and for \a\ = /, / > 0, let

(4-2) A*«=A, a ®l -

Define, for / > 0,

(4-3) K,?w = span{/r*a |0 < r < fc, |a | = / } .

https://doi.org/10.1017/S1446788700028585 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028585


310 Kailash C. Misra Us]

Then, since fk is symmetric, we have

(4-4) F ( t w = span{/r*a |0 < r < k,a }

Note that

(4.5) ^ ^ ( F ^ . / ^ - i ] , - / ) < dimc(F[ft

Now we want to show that, modulo V^k_^_,, the set

(4-6) { A % | | a | = / , O < « ( 1 ) < ••• < a ( k ) ,

is an independent set. But since each z\pli) is indecomposable, it is now clear from
(4.1) that the coefficient of

(4-7)

(where p'j\\a(j)) in fk*a is 1, and the coefficent of this element in fk*fi is zero for
any 0 <= l\|* with 0 * a, and with 0 < 0(1) < • •• < j8(fc) and >8(y + n) > j8(y).
Note that the hypothesis that a(j + n)> a(j) for all j implies that no subscript
in (4.7) is repeated more than n times. Therefore the monomial occurring in (4.7)
is nonzero. Hence from (4.5) we now have

(4-8) d i m c ( F W r / F [ J t _ l w ) > ckJ.

The next theorem now follows from (4.8) and from Theorem 3.5.

THEOREM 4.1. For k,l^Q, and for (n + 1) prime, we have

ck,i-= ck

Now observe that

k>0

- E L W
Therefore, when the rank is prime (i.e. when (n + 1) is prime) the generalized
Euler identities (2.28) follow from (2.27) and Theorem 4.1.

REMARK. The above argument to prove Theorem 4.1 does not hold if (n + 1) is
not prime. However, because the generalized Euler identities are true for all n,
Theorem 4.1 does hold for all n.
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