ANCESTRAL RINGS

by ROLANDO E. PEINADO
(Received 28th June 1965)

A ring R is said to be a P-ancestral ring if all proper non-zero sub-rings of R have property P. If P is the property that every proper non-zero sub-ring of R is a (two-sided) ideal then the ring \boldsymbol{Z} of rational integers furnishes an example of a P-ancestral ring.

If S is a sub-ring of R we define the left-idealizer of S, written $I(S)$, by $I(S)=\{x \in R: x s \in S$ for $s \in S\}$. Clearly $I(S)$ is the largest sub-ring of R in which S is a left ideal and $I(S)=R$ if and only if S is a left ideal of R. With obvious changes we may consider right-idealizer and (two-sided) idealizer. We assume R has a unit denoted by 1 .

Our theorems relate conditions of \boldsymbol{P}-ancestral types to conditions of leftidealizers.

Let S and T be sub-rings of a ring R. Then the following results are immediate:
(i) $1 \in I(S)$,
(ii) $S \subseteq I(S)$,
(iii) $I(S) \subseteq I(I(S))$,
(iv) $I(S) \cap I(T) \subseteq I(S \cap T)$,
(v) $I(T \cup S) \subseteq I(T) \cup I(S)$,
(vi) $I(S) \subseteq I\left(S^{2}\right)$.

Let D be the ring of all two by two matrices over Z and let

$$
\begin{gathered}
K=\left\{\left(\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right): x \in Z\right\}, \quad S=\left\{\left(\begin{array}{ll}
x & 0 \\
y & 0
\end{array}\right): x, y \in Z\right\}, \\
T=\left\{\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right): x, y \in Z\right\} .
\end{gathered}
$$

Then $K \subset S$ and $I(K) \subset I(S)$ properly. Now $S^{2} \subseteq S$ always and by (vi) $I(S) \subseteq I\left(S^{2}\right)$. These observations show that knowing the relation between the sub-rings we may still not conclude the direction in which the inclusion relation will go for the left-idealizers. Also in $D, I(T) \cap I(K) \subset I(T \cap K)$ properly and

$$
I(T \cup S) \subset I(T) \cup I(S)
$$

properly. This shows that (iv) and (v) are the best possible results.
Lemma. Let S be a non-zero sub-ring of R. Then $I(S)=S$ if and only if $1 \in S$.

Proof. In general $1 \in I(S)$ and $S \subseteq I(S)$. Thus $I(S)=S$ implies $1 \in S$. Conversely if $1 \in S$ and if $x \in I(S)$ then $x=x 1 \in S$ and so $I(S) \subseteq S$, thus $I(S)=S$.

Theorem 1. The following assertions about a ring R are equivalent.
(1) For all non-zero sub-rings S of $R, I(S)=S$.
(2) R and all non-zero sub-rings of R are division rings.
(3) R and all non-zero sub-rings of R are division rings and R has prime characteristic.
(4) R is a field in which every element has finite order and which is an algebraic extension of the prime field.
Proof. (1) \Rightarrow (2). Let S be a non-zero sub-ring of R. Since $I(S)=S$ it follows from the Lemma that $\mathrm{l} \in S$. Let L be a non-zero left ideal of S. Then $L=I(L) \supseteq S$ and hence $L=S$. Thus S has a unit and no proper left ideals. Thus S is a division ring.
(2) \Rightarrow (3). If R has characteristic zero then R has a proper sub-field isomorphic to the rational field Q and thus R has a proper sub-ring isomorphic to \boldsymbol{Z}. Since \boldsymbol{Z} is not a division ring we obtain a contradiction and so R has prime characteristic.
$(3) \Rightarrow(4)$. Let S be a non-zero sub-ring of R. Since S is a division sub-ring $1 \in S$. In particular if S is the sub-ring generated by a non-zero element $a \in R$, S consists of polynomials in a over the prime field of R. Since $a^{-1} \in S, a^{-1}$ is a polynomial in a. Thus a satisfies an algebraic equation over the prime field of R. Hence S is a finite field. Thus $a^{n^{n(a)}}=a$ where $n(a)$ is the number of elements in S and thus by Jacobson [(1), theorem 1, p. 217] R is commutative. Hence R is a field and, as shown above, R is an algebraic extension of the prime field.
$(4) \Rightarrow(1)$. Let S be a non-zero sub-ring of R. Let $x \in I(S)$ and let $s \in S$, $s \neq 0$. Then $x s=s^{\prime} \in S$. But s has finite order and so for some integer $\rho>0, s^{\rho}=1$. Then $x=x 1=x s^{\rho}=x s s^{p-1}=s^{\prime} s^{\rho-1} \in S$.

Hence $I(S) \subseteq S$ and thus $I(S)=S$.
We should remark that if we omit the assumption that R has a unit then R need not be a division ring for (1) to hold. Consider the ring A where

$$
A=\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right\}
$$

matrix addition and multiplication being performed modulo 2 . Then A is non-zero and for the only non-zero sub-ring of A, namely A itself, $I(A)=A$ trivially.

We should also observe that even if every proper non-zero sub-ring of a ring R is a division ring R need not be a division ring. A counter-example is provided by the ring

$$
B=\{(0,0),(1,0),(0,1),(1,1)\}
$$

with componentwise addition and multiplication modulo 2.
Having dealt with the case of $I(S)=S$ for all S we now consider the opposite situation.

Theorem 2. The following assertions about a ring R are equivalent.
(1) R is a homomorphic image of Z.
(2) Every sub-ring S of R is a left ideal.
(3) For every proper non-zero sub-ring S of $R, I(S) \neq S$.

Proof. $(1) \Rightarrow(2)$. Every sub-ring of Z is a left ideal and this property is preserved under homomorphism.
$(2) \Rightarrow(3)$. This is obvious.
(3) \Rightarrow (1). Let $S=\{n 1: n \in Z\}$. Then S is a non-zero sub-ring of R. Let $x \in I(S)$. Then $x=x 1 \in S$ which implies that $I(S) \subseteq S$ and hence $I(S)=S$. This is only possible if $S=R$ and then R is a homomorphic image of Z.

Theorem 3. Let R be a ring. Then for every proper non-zero sub-ring S of R there exists an integer n, depending on S, such that $I\left(S^{n}\right)=R$ if and only if for every proper non-zero sub-ring S of $R I(S) \neq S$.

Proof. Let S be a proper non-zero sub-ring of R such that $I\left(S^{n}\right)=R$ for some integer n. If $I(S)=S$ we should have $1 \in S$ and thus $S^{n}=S$. Hence $S=I(S)=I\left(S^{n}\right)=R$ which is false. Thus $I(S) \neq S$.

Conversely if $I(S) \neq S$ for every proper non-zero sub-ring S of R, by Theorem 2, every sub-ring is a left ideal and so $I(S)=R$.

The author is grateful to the referee for many helpful suggestions.

REFERENCE

(1) N. Jacobson, Structure of Rings (A.M.S. Colloq. Pub. vol. 37, Providence, R.I., 1956).

University of Puerto Rico
Mayaguez, Puerto Rico

