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Character Sums to Smooth Moduli are
Small

Leo Goldmakher

Abstract. Recently, Granville and Soundararajan have made fundamental breakthroughs in the study

of character sums. Building on their work and using estimates on short character sums developed

by Graham–Ringrose and Iwaniec, we improve the Pólya–Vinogradov inequality for characters with

smooth conductor.

1 Introduction

Introduced by Dirichlet to prove his celebrated theorem on primes in arithmetic pro-

gressions (see [1]), Dirichlet characters have proved to be a fundamental tool in num-

ber theory. In particular, character sums of the form

Sχ(x) :=
∑

n≤x

χ(n)

(where χ(mod q) is a Dirichlet character) arise naturally in many classical problems

of analytic number theory, from estimating the least quadratic nonresidue (mod p)

to bounding L-functions. Recall that for any character χ(mod q), |Sχ(x)| is triv-

ially bounded above by ϕ(q). A folklore conjecture (which is a consequence of the

Generalized Riemann Hypothesis) predicts that for non-principal characters the true

bound should look like1

|Sχ(x)| ≪ǫ

√
x · qǫ.

Although we are currently very far from being able to prove such a statement, there

have been some significant improvements over the trivial estimate. The first such is

due (independently) to Pólya and Vinogradov. They proved that

|Sχ(x)| ≪ √
q log q

(see [1, pp. 135–137]). Almost 60 years later, Montgomery and Vaughan [10] showed

that, conditionally on the Generalized Riemann Hypothesis (GRH), one can improve

Pólya–Vinogradov to

|Sχ(x)| ≪ √
q log log q.
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1Here and throughout we use Vinogradov’s notation f ≪ g to mean f = O(g), with variables in
subscript to indicate dependence of the implicit constant.
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This is a best possible result, since in 1932 Paley [12] gave an unconditional con-

struction of an infinite class of quadratic characters for which the magnitude of the

character sum could be made ≫ √
q log log q.

In their recent work, Granville and Soundararajan [4] gave a characterization of

when a character sum can be large. From this they were able to deduce a number

of new results, including an improvement of Pólya–Vinogradov (unconditionally)

and of Montgomery–Vaughan (on GRH) for characters of small odd order. In the

present paper we explore a different application of their characterization. Recall that

a positive integer N is said to be smooth if its prime factors are all small relative to N;

if in addition the product of all its prime factors is small, N is powerful. Building on

the work of Granville and Soundararajan and using a striking estimate developed by

Graham and Ringrose, we will obtain (in Section 5) the following improvement of

Pólya–Vinogradov for characters of smooth conductor.

Theorem 1 Given χ(mod q) a primitive character, with q squarefree. For any integer

n, denote its largest prime factor by P(n). Then

|Sχ(x)| ≪ √
q(log q)

(

( log log log q

log log q

)
1
2

+
( (log log log q)2 log(P(q)d(q))

log q

) 1/4
)

where d(q) is the number of divisors of q, and the implied constant is absolute.

From the well-known upper bound log d(q) ≪ log q
log log q

(see, for example, [11, Ex.

1.3.3]), we immediately deduce the following weaker but more concrete bound.

Corollary Given χ(mod q) primitive, with q squarefree. Then

|Sχ(x)| ≪ √
q(log q)

( (log log log q)2

log log q
+

(log log log q)2 log P(q)

log q

)
1
4

where the implied constant is absolute.

For characters with powerful conductor, we can do better by appealing to the work

of Iwaniec [9]. We prove the following.

Theorem 2 Given χ(mod q) a primitive Dirichlet character with q large and

rad(q) ≤ exp
(

(log q)3/4
)

,

where the radical of q is defined

rad(q) :=
∏

p|q
p.

Then

|Sχ(x)| ≪ǫ
√

q(log q)7/8+ǫ.
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The key ingredient in the proofs of Theorems 1 and 2 is also at the heart of [4].

In that paper, Granville and Soundararajan introduce a notion of ‘distance’ on the

set of characters, and then show that |Sχ(x)| is large if and only if χ is close (with

respect to their distance) to a primitive character of small conductor and opposite

parity. (Ideas along these lines had been earlier considered by Hildebrand in [8],

and—in the context of mean values of arithmetic functions—by Halász in [6, 7].)

More precisely, given characters χ, ψ, let

D(χ, ψ; y) :=

(

∑

p≤y

1 − Re χ(p)ψ(p)

p

)
1
2

.

Although it is possible for D(χ, χ; y) 6= 0, all the other properties of a distance func-

tion are satisfied; in particular, a triangle inequality holds:

D(χ1, ψ1; y) + D(χ2, ψ2; y) ≥ D(χ1χ2, ψ1ψ2; y).

See [5] for a more general form of this ‘distance’ and its role in number theory.

Granville and Soundararajan’s characterization of large character sums comes in the

form of the following two theorems.

Theorem A ([4, Theorem 2.1]) Given χ(mod q) primitive, let ξ(mod m) be any

primitive character of conductor less than (log q)
1
3 which minimizes the quantity

D(χ, ξ; q). Then

|Sχ(x)| ≪ (1 − χ(−1)ξ(−1))

√
m

ϕ(m)

√
q log q exp

(

−1

2
D(χ, ξ; q)2

)

+
√

q(log q)
6
7 .

Theorem B ([4, Theorem 2.2]) Given χ(mod q) a primitive character, let ξ(mod m)

be any primitive character of opposite parity. Then

max
x

|Sχ(x)| +

√
m

ϕ(m)

√
q log log q ≫

√
m

ϕ(m)

√
q log q exp(−D(χ, ξ; q)2).

Roughly, the first theorem says that |Sχ(x)| is small (i.e., ≪ √
q(log q)6/7) unless

there exists a primitive character ξ of small conductor and opposite parity, whose dis-

tance from χ is small (i.e., D(χ, ξ; q)2 ≤ 2
7

log log q). The second theorem says that if

there exists a primitive character ξ(mod m) of small conductor and of opposite par-

ity, whose distance from χ is small, then |Sχ(x)| gets large. In particular, to improve

Pólya–Vinogradov for a primitive character χ(mod q), it suffices (by Theorem A) to

find a lower bound on the distance from χ to primitive characters of small conductor

and opposite parity. For example, if one can find a positive constant δ, independent

of q, for which

(1.1) D(χ, ξ; q)2 ≥ (δ + o(1)) log log q,

then Theorem A would immediately yield an improvement of Pólya–Vinogradov:

max
x

|Sχ(x)| ≪ √
q(log q)1− δ

2
+o(1).
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As it turns out (see [4, Lemma 3.2]), it is not too difficult to show that (1.1) holds for

χ a character of odd order g, with δ = δg = 1 − g
π sin π

g
.

Thus, to derive bounds on character sums from Theorem A, one must understand

the magnitude of D(χ, ξ; q). This is the problem we take up in Section 2. Since

D(χ, ξ; q) = D(χξ, 1; q), we are naturally led to study lower bounds on distances

of the form D(χ, 1; y), for χ a primitive character and y a parameter with some

flexibility. By definition,

D(χ, 1; y)2
=

∑

p≤y

1

p
− Re

∑

p≤y

χ(p)

p
.

The first sum on the right hand side is well approximated by log log y (a classical

estimate due to Mertens, see [1, pp. 56–57]). We will show that the second sum is

comparable to |L(sy , χ)|, where

sy := 1 +
1

log y
.

To be precise, in Section 2 we prove the following.

Lemma 3 For all y ≥ 2,

D(χ, 1; y)2
= log

∣

∣

∣

log y

L(sy , χ)

∣

∣

∣
+ O(1).

Our problem is now reduced to finding upper bounds on |L(s, χ)| for s slightly

larger than 1. This is a classical subject, and many bounds are available. Thanks to

the remarkable work of Graham and Ringrose [3] on short character sums, a partic-

ularly strong upper bound on L-functions is known when the character has smooth

modulus. From a slight generalization of their result, we will deduce the following

(in Section 3).

Lemma 4 Given a primitive character χ (mod Q), let r be any positive number such

that for all p ≥ r, ordp Q ≤ 1. Let

q ′
= q ′

r :=
∏

p<r

pordp Q

and denote by P(Q) the largest prime factor of Q. Then for all y > 3,

|L(sy , χ)| ≪ log q ′ +
log Q

log log Q
+

√

(log Q)
(

log P(Q) + log d(Q)
)

,

where the implied constant is absolute.

Using the bound log d(Q) ≪ log Q
log log Q

, one deduces the weaker but more concrete

bound

|L(sy , χ)| ≪ log q ′ +
log Q

(log log Q)1/2
+

√

(log Q)
(

log P(Q)
)

.

Lemma 4 will enable us to prove Theorem 1. For the proof of Theorem 2, we

need a corresponding bound for L(sy , χ) when the conductor of χ is powerful. In

Section 4, we will prove the following using a potent estimate of Iwaniec [9].
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Lemma 5 Given χ (mod Q) a primitive Dirichlet character with Q large and

rad(Q) ≤ exp(2(log Q)3/4).

Then for all y > 3, |L(sy , χ)| ≪ǫ (log Q)3/4+ǫ.

In the final section of the paper, we synthesize our results and prove Theorems 1

and 2.

2 The Size of D(χ, 1; y)

How large should one expect D(χ, 1; y) to be? Before proving Lemma 3 we gain

intuition by exploring what can be deduced from GRH.

Proposition 2.1 Assume GRH. For any non-principal character χ (mod Q) we have

D(χ, 1; y)2
= log log y + O(log log log Q).

Proof Since
∑

p≤y

1

p
= log log y + O(1)

by Mertens’ well-known estimate, we need only show that

∑

p≤y

χ(p)

p
= O(log log log Q).

We may assume that y > (log Q)6, else the estimate is trivial. Recall that on GRH,

for all x > (log Q)6 we have:

θ(x, χ) :=
∑

p≤x

χ(p) log p ≪
√

x(log Qx)2 ≪ x5/6.

(Such a bound may be deduced from the first formula appearing on page 125 of [1].)

Partial summation now gives

∑

(log Q)6<p≤y

χ(p)

p
=

∫ y

(log Q)6

1

t log t
dθ(t, χ) ≪ 1

log Q
≪ 1

and the proposition follows.

We now return to unconditional results. Recall that the prime number theorem

gives θ(x) :=
∑

p≤x log p ∼ x.
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Proof of Lemma 3 As before, by Mertens’ estimate it suffices to show that

(2.1) Re
∑

p≤y

χ(p)

p
= log |L(sy , χ)| + O(1),

where sy := 1 + (log y)−1. From the Euler product we know

log |L(sy , χ)| = Re
∑

p

∞
∑

k=1

χ(p)k

kpksy
= Re

∑

p

χ(p)

psy
+ O(1),

so that (2.1) would follow from

∑

p≤y

( 1

p
− 1

psy

)

+
∑

p>y

1

psy
≪ 1.

The first term above is

∑

p≤y

( 1

p
− 1

psy

)

=

∑

p≤y

1 − exp
(

− log p
log y

)

p
≤ 1

log y

∑

p≤y

log p

p
=

1

log y

∫ y

1

1

t
dθ(t) ≪ 1

by partial summation and the prime number theorem. A second application of par-

tial summation and the prime number theorem yields

∑

p>y

1

psy
=

∫ ∞

y

1

t sy log t
dθ(t) ≪ 1.

The lemma follows.

For a clearer picture of where we are heading, we work out a simple consequence

of this result. Let χ(mod q) and ξ (mod m) be as in Theorem A. By Lemma 3,

D(χ, ξ; q)2
= D(χξ, 1; q)2

= log
∣

∣

∣

log q

L(sq, χξ)

∣

∣

∣
+ O(1),

and Theorem A immediately yields the following.

Proposition 2.2 Let χ(mod q) be a primitive character, and ξ a character as in The-

orem A. Then

|Sχ(x)| ≪ √
q

√

(log q)|L(sq, χξ)| +
√

q(log q)6/7.

Thus, to improve Pólya–Vinogradov, it suffices to prove L(sq, χξ) = o(log q). This

is the problem we explore in the next two sections.
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3 Proof of Lemma 4

We ultimately wish to bound |L(sq, χξ)|. In this section we explore the more general

quantity |L(sy , χ)|, where throughout y will be assumed to be at least 3, and Q will

denote the conductor of χ.

By partial summation (see [1, (8), p. 33]),

L(sy , χ) = sy

∫ ∞

1

1

t sy +1

(

∑

n≤t

χ(n)
)

dt.

When t > Q, the character sum is trivially bounded by Q, so that this portion of

the integral contributes an amount ≪ 1. For t ≤ T (a suitable parameter to be

chosen later), we may bound our character sum by t , and therefore this portion of

the integral contributes an amount ≪ log T. Thus,

(3.1) |L(sy , χ)| ≪
∣

∣

∣

∣

∫ Q

T

1

t2

(

∑

n≤t

χ(n)
)

dt

∣

∣

∣

∣

+ 1 + log T.

To bound the character sum in this range, we invoke a powerful estimate of Gra-

ham and Ringrose [3]. For technical reasons, we need a slight generalization of their

theorem.

Theorem 3.1 (Compare [3, Lemma 5.4]) Given a primitive character χ (mod Q),

with q ′ and P(Q) defined as in Lemma 4. Then for any k ∈ N, writing K := 2k, we

have

∣

∣

∣

∑

M<n≤M+N

χ(n)
∣

∣

∣
≪ N1− k+3

8K−2 P(Q)
k2+3k+4
32K−8 Q

1
8K−2 (q ′)

k+1
4K−1 d(Q)

3k2+11k+8
16K−4 (log Q)

k+3
8K−2

where d(Q) is the number of divisors of Q, and the implicit constant is absolute.

Our proof of this is a straightforward extension of the arguments given in [3]. For

the sake of completeness, we write out all the necessary modifications explicitly in

the appendix.

Armed with Theorem 3.1, we deduce Lemma 4 in short order. Set

T := P(Q)3kQ
1
k (q ′)2d(Q)3k(log Q)

16K
k .

If T ≤ Q, then for all t ≥ T, Theorem 3.1 implies

∣

∣

∣

∑

n≤t

χ(n)
∣

∣

∣
≪ t

log Q

whence
∣

∣

∣

∫ Q

T

1

t2

(

∑

n≤t

χ(n)
)

dt
∣

∣

∣
≪ 1.
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From the bound (3.1), we deduce that for T ≤ Q, |L(sy , χ)| ≪ log T. But for T > Q

such a bound holds trivially (irrespective of our choice of T). Therefore

|L(sy , χ)| ≪ log T ≪ k log P(Q) +
1

k
log Q + log q ′ + k log d(Q) +

K

k
log log Q.

It remains to choose k appropriately. Let

k ′ := min

{

1

10
log log Q,

√

log Q

log P(Q) + log d(Q)

}

,

and set k = [k ′] + 1. Writing K ′
= 2k ′

we have

k ′ log P(Q) + k ′ log d(Q) ≪
√

(log Q)
(

log P(Q) + log d(Q)
)

≪ 1

k ′ log Q

and
K ′

k ′ log log Q ≪ (log Q)
log 2

10 (log log Q) ≪ (log Q)
1

10 ≪ 1

k ′ log Q.

Finally, since K ≪ K ′ and k ≍ k ′ (i.e., k ≪ k ′ ≪ k) for all Q sufficiently large, we

deduce:

|L(sy , χ)| ≪ log q ′+
1

k
log Q ≪ log q ′+

log Q

log log Q
+

√

(log Q)
(

log P(Q) + log d(Q)
)

.

The proof of Lemma 4 is now complete.

4 Proof of Lemma 5

Iwaniec, inspired by Postnikov [13] and Gallagher [2], proved the following.

Theorem 4.1 ([9, Lemma 6]) Given χ (mod Q) a primitive Dirichlet character. Then

for all N, N ′ satisfying (rad Q)100 < N < 9Q2 and N < N ′ < 2N,

∣

∣

∣

∑

N≤n≤N ′

χ(n)
∣

∣

∣
< γ

N
N1−ǫ

N ,

where

γx := exp(C1zx log2 C2zx) ǫx :=
1

C3z2
x log C4zx

zx :=
log 3Q

log x

and the Ci are effective positive constants independent of Q.

In fact, Lemma 6 of [9] is more general (bounding sums of χ(n)nit ), and provides

explicit choices of the constants Ci .
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Proof of Lemma 5

Recall the bound (3.1):

|L(sy , χ)| ≪
∣

∣

∣

∣

∫ Q

T

1

t2

(

∑

n≤t

χ(n)
)

dt

∣

∣

∣

∣

+ 1 + log T.

Writing

| ∑
n≤t

χ(n)| ≤
√

t + | ∑

√
t<n≤t

χ(n)|,

partitioning the latter sum into dyadic intervals, and applying Iwaniec’s result to each

of these, we deduce that, so long as
√

t > (rad Q)100,

|
∑

n≤t

χ(n)| ≪ (log t)γtt
1−ǫt

with C1 = 400,C2 = 2400,C3 = 4 · 18002,C4 = 7200 in the definitions of γt and

ǫt . Choosing T = exp((log Q)α) for some α ∈ (0, 1) to be determined later, and

assuming that T > (rad Q)200, our bound becomes

(4.1) |L(sy , χ)| ≪ (log Q)α +

∫ Q

exp((log Q)α)

log t

t2
γtt

1−ǫt dt

Denote by
∫

the integral in (4.1), and set δ
Q

=

log 3
log Q

. Making the substitution z =

log 3Q
log t

and simplifying, one finds

∫

= (log2 3Q)

∫ (1+δ
Q

)(log Q)1−α

1+δ
Q

1

z3
exp

(

C1z log2 C2z − log 3Q

C3z3 log C4z

)

dz

≪ exp
(

2 log log 3Q + C1(log Q)1−α(log log Q)2 − (log Q)3α−2

C3 log log Q

)

×
∫ (1+δ

Q
)(log Q)1−α

1+δ
Q

dz

z3

≪ 1

upon choosing α =
3
4

+ ǫ. Plugging this back into (4.1), we conclude.

It is plausible that with a more refined upper bound on the integral in (4.1) one

could take a smaller value of α, thus improving the exponents in both Lemma 5 and

Theorem 2.

5 Upper Bounds on Character Sums

Given a primitive character χ(mod q), recall from Proposition 2.2 the bound

|Sχ(x)| ≪ √
q

√

(log q)|L(sq, χξ)| +
√

q(log q)6/7,
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where ξ (mod m) is the primitive character with m < (log q)1/3 that χ is closest to,

and sq := 1 + 1
log q

.

To prove Theorems 1 and 2, we would like to apply Lemmas 4 and 5 (respectively)

to derive a bound on |L(sq, χξ)|. An immediate difficulty is that both lemmas re-

quire the character to be primitive, which is not necessarily true of χξ. Instead, we

will apply the lemmas to the primitive character which induces χξ; thus, we must

understand the size of the conductor of χξ. This is the goal of the following simple

lemma, which is surely well known to the experts but which the author could not

find in the literature. We write [a, b] to denote the least common multiple of a and

b, and cond(ψ) to denote the conductor of a character ψ.

Lemma 5.1 For any non-principal Dirichlet characters χ1(mod q1) and χ2(mod q2),

cond(χ1χ2) | [cond(χ1), cond(χ2)]

Proof First, observe that χ1χ2 is a character modulo [q1, q2]. One needs only

check that it is completely multiplicative, periodic with period [q1, q2], and that

χ1χ2(n) = 0 if and only if (n, [q1, q2]) > 1. Since the conductor of a character di-

vides its modulus, the lemma is proved in the case that both χ1 and χ2 are primitive.

Now suppose that χ1 and χ2 are not necessarily primitive. Denote by χ̃i(mod q̃i)

the primitive character which induces χi . By the argument above, we know that

(5.1) cond(χ̃1χ̃2) | [q̃1, q̃2].

Next we note that the character χ̃1χ̃2, while not necessarily primitive, does induce

χ1χ2 (i.e., χ1χ2 = χ̃1χ̃2χ0 for χ0 the trivial character modulo [q1, q2]), whence

cond(χ̃1χ̃2) = cond(χ1χ2). Plugging this into (5.1) we immediately deduce the

lemma.

Given χ(mod q) and ξ(mod m) as at the start of the section, denote by ψ(mod Q)

the primitive character inducing χξ. Taking χ1 = χ and χ2 = ξ in Lemma 5.1, we

see that Q | [q, m]; in particular, Q ≤ qm. On the other hand, making the choice

χ1 = χξ and χ2 = ξ yields q | [Q, m], so q ≤ Qm. Combining these two estimates,

we conclude that

(5.2)
q

m
≤ Q ≤ qm.

Since we will be working with both L(s, χξ) and L(s, ψ), the following estimate

will be useful.

Lemma 5.2 Given χ(mod q) and ξ(mod m) primitive characters, let ψ(mod Q) be

the primitive character which induces χξ. Then for all s with Re(s) > 1,

∣

∣

∣

L(s, χξ)

L(s, ψ)

∣

∣

∣
≪ 1 + log log m.
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Proof For Re(s) > 1 we have

L(s, χξ)

L(s, ψ)
=

∏

p|[q,m]

p∤Q

(

1 − ψ(p)

ps

)

whence
∣

∣

∣

∣

L(s, χξ)

L(s, ψ)

∣

∣

∣

∣

≤ ∏

p|[q,m]

p∤Q

(

1 +
1

p

)

.

From Lemma 5.1, we know q | [Q, m]. It follows that if p | [q, m] and p ∤ Q, then p

must divide m. Thus,

∏

p|[q,m]

p∤Q

(

1 +
1

p

)

≤ ∏

p|m

(

1 +
1

p

)

.

Since

log
∏

p|m

(

1 +
1

p

)

=

∑

p|m
log

(

1 +
1

p

)

≤
∑

p|m

1

p
,

to prove the lemma it suffices to show that for all m sufficiently large,

(5.3)
∑

p|m

1

p
≤ log log log m + O(1).

Let P = P(m) denote the largest prime such that
∏

p≤P p ≤ m. Then ω(m) ≤ π(P)

(otherwise we would have m ≥ rad(m) >
∏

p≤P p, contradicting the maximality of

P); therefore,
∑

p|m

1

p
≤ ∑

p≤P

1

p
= log log P + O(1).

Finally from the prime number theorem, we know that for all m sufficiently large,

θ(P) ≥ 1
2
P, whence P ≤ 2 log m and the bound (5.3) follows.

With these lemmas in hand we can now prove Theorems 1 and 2 without too

much difficulty.

Proof of Theorem 1 Given χ(mod q) primitive with q squarefree, define the charac-

ter ξ(mod m) as in Theorem A, and let ψ(mod Q) be the primitive character inducing

χξ. Recall that we denote the largest prime factor of n by P(n).

From Proposition 2.2 we have

(5.4) |Sχ(x)| ≪ √
q

√

(log q)|L(sq, χξ)| +
√

q(log q)6/7,

and Lemma 5.2 yields the bound

(5.5) |L(sq, χξ)| ≪ |L(sq, ψ)| log log log q.
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Lemma 5.1 tells us that Q | [q, m], whence for all primes p > m we have

ordp Q ≤ max(ordp q, ordp m) = ordp q ≤ 1

since q is squarefree. Therefore we may apply Lemma 4 to the character ψ, taking

y = q and

q ′
=

∏

p≤m

pordp Q;

this gives the bound

|L(sq, ψ)| ≪ log q ′ +
log Q

log log Q
+

√

(log Q) log
(

P(Q)d(Q)
)

.

It remains only to bound the right hand side in terms of q, which we do term by term.

The first term is small:

log q ′
=

∑

p≤m

(ordp Q) log p

≤ ∑

p≤m

(ordp q) log p +
∑

p≤m

(ordp m) log p

≤ θ(m) + log m

≪ (log q)
1
3 .

From (5.2) we deduce
log Q

log log Q
≪ log q

log log q
.

For the last term, Lemma 5.1 yields

d(Q) ≤ d(qm) ≤ d(q)d(m) ≤ d(q)(log q)
1
3

and

P(Q) ≤ max
(

P(q),P(m)
)

≤ P(q)P(m) ≤ P(q)(log q)
1
3 ,

while (5.2) gives log Q ≪ log q. Putting this all together, we find

|L(sq, ψ)| ≪ log q

log log q
+

√

(log q) log
(

P(q)d(q)
)

.

Plugging this into (5.5) and (5.4), we deduce the theorem.

Proof of Theorem 2 Given χ(mod q) with q large and rad(q) ≤ exp
(

(log q)
3
4

)

, let

ξ(mod m) be defined as in Theorem A, and let ψ(mod Q) denote the primitive char-

acter which induces χξ. We have rad(m) ≤ exp
(

θ(m)
)

, whence by the prime num-

ber theorem there exists C > 0 with

rad(Q) ≤ rad(q) rad(m)

≤ exp
(

(log q)3/4 + C(log q)1/3
)

≤ exp
( 4

3
(log q)3/4

)
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for all q sufficiently large. From (5.2) we deduce

( log Q

log q

)
3
4 ≥

( log q
m

log q

)
3
4 ≥

(

1 − log log q

log q

)

≥ 2

3

for q sufficiently large, whence rad(Q) ≤ exp(2(log Q)3/4). Combining Lemma 5

with (5.5) and (5.2), we obtain

|L(sq, χξ)| ≪ǫ (log log log q)(log Q)3/4+ǫ

≤ (log log log q)(log qm)3/4+ǫ ≪ǫ (log q)3/4+ǫ.

Plugging this into Proposition 2.2 yields Theorem 2.

A Appendix: Proof of Theorem 3.1

We follow the original proof of Graham and Ringrose very closely; indeed, we will

only explicitly write down those parts of their arguments which must be modified

to obtain our version of the result. We refer the reader to [3, Sections 3–5]. Set

S :=
∑

M<n≤M+N χ(n).

We begin by restating Lemma 3.1 of [3], but skimming off some of the unnecessary

hypotheses given there.

Lemma A.1 (Compare [3, Lemma 3.1]) Let k ≥ 0 be an integer, and set K := 2k.

Let q0, . . . , qk be arbitrary positive integers, and let Hi := N/qi for all i. Then

(A.1) |S|2K ≤ 82K−1
(

max
0≤ j≤k

(

N2K−K/ Jq
K/ J
j

)

+
N2K−1

H0 · · ·Hk

∑

h0≤H0

· · · ∑

hk≤Hk

|Sk(h)|
)

,

where J = 2 j and Sk(h) satisfies the bound given below.

A bound on Sk(h) is given by (3.4) of [3]:

(A.2) |Sk(h)| ≪ NQ−1|S(Q; χ, fk, gk, 0)| +
∑

0<|s|≤Q/2

1

|s| |S(Q; χ, fk, gk, s)|.

See [3, pp. 279–280] for the definitions of fk, gk, and S(Q; χ, fk, gk, s).

Let q := Q/q ′. We have (q, q ′) = 1, whence from Lemma 4.1 of [3] we deduce

S(Q; χ, fk, gk, s) = S(q ′; χ ′, fk, gk, sq)S(q; η, fk, gk, sq ′)

for some primitive characters χ ′ (mod q ′) and η (mod q), where qq ≡ 1 (mod q ′)
and q ′q ′ ≡ 1 (mod q). By construction, q is squarefree, so Lemmas 4.1–4.3 of [3]

apply to give

|S(q; η, fk, gk, sq ′)| ≤ d(q)k+1
( q

(q, Qk)

) 1/2

(q, Qk, |sq ′|)

where Qk :=
∏

i≤k hiqi . Combining this with the trivial estimate

|S(q ′; χ ′, fk, gk, sq)| ≤ q ′

yields the following.
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Lemma A.2 (Compare [3, Lemma 4.4]) Keep the notation as above. Then for any

positive integers q1, . . . , qk,

|S(Q; χ, fk, gk, s)| ≤ q ′d(q)k+1
( q

(q, Qk)

) 1/2

(q, Qk, |sq ′|).

We shall need the following simple lemma (versions of which appear implicitly

in [3]).

Lemma A.3 Given q, q ′ be as above; let x and H be arbitrary. Then

(i)
∑

0<|s|≤x

(q, |sq ′|)
|s| ≪ d(q) log x,(A.3)

(ii)
∑

h≤H

(q, h)
1
2 ≤ d(q)H.(A.4)

Proof

(i) Since (q, q ′) = 1, we have (q, q ′) = 1, whence

∑

0<|s|≤x

(q, |sq ′|)
|s| = 2

∑

1≤s≤x

(q, sq ′)

s
= 2

∑

1≤s≤x

(q, s)

s
= 2

∑

n≥1

an

n
,

where an := #{s ≤ x : n =
s

(q,s)}. Note that an = 0 for all n > x, and that

an = #{s ≤ x : s = (q, s)n} ≤ #{s ≤ x : s = dn, d | q} ≤ d(q).

Therefore

∑

0<|s|≤x

(q, |sq ′|)
|s| ≪

∑

n≥1

an

n
≤ d(q)

∑

n≤x

1

n
≪ d(q) log x.

(ii) Write
∑

h≤H

(q, h)
1
2 =

∑

n≥1

an

√
n,

where an := #{h ≤ H : n = (q, h)}. It is clear that an = 0 whenever n ∤ q. Also,

if (q, h) = n then n | h, whence

an ≤ #{h ≤ H : n | h} ≤ H

n
.

Therefore

∑

h≤H

(q, h)
1
2 =

∑

n≥1

an

√
n ≤ ∑

n|q

H√
n
≤ d(q)H.
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Lemma A.4 (Compare [3, Lemma 4.5]) Keep the notation from above. For any real

number A0 ≥ 1,

|S|4K ≪ 84K−2
(

AA2K
0 + BA−2K+1

0 (q ′)2 + CA2K−1
0 (q ′)2

)

,

where

A = N2K

B = N6K−k−4Pk+1Qd(Q)2k+4 log2 Q

C = N2K+k+2Q−1d(Q)4k+4

and the implied constant is independent of k.

Proof Following the proof of Lemma 4.5 in [3] and applying (A.3) with x = Q/2

yields the following analogue of equation (4.5) from that paper:

(A.5)
∑

hk≤Hk

∑

0<|s|≤Q/2

1

|s| |S(Q; χ, fk, gk, s)| ≪ q ′√qd(q)k+2HkR
− 1

2

k log Q.

Setting S j := h0 · · · h j , one deduces the following analogue of equation (4.6) of [3]:

NQ−1
∑

hk≤Hk

|S(Q; χ, fk, gk, 0)| ≤ Nq ′
√

qRk

Q
d(Q)k+2Hk

√

(q, Sk−1).

From (A.4) and the bound (q, S j) ≤ (q, S j−1)(q, h j), one sees that

(A.6)
∑

h0≤H0

· · · ∑

hk−1≤Hk−1

√

(q, Sk−1) ≤ d(q)kH0 · · ·Hk−1.

Plugging (A.2) into (A.1) and applying (A.5) and (A.6), one obtains

|S|2K ≪ 82K−1 max
0≤ j≤k

(

N2K−K/ Jq
K/ J
j

)

+ 82K−1q ′N2K−1d(q)k+2(log Q)

√

q

Rk

+ 82K−1q ′N2K d(q)2k+2

√
q

Q

√
Rk.

Since q | Q, we have that q ≤ Q and d(q) ≤ d(Q). Therefore from the above we

deduce the following analogue of (4.7) in [3]:

|S|2K ≪ 82K−1 max
0≤ j≤k

(

N2K−K/ Jq
K/ J
j

)

+ 82K−1q ′N2K−1d(Q)k+2(log Q)

√

Q

Rk

+ 82K−1q ′N2K d(Q)2k+2

√

Rk

Q
.

The rest of the proof given in [3] can now be copied exactly to yield our claim.
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Chasing through the arguments in [3] gives this analogue of Lemma 5.3, which

we record for reference.

Lemma A.5 (Compare [3, Lemma 5.3])

|S| ≪ N1− k+3
8K−2 P

k+1
8K−2 Q

1
8K−2 d(Q)

k+2
4K−1 (log Q)

1
4K−1 (q ′)

1
4K−1 +

N1− 1
4K P

k+1
8K d(Q)

3k+4
4K (log Q)

1
4K (q ′)

1
2K .

Finally, we arrive at the following.

Proof of Theorem 3.1 Let Ek be the right hand side of the bound claimed in the

statement of the theorem. The rest of the proof given in [3] now goes through almost

verbatim.

This concludes the proof of Theorem 3.1. Note that one can extend this to a

bound on all non-principal characters by following the argument given directly after

Lemma 5.4 in [3]; however, for our applications the narrower result suffices.

Acknowledgments I am indebted to Professor Soundararajan for suggesting the

problem, for encouraging me throughout, and for making innumerable improve-

ments to my exposition. I am also grateful to the referee for meticulously reading

the manuscript and catching an important error in the original proofs of Theorems 1

and 2, to Denis Trotabas and Bob Hough for some helpful discussions, and to the

Stanford Mathematics Department, where the bulk of this project was completed.

References

[1] H. Davenport, Multiplicative number theory. third ed., Graduate Texts in Mathematics, 74,
Springer-Verlag, New York, 2000.

[2] P. X. Gallagher, Primes in progressions to prime-power modulus. Invent. Math. 16(1972), 191–201.
doi:10.1007/BF01425492

[3] S. W. Graham and C. J. Ringrose, Lower bounds for least quadratic nonresidues. In: Analytic number
theory (Allerton Park, IL, 1989), Progr. Math., 85, Birkhäuser, Boston, MA, 1990, pp. 269–309.
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