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Myopia drives reckless behavior in response to
over-taxation

Mikhail S. Spektor∗ Dirk U. Wulff†

Abstract

Governments use taxes to discourage undesired behaviors and encourage desired
ones. One target of such interventions is reckless behavior, such as texting while
driving, which in most cases is harmless but sometimes leads to catastrophic outcomes.
Past research has demonstrated how interventions can backfire when the tax on one
reckless behavior is set too high whereas other less attractive reckless actions remain
untaxed. In the context of experience-based decisions, this undesirable outcome arises
from people behaving as if they underweighted rare events, which according to a
popular theoretical account can result from basing decisions on a small, random sample
of past experiences. Here, we reevaluate the adverse effect of overtaxation using an
alternative account focused on recency. We show that a reinforcement-learning model
that weights recently observed outcomes more strongly than than those observed in the
past can provide an equally good account of people’s behavior. Furthermore, we show
that there exist two groups of individuals who show qualitatively distinct patterns of
behavior in response to the experience of catastrophic outcomes. We conclude that
targeted interventions tailored for a small group of myopic individuals who disregard
catastrophic outcomes soon after they have been experienced can be nearly as effective
as an omnibus intervention based on taxation that affects everyone.
Keywords: safety enhancement, reliance on small samples, reinforcement learning,
decisions from experience
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1 Introduction
The real world comprises many situations where one is unsure about the outcomes ensuing
from one’s actions. These situations of risk are often structured such that a particular
course of action results almost all of the time in small gains but also, on rare occasions, in
catastrophic losses that can easily offset any previously accumulated gains. Choosing such
courses of action is dangerous, yet in many situations people recklessly engage in them. For
instance, people still text while driving or ride a bicycle without wearing a helmet. A recent
paper (Yakobi et al., 2020, henceforth: YCNE) investigated the effectiveness of monetary
incentives in the form of taxation as a means to regulate reckless behavior. YCNE studied
situations where moderate taxation of a moderately risky option would lead to the desired
effect of swaying people toward a safer option, but excessive taxation could drive people
toward an even riskier, non-taxed option. Consequently, taxation was expected to produce
a U-shaped pattern of reckless behavior, with increased recklessness for levels of taxation
that are either too low or too high.
YCNE investigated this U-shaped pattern of taxation in two experiments using a

decisions-from-experience task. In this task, participants made repeated decisions between
three initially unknown options, comprising one relatively safe option, one moderately risky
option that was subject to a tax, and one inferior, highly risky but non-taxed option (see
Appendix for details). After each choice, participants would see the outcomes of all three
options, allowing them to learn about the underlying properties of the options, but only the
outcome of the chosen option affected the participant’s bonus. Varying the level of taxation
between three amounts (representing no, moderate, and excessive taxation), the expected
U-shaped pattern emerged. YCNE put forth “reliance-on-small-samples” (Erev & Roth,
2014) as a mechanistic explanation of this result. According to this mechanism, people
base their decisions on a random sample of 𝑘 past outcomes from memory. Because small
samples have a natural tendency to under-represent rare events, this mechanism produces
(as-if) underweighting of rare events and, in turn, preference for reckless behaviors that
offer the best outcome most of the time.
YCNE successfully demonstrated how, in decisions from experience (see Wulff et al.,

2018, for a recent meta analysis), policies based on economic incentives can backfire. They
attributed this to a specific cognitive mechanism, where people base their decisions on a
small, random sample of past experiences. Building on their work, this article puts forth
an alternative cognitive explanation, one that arguably rests on weaker assumptions and
enables analysis of individual differences in people’s response to taxation.
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Figure 1: Schematic illustration of two choice trials in Experiment 2 of YCNE. Participants
faced a safe option A yielding 0.60 points with certainty, a medium-risk option B yielding 2
points minus tax (here, 0.8 points) with a probability of .97 and an outcome of −20 points
otherwise (the so-called accident), and a high-risk option yielding 1.5 points with a probability
of .94 and −20 otherwise. The amount of tax and the properties of the safe option varied
between conditions and experiments. See Appendix for details.

2 Models of reckless behavior
To identify the psychological processes that best describe people’s reckless behavior, YCNE
evaluated several models embodying the reliance-on-small-samples hypothesis (Erev &
Roth, 2014) and a so-called full-data model.1 The full-data model takes all previous
experiences into account and deterministically predicts choice of the option that has yielded
the highest average outcome. As illustrated in Figure 2, people following the full-data model
should quickly develop a strong preference for the safe option as the cumulative likelihood
of experiencing catastrophic events increases. However, as can also be seen, people’s actual
preferences developed more moderately. Furthermore, people appeared to dislike both
of the two risky options less than predicted by the full-data model. Two tendencies in
the data are likely responsible for these behavioral patterns: stochasticity of choices and
(as-if) underweighting of rare events. Small-sample models elegantly account for these
patterns using a single mechanism: A small sample of outcomes introduces stochasticity,

1For some comparisons, they also included the accentuation of differences model (Spektor et al., 2019).
However, for the focus of the present investigation, this model is not of relevance.
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rendering choice proportions less extreme, as well as (as-if) underweighting, accounting
for higher-than-expected preference for the risky options under taxation. Consequently,
the small-sample models were found to clearly outperform the full-data model across all
conditions (see YCNE Tables 1 and 2).
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Figure 2: Aggregated choice proportions and predicted choice proportions of the full-data
model in Experiment 1. Solid lines indicate participants’ choices and dashed lines indicate
the choice probabilities predicted by the model. Error bars indicate the 95% CI.

On a qualitative level, however, it is important to note that the full-data model captured
the patterns of results rather well (see also YCNE Figures 3 and 5). Moreover, the sample-
size parameter ^ in the small-sample models was estimated to be between 24 and 47, and
the overall best-performing model was an ensemble model that averages the predictions
of a two-stage sampling model with those of the full-data model. These findings suggest
that models that take into account many (or even all) samples might in principle be able to
accurately describe people’s behavior and are consistent with results from other decisions-
from-experience paradigms, where the choice of the option with the higher average mean
(also known as the natural-mean heuristic) is considered the benchmark model (Wulff et al.,
2018).
An alternative to the full-data and small-sample models exists in recency-based models

as formalized in the framework of reinforcement learning (Sutton &Barto, 1998). Recency-
based models also produce probabilistic choices and (as-if) underweighting of rare events,
however, via a different psychological mechanism. Such models assume that people keep
track of a long-run reward expectation 𝑄𝑖 of option 𝑖 that is updated at each time 𝑡 with
incoming reward (or punishment) 𝑅𝑡,𝑖. If people observe a better-than-expected reward, they
adjust 𝑄 upward and vice versa. A popular and simple implementation of this mechanism
is given by the delta-rule model (Gershman, 2015):

𝑄𝑡+1,𝑖 = (1 − 𝛼) ×𝑄𝑡,𝑖 + 𝛼 × 𝑅𝑡,𝑖
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In this model, the learning rate 𝛼 controls the degree to which the expectations are updated.
When 𝛼 is constant over time, the model inevitably produces recency, which means that
recent experiences receive more weight than earlier ones. The extent of recency varies
with the value of 𝛼. For instance, 𝛼 = .10 implies that an experience ten epochs ago
retains about 38% of its original weight, whereas the same experience’s weight essentially
drops down to zero under 𝛼 = .90. Thus, 𝛼 also controls the number of experiences that
effectively influence choices, and with that (quite analogously to the small sample models),
the degree of (as-if) underweighting of rare events. The value of 𝛼 also has a limited
effect on stochasticity; however, models of this class typically include extra parameters for
additional sources of choice stochasticity.
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Figure 3: Aggregated choice proportions and predicted choice proportions of the
reinforcement-learning model across the different conditions. Solid lines indicate partici-
pants’ choices and dashed lines indicate the choice probabilities predicted by the model.
Error bars indicate the 95% CI.

The recency-based account can be regarded as an instance of “reliance on small samples”,
yet it differs in important ways from the sampling-basedmodels used byYCNE to implement
this notion, which has implications for both theory and practice. First, the recency-based
account can be considered more (cognitively) parsimonious. In contrast to sampling-based
models, it does not require an explicit representation of all past experiences or a process
of sampling from memory. Instead, people have only to memorize a single value 𝑄 and
carry out only a minimal set of operations after each choice. Second, in contrast to the
small-sample accounts, choices in the recency-based account always reflect all experienced
information, even if their influence becomes negligible the further away they are. Third,
whereas in sampling-based accounts each experience has equal sway in the long run, the
recency-based account predicts that recent outcomeswill influence choicesmore than earlier
ones.
We assessed whether the recency-based account can accurately describe the data of

YCNE, including people’s responses to varying levels of taxation (seeAppendix for technical
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details and https://osf.io/q7pkf/ for the full analysis code). We fitted the delta-rule model to
the aggregate choice proportions of YCNE’s three between-subject conditions. The model’s
predictions were derived by determining, across all participants, the proportion of trials for
which 𝑄𝑖 was highest. A single parameter (𝛼) was used to fit, overall, 14 independent
choice proportions (6 from Experiment 1, 4 from each condition from Experiment 2). A
learning rate of 𝛼 = .16 yielded the best fit with a resulting mean squared error of .006.
Most predictions fell within the 95% confidence interval of the observed choice proportions
and the model accurately accounted for the qualitative patterns of taxation (see Figure 3).
Moreover, when we used the model to predict the data of one experiment on the basis of the
respective other experiment, we observed mean squared errors of .006 (Experiment 1) and
.010 (Experiment 2), outperforming all sampling-based models evaluated by YCNE except
for the I-SAW2 model, which achieved a slightly better performance in Experiment 2 (see
Table 1 for all within- and cross-experiment predictions).
According to these aggregate-level analyses, the recency-based account given by the

delta-rule model captures the aggregate data at least as well as the sampling-based accounts.
However, aggregate-level analyses always bear the risk of misrepresenting the mechanisms
that actually are at work at lower levels of analysis, sometimes leading to drastically wrong
conclusions (e.g., Regenwetter & Robinson, 2017; Wulff & van den Bos, 2018; Birnbaum,
2011). Moreover, they can obscure crucial individual differences in both behavior and
mechanism. This can be particularly problematic when a single identified mechanism
serves as the basis for behavioral interventions. In the next section, we therefore use the
delta-rule model to evaluate people’s behavior at the individual and trial level.
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Table 1: Aggregate-Level Comparison of Recency- and Sampling-based Models for the
Data of Experiment 1 and 2 of YCNE

Experiment Model Fit (MSE) Prediction (MSE)

1 reinforcement learning .005 .006
1 full-data model — .014
1 naïve sampler — .020
1 two-stage naïve sampler — .009

2 reinforcement learning .007 .010
2 full-data model — .040
2 extended two-stage naïve sampler — .007

Note. MSE = mean squared error. Fit is the MSE obtained by fitting the respective
model to the choice proportions of the respective experiment. Prediction is the MSE
obtained by fitting the respectivemodel to the other experiment and predicting the respective
experiment’s choice proportions (in the case of non-reinforcement-learning models, the
parameters were obtained by relying on other sources; see Yakobi et al., 2020, for details).
Reinforcement learning = delta-rule reinforcement-learning model. Naïve sampler = small-
samples model used by Yakobi et al. (2020) in Experiment 1. Two-stage naïve sampler =
small-samples model that first eliminates one of the two riskier options and then compares
the winner with the safe option, as used by Yakobi et al. (2020) in Experiment 1. Extended
two-stage naive sampler = Two-stage Inertia, Sampling and Weighting model (I-SAW2)
used by Yakobi et al. (2020) in Experiment 2.

2.1 Individual differences in recency and reckless behavior
To test the recency-based account more rigorously and address possible aggregation prob-
lems, we fitted the delta-rule model separately to each individual’s trial-level choices. To
achieve this, the model had to be equipped with an additional mechanism that maps sub-
jective expectations 𝑄 to choice probabilities, accounting for the stochasticity in people’s
behavior (Hey & Orme, 1994). We implemented an 𝜖-greedy (Sutton & Barto, 1998)
choice rule which predicts the choice of the option with the highest subjective expectation
with probability 1 − 𝜖 and a randomly selected option with the error probability 𝜖 . In
analyses reported in the Appendix, we found the 𝜖-greedy choice rule to fit participants’
behavior better than a popular alternative, the softmax choice rule, and, more importantly,
to produce substantially lower parameter correlations, implying a cleaner separation of the
psychological mechanisms.
Fitting separate learning rates 𝛼 and error probabilities 𝜖 to each individual’s choices

using maximum likelihood, we observed an overall sum of Bayesian information criteria
(BIC; Schwarz, 1978) of 90,101. This valuewas considerably lower than that of an aggregate
model fitting all trial-level choices using a single learning rate 𝛼 and error probability 𝜖
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(BIC = 109,759) and that of an aggregate baseline model assuming random guessing (BIC
= 126,780). Furthermore, we found the delta-rule model to produce lower BICs for 91.1%
(224 out of 246) of individuals than an individual-level baseline model.
The better performance of the individual-level models suggests meaningful individual

differences, which also came through clearly in the distribution of individual-level param-
eter estimates: Learning rates followed a bimodal distribution (see Figure 4a), such that
a vast majority of people fell into two clearly distinct groups: myopic and emmetropic
learners. Myopic learners (32%) are characterized by a high learning rate of 𝛼 = [.85, 1],
implying that only the last one or two observations form the basis of their choices. Em-
metropic learners (64%), on the other hand, are characterized by a low learning rate of
𝛼 = (0, .15], implying that even the most distant experiences are still factored into their
choices. The distribution of error rates, by contrast, was clearly unimodal and reflected a
maximization rate of 70%, which is in line with previous research (Harless & Camerer,
1994). Furthermore, error rates barely covaried with learning rates (𝑟 = .09), suggesting
that the estimated learning rates reflect systematic differences in people’s tendency to focus
on recent experiences and are not merely the result of identifiability problems known for
many computational models (Spektor & Kellen, 2018).
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Figure 4: (a) Distribution of individual-level learning rates 𝛼 and error rates 𝜖 across the
three between-subject conditions. Parameters were estimated using maximum-likelihood
estimation. Shaded areas represent classification according to 0 ≤ 𝛼 ≤ .15 (emmetropic)
or .85 ≤ 𝛼 ≤ 1 (myopic). (b) Relative weights of past experiences implied by the esti-
mated learning rates. Each line represents one individual and the weight attached to each
observation (up to 12 observations into the past).

To evaluate whether the individual differences in learning rates reflect clear and system-
atic differences in behavior, we plotted the modal choices of all individuals ordered by their
estimated learning rate, separately for all conditions (Figure 5). This analysis revealed that
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whereas most emmetropic individuals quickly learned to choose the safe option (dark blue),
especially under high taxation, most myopic learners exhibited persistent preferences for
whichever risky options offered the better outcome most of the time (gray = moderate risk,
yellow = high risk). These patterns were most pronounced in the presence of an attractive
safe option in Experiment 2.
The sustained preference for risky options observed for myopic individuals suggests

that they might not have learned at all from their experiences. However, using a mixed-
effects regression accounting for participant random effects nested within condition, we
found preferences for the safe option to be substantially elevated immediately after the
observation of an accident (𝑂𝑅 = 2.59, 𝑝 < .001) , but not one (𝑂𝑅 = 0.82, 𝑝 = .45) or
two (𝑂𝑅 = 1.14, 𝑝 = .58) trials later, relative to all other trials. Thus, consistent with the
high learning-rates estimates, myopic individuals learned about and reacted to accidents, but
then discounted them very quickly as they continued. Emmetropic individuals, by contrast,
showed an increased preference for the safe option not only immediately after the accident
(𝑂𝑅 = 2.30, 𝑝 < .001), but also one (𝑂𝑅 = 1.38, 𝑝 = .017) and two (𝑂𝑅 = 1.37, 𝑝 = .026)
trials later. Furthermore, consistent with the lower learning rate of emmetropic individuals,
preference for the safe option right after the accident was somewhat less pronounced than
for myopic individuals.
The existence of two groups of individuals has critical implications for our understanding

of reckless behavior in the face of taxation. Considering only moderate- and high-taxation
situations, the data showed that myopic individuals experienced, on average, 3.08 accidents,
whereas emmetropic individuals experienced only 1.82 accidents (see Figure 6). More im-
portantly, compared to moderate taxation, myopic individuals suffered 0.8 accidents more
under high taxation, whereas emmetropic individuals suffered only 0.36 more accidents.
These analyses suggest that myopic individuals not only suffered considerably more acci-
dents in general, but also that they were much more susceptible to the negative effects of
over-taxation.
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Figure 5: Modal choices in bins of 10 trials for each participant in each experiment, ordered
by the learning rate from low (top) to high (bottom). Dark blue represents a modal choice
of the safe option, gray represents of the low-risk option, and yellow of the high-risk option.
Individuals are grouped according to their classification, emmetropic (0 ≤ 𝛼 ≤ .15), myopic
(.85 ≤ 𝛼 ≤ 1) or unclassified. Crosses indicate that individuals suffered an accident in the
corresponding bin.

3 Discussion
It is well established that people tend to choose as if they underweight small-probability
events when they make decisions based on experience. This finding forms the basis of the
so-called description–experience gap (Wulff et al., 2018) and it is the key to understanding
people’s responses to taxation in this case. As-if underweighting of rare events implies
that people tend to prefer the option that yields the best outcome most of the time (Wulff
et al., 2015; Erev et al., 2020). Under excessive taxation of moderately risky behaviors,
an even more reckless option can suddenly become the option that is better most of the
time, resulting in an increased preference for this option. The present investigation shows
that different mechanisms embodying as-if underweighting can provide a good qualitative
and quantitative account of how taxation affects behavior in such settings. Moreover, it

123
https://doi.org/10.1017/S1930297500008329 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500008329


Judgment and Decision Making, Vol. 16, No. 1, January 2021 MYOPIA AND RECKLESSNESS

uncovered the existence of important individual differences that could be of greater import
than the question of which mechanism best accounts for people’s behavior. Specifically,
there were two distinct groups of people, myopic and emmetropic learners, who responded
to the experience of accidents in qualitatively distinct ways. Accounting for these individual
differences is crucial for understanding behavior and for deriving effective policies to prevent
accidents due to over-taxation.

Emmetropic Myopic

0 1 2 3 4 5 6 7 8 9 10

Fr
eq

ue
nc

y Moderate tax
High tax

0 1 2 3 4 5 6 7 8 9 10

Accidents

Figure 6: Distribution of experienced accidents, split by taxation amount. Individuals are
grouped according to their classification, emmetropic (0 ≤ 𝛼 ≤ .15) or myopic (.85 ≤ 𝛼 ≤ 1).
Shaded areas in the violin plots indicate the central 50% interval.

Analyses of aggregate behavior are always at risk of misrepresenting people’s actual
behavior (Wulff & van den Bos, 2018; Regenwetter & Robinson, 2017; Birnbaum, 2011)
and, in the present investigation, this risk was real. The learning rate obtained by fitting the
recency-based model to the aggregate choice proportions of both studies suggests a steady
decay of the weight of past experiences, where an experience ten epochs ago receives about
20% of its original weight (see Figure 4b). However, there were almost no individuals who
were accurately described by such a weighting scheme. Instead, individuals seem to assign
to past outcomes a weight that is either well above that of the aggregate estimate, or one that
is essentially zero. These differences imply that the groups effectively base their decision
on different experiences. Furthermore, they suggest that they could have relied on different
mechanisms.
Emmetropic individuals might have made their choices using a recency-based mecha-

nism with gradually diminishing weights as formalized in the delta-rule model. However,
they could have also recruited a stochastic variant of the full-data model or a sampling-
based model with a large sample size. All three mechanisms actually are able to account
for the behavior of emmetropic individuals equally well because, in a stable environment, a
large sample of both recent and random samples will be representative of all observations.
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Myopic individuals, on the other hand, cannot have relied on either the full-data model or
a pure 𝑘-sampling process. For them, only the recency-based account is able to capture the
high weight given to the single most recent outcome.
Despite the recency-based account’s ability to fit the behavior of emmetropic and,

especially, myopic individuals, we think that it does not actually provide a complete account
of their psychology. For instance, recency is often attributed to either memory limitations
or adaptations to assumed changes in the environment (see Wulff & Pachur, 2016; Wulff
et al., 2018; Bornstein et al., 2017; Wulff & Hertwig, 2019). However, neither of these
two represents a compelling account of the two extreme forms of recency observed here,
namely practically no recency (emmetropic) and maximum recency (myopic). Rather, it is
likely that other factors not included in the recency-based account, such as risk preferences
or goals (see, e.g., Hertwig et al., 2019), also play a role. For example, the differences
between emmetropic and myopic individuals can also be construed as the pursuit of short-
versus long-term goals (see Wulff et al., 2015; Lopes, 1981) or as maximization versus
probability matching strategies (Gaissmaier & Schooler, 2008; van den Bos et al., 2009).
Moreover, there exist at least twobehavioral phenomena that are difficult to reconcilewith the
assumptions of the delta-rulemodel or other reinforcement-learning accounts for thatmatter.
First, people have been shown to possess accurate declarative memory representations of
experienced samples beyond the subjective values stored by the delta-rule model (Wulff
et al., 2018). Second, people have been shown to expect temporal dependencies in the
outcome sequence, which can produce the wavy-recency patterns presented by YCNE. Such
expectations of dependencies cannot be accounted for by any model assuming stochastic
independence in the outcome distributions between choices, including the delta-rule model.
To account for these phenomena, cognitive models must be equipped with mechanisms that
go beyond pure small-sample or recency-based mechanics.
Notwithstanding these challenges, our findings join similar results of previous studies

(Spektor & Kellen, 2018; Erev & Haruvy, 2015) in demonstrating the existence of strong
individual differences in experience-based settings. These differences should be accounted
for in future modeling efforts, ideally using larger and more diagnostic data sets. One
promising avenue to increase diagnosticity with respect to the question of sampling- or
recency-based accounts exists in reversal-learning tasks in which reward contingencies
undergo sudden, drastic changes. In such situations, only recency-based accounts will
allow decision makers to adaptively respond to changes in the environment (e.g., Hampton
et al., 2006).
Finally, returning to the topic of reckless behavior, we believe that the presence of two

groups of people relying on potentially different mechanisms has crucial implications for
policy development. We have shown that myopic individuals are already at a much greater
risk of suffering accidents than emmetropic individuals and that this gap widens under
higher levels of taxation. A targeted policy addressing myopic individuals—for instance,
by using boosts (Hertwig & Grüne-Yanoff, 2017)—might be effective over and beyond an

125
https://doi.org/10.1017/S1930297500008329 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500008329


Judgment and Decision Making, Vol. 16, No. 1, January 2021 MYOPIA AND RECKLESSNESS

omnibus policy addressing everyone equally. The data suggest that had the smaller group
(32%) ofmyopic individuals acted like emmetropic individuals, a total of 95 accidentswould
have been prevented. In contrast, placing everyone, myopic and emmetropic individuals,
under a moderate (rather than a high) level of taxation prevented 115 accidents. Even more
accidents (197) would have been prevented by the combination of both; that is, if everyone
was placed under a moderate level of taxation and everyone had acted in a emmetropic
fashion. This suggests that the overall best policy to prevent reckless behavior and accidents
likely recruits both omnibus and targeted strategies.

References
Birnbaum, M. H. (2011). Testing mixture models of transitive preference: Comment on
Regenwetter, Dana, and Davis-Stober (2011). Psychological Review, 118(4), 675–683.

Bornstein, A. M., Khaw, M. W., Shohamy, D., & Daw, N. D. (2017). Reminders of past
choices bias decisions for reward in humans. Nature Communications, 8(1), 15958.

Erev, I. & Haruvy, E. (2015). Learning and the economics of small decisions. In J. H.
Kagel & A. E. Roth (Eds.), The Handbook of Experimental Economics, volume 2 (pp.
638–716). Princeton University Press.

Erev, I., Plonsky, O., & Roth, Y. (2020). Complacency, panic, and the value of gentle rule
enforcement in addressing pandemics. Nature Human Behaviour, 4(11), 1095–1097.

Erev, I. & Roth, A. E. (2014). Maximization, learning, and economic behavior. Proceedings
of the National Academy of Sciences of the United States of America, 111, 10818–10825.

Gaissmaier, W. & Schooler, L. J. (2008). The smart potential behind probability matching.
Cognition, 109(3), 416–422.

Gershman, S. J. (2015). Do learning rates adapt to the distribution of rewards? Psychonomic
Bulletin & Review, 22(5), 1320–1327.

Gershman, S. J. (2016). Empirical priors for reinforcement learning models. Journal of
Mathematical Psychology, 71, 1–6.

Hampton, A. N., Bossaerts, P., & O’Doherty, J. P. (2006). The role of the ventromedial
prefrontal cortex in abstract state-based inference during decision making in humans.
Journal of Neuroscience, 26(32), 8360–8367.

Harless, D. W. & Camerer, C. F. (1994). The predictive utility of generalized expected
utility theories. Econometrica, 62(6), 1251–1289.

Hertwig, R. & Grüne-Yanoff, T. (2017). Nudging and boosting: Steering or empowering
good decisions. Perspectives on Psychological Science, 12(6), 973–986.

Hertwig, R., Wulff, D. U., & Mata, R. (2019). Three gaps and what they may mean for
risk preference. Philosophical Transactions of the Royal Society B: Biological Sciences,
374(1766), 20180140.

Hey, J. D. & Orme, C. (1994). Investigating generalizations of expected utility theory using
experimental data. Econometrica, 62(6), 1291–1326.

126
https://doi.org/10.1017/S1930297500008329 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500008329


Judgment and Decision Making, Vol. 16, No. 1, January 2021 MYOPIA AND RECKLESSNESS

Lopes, L. L. (1981). Decisionmaking in the short run. Journal of Experimental Psychology:
Human Learning & Memory, 7(5), 377–385.

Regenwetter, M. & Robinson, M. M. (2017). The construct–behavior gap in behavioral
decision research: A challenge beyond replicability. Psychological Review, 124(5),
533–550.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2),
461–464.

Spektor, M. S., Gluth, S., Fontanesi, L., & Rieskamp, J. (2019). How similarity between
choice options affects decisions from experience: The accentuation-of-differencesmodel.
Psychological Review, 126(1), 52–88.

Spektor, M. S. &Kellen, D. (2018). The relativemerit of empirical priors in non-identifiable
and sloppy models: Applications to models of learning and decision-making. Psycho-
nomic Bulletin & Review, 25(6), 2047–2068.

Stewart, N., Scheibehenne, B., & Pachur, T. (2018). Psychological parameters have units:
A bug fix for stochastic prospect theory and other decision models. PsyArXiv. https:
//doi.org/10.31234/osf.io/qvgcd.

Sutton, R. S. & Barto, A. G. (1998). Reinforcement learning: An introduction. MIT Press.
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Appendix

Experimental details
Yakobi et al. (2020) conducted two experiments using a variation of the 𝑛-armed bandit
problem (Sutton & Barto, 1998). In this task, participants repeatedly chose between three
monetary lotteries for a total of 100 periods. Initially, participants had no information
available about the options’ outcome distributions. After each choice, participants were
presented with random draws from each option, but obtained only the outcome of the chosen
option (full feedback; see Figure 1 for a schematic illustration). Thereby, individuals were
able to learn about the properties of the outcome distributions over time.
In every condition, participants faced a choice between a safe option, a medium-risk

option, and a high-risk option. Depending on the experiment, the safe option yielded 3
points with a probability of .45 or 0 otherwise (Experiment 1), 0.60 points with certainty
(Experiment 2, unattractive safe option), or 1.35 points with certainty (Experiment 2,
attractive safe option). The medium-risk option yielded 2 points minus a tax with a
probability of .97 and an outcome of -20 points with a probability of .03, the so-called
accident. The amount of tax was implemented as a within-subject factor and varied between
0, 0.4, and .8 points in Experiment 1 and .4 and .8 points in Experiment 2. The high-risk
option always yielded 1.5 points with a probability of .94 and the accident otherwise.
Eighty-five individuals (48 female, 𝑀age = 35 years, 𝑆𝐷age = 11.55) took part in

Experiment 1 and 161 individuals (61 female, two non-disclosures, 𝑀age = 36.6 years,
𝑆𝐷age = 10.42) took part in Experiment 2, for a total of 246 participants.
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Figure A1: Parameter recoverability.
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Modeling details
Fitting the delta-rule model to aggregate choice proportions

We fitted the delta-rule model separately to the aggregate choice proportions of each of
the three between-subject conditions by minimizing mean squared error (i.e., Experiment
1, Experiment 2: Unattractive safe option, Experiment 2: Attractive safe option). Initial
expectations 𝑄0,𝑖 for each option 𝑖 were set to 0, which is the standard procedure in the
literature (e.g., Gershman, 2015; Spektor et al., 2019). On each trial, expectations are
updated according to the delta-learning rule:

𝑄𝑡+1,𝑖 = (1 − 𝛼) ×𝑄𝑡,𝑖 + 𝛼 × 𝑅𝑡,𝑖,

where 𝑅𝑡,𝑖 denotes the reward of the respective option and 𝛼 ∈ [0, 1] is the only free
parameter in the model and determines the degree of recency. In the case of 𝛼 = 1,
individuals only consider the most recent trial, and lower values of 𝛼 lead to an increasingly
linear weighting scheme of all past observations. A single 𝛼 was used to model chosen and
non-chosen options.
Predictions for aggregate choice proportions were determined as the proportion of trials

in which each of the options had the highest 𝑄 value. These predicted choice proportion
were evaluated against the observed ones using mean squared error.

Fitting the delta-rule model to trial-level choices

Maximum-likelihood estimation was used to fit the delta-rule model to trial-level choices.
This required that the model be endowed with a probabilistic choice rule. We used a 𝜖-
greedy model that chooses a randomly selected option with a probability of 𝜖 and the option
with the highest 𝑄 value otherwise. Formally, let 𝑖 on trial 𝑡 be the option with the highest
expectation, then the probability of choosing it will be given by 𝑃𝑟 (𝑖, 𝑡) = (1− 𝜖) + 𝜖 × 13 . If
there are multiple options with the highest expectation, then the model selects one of these at
random. Learning followed the same implementation as for aggregate choice proportions.
Parameters were estimated using the Nelder–Mead algorithm as implemented in the scipy
Python library. We ran the algorithm 100 times with random starting values and kept the
best-fitting result.

Choice of choice rule A popular alternative to 𝜖-greedy, is the softmax choice rule (e.g.,
Gershman, 2015; Spektor et al., 2019):

𝑃𝑟 (𝑖, 𝑡) = 𝑒\𝑄𝑖,𝑡

𝐽∑︁
𝑗=1

𝑒\𝑄 𝑗 ,𝑡

Unlike 𝜖-greedy, the softmax choice rule implements a gradual trade-off between ex-
ploration and exploitation that co-depends on the value of the sensitivity parameter \ and
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differences between the options. Specifically, choices under softmax become more deter-
ministic if the value differences between the options become large and the higher \.
For two important reasons we relied on an 𝜖-greedy choice rule rather than softmax:

First, under a softmax choice rule models are known to have poor parameter identifiability
(Stewart et al., 2018; Spektor & Kellen, 2018; Gershman, 2016) due to high correlations
between the sensitivity and learning-rate parameters. Low parameter identifiability is highly
problematic for research questions focused on interpreting parameter values, especially
efforts involving the classification of individuals. Recovery analyses reported below show
that identifiability was no problem under an 𝜖-greedy choice rule. Second, the 𝜖-greedy
choice rule actually provided a better quantitative account of the individual-level data than
the softmax choice rule, with 145 out of 246 individuals (59%) being better fit by the former.
The 𝜖-greedy choice rule also provided a better fit overall, with a sum of BICs of 90,101
compared to 97,717 for the softmax choice rule. These results are in line with reports that
the 𝜖-greedy choice rule is well suited to capture behavior in full-feedback paradigms (e.g.,
Yechiam & Busemeyer, 2005).

Parameter recovery Reinforcement-learning models are known to have poor parameter
identifiability, which translates in poor recoverability (see Gershman, 2016; Spektor &
Kellen, 2018, for attempts to improve identifiability). To confirm that this would not affect
parameter estimation for our delta-rule model using the 𝜖-greedy choice rule, we ran a
parameter-recovery study. For each sequence of outcomes of an individual in the original
study, we have drawn 10 random parameters from all estimated parameters across studies
and simulated the choices of a “virtual” participant whose choices stemmed 100% from the
reinforcement-learning model with an 𝜖-greedy choice rule and the respective parameters.
We re-fitted that virtual participant’s choices to obtain the recovered parameters. In total,
the parameter recovery was therefore based on 2,460 sets of parameters. The parameter
recoverability was excellent: Both parameters yielded a near-perfect correlation between
the data-generating parameters and the recovered parameters, 𝑟𝛼 = .96 and 𝑟𝜖 = .95 (see
also Figure A1).
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