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MULTIPLIERS ON SPACES OF ANALYTIC FUNCTIONS 

OSCAR BLASCO 

ABSTRACT. In the paper we find, for certain values of the parameters, the spaces of 
multipliers (H(p, q, a), H(s, t, (3)) and (H(p, q, a), Is), where H(p, q, a) denotes the space 
of analytic functions on the unit disc such that (1 — r)aMp(f, r) 6 Lq{j^-r). As corollaries 
we recover some new results about multipliers on Bergman spaces and Hardy spaces. 

0. Introduction. Given two sequence spaces X and Y, we denote by (X, Y) the space 
of multipliers from X into Y, that is the space of sequences of complex numbers (Xn) such 
that (Xnan) E Y for (an) G X. 

When dealing with spaces of analytic functions defined on the open unit disc D we as­
sociate to each analytic function/(z) = E^o anZn m e corresponding sequence of Taylor 
coefficients (an). In this sense any space of analytic functions is regarded as a sequence 
space and it makes sense to study multipliers acting on different classes of spaces such 
as Hardy spaces, Bergman spaces and so on. 

During the last decade lots of results were obtained (see [AS, BST, DSI, M, MPI, 
MP2, S2, SW]). Recently the interest on similar questions has been renewed and some 
new results on multipliers on Hardy and Bergman spaces have been achieved (see [W, 
MP3, JP, MZ, V]). 

The aim of this paper is to study spaces of multipliers acting on certain general classes 

of analytic functions, denoted by H(p, q, a), which consists of functions on the unit disc 

such that (JO(1 - r)a^xNfpif, r) drf 'q < oo. 
The definition of these classes goes back to the work of Hardy and Littlewood (see 

[HL1, HL2]) and they were intensively studied for different reasons and by several au­
thors. The reader is referred to the papers [DRS, FI, F2, MPI, SI, Sh] for information 
and properties on the spaces. 

There are two different techniques used in the paper. On one hand the use of a gen­
eral theorem on operators acting on H(p, q, a) for 0 < p < 1 which allows us to find 
(H(p, q, a), H(s, t, /?)) and (H(p, q, a), Is) for the cases 0 < p, q < 1 and 1 < s, t < oo 
and also for 0 < p < 1 < q although only for particular cases of s and t. In particular we 
can get a proof of the recent theorem, due to M. Mateljevic and M. Pavlovic (see [MP3]), 
which says that (Hl, BMO) = Bloch and we realize that this result still has an extension 
to the setting of H(p, q, a) spaces. 
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On the other hand, the use of Khintchine's inequality allows us to see that multipli­
ers on Hip, q, a) for values p > 2 depend in most cases on those for 7/(2, q, a), being 
these spaces isomorphic to /(2, q) (see definition below) and hence very easy to deal with 
them. This will allow us, in particular, to extend and give simpler proofs of the results 
on Bergman spaces Bp (corresponding to Hip,p, l/p)) due to P. Wojtaszczyk (see [W]). 

The paper is divided into six sections. The first one has a preliminary character and 
several general facts and properties on the spaces are shown. Sections 2 and 3 are de­
voted to the cases Hip, q, a) for values p = 2 and 0 < p < 1 respectively, finding 
useful Littlewood-Paley type characterizations of the spaces and a general theorem on 
operators acting on Hip, q, a) when 0 < p, q < 1. In Section 4 we deal with multipli­
ers {H{p, q, a), f ) recalling the known results and proving a new one regarding the case 
0 < p < 1 < q. Section 5 concerns with multipliers [Hip, q, oc), His, t, /?)) and finally we 
obtain applications to Bergman and Hardy spaces in the last section. Besides the results 
in [W, MP] just pointed out above we can recover some new ones on multipliers acting 
on Bergman spaces Bp for 1 <p<2 obtained in [MZ, V]. 

Throughout the paper all functions / will be analytic on the unit disc and À may be 
considered as a function A(z) = E^lo ^zn or as the sequence (An) given by its Taylor 
coefficients. If fiz) = T^=Qanz

n and giz) = £^i0&nZ" then we shall write/ * giz) — 
EZo anbnz

n. As usual Mpif, r) stands for (j0
27r \firei9)\p§)l/p and we denote by W and 

W the classical Hardy and Bergman spaces respectively. Finally recall that the notation 
p' will be used for the conjugate exponent of/? verifying 1 jp 4-1 jp' — 1 and C will stand 
for a constant that may vary from line to line. 

1. Background and preliminary results. 

DEFINITION 1.1. Let 0 < p < oo and 0 < a, q < oo. Hip, q, a) will be the space of 
analytic functions on the open unit disc D satisfying 

\\f\Ua = {fQ{\-rf>-'Ml(f,r)dr)llq < oo. 

Let 0 < p < oo and 0 < a. lfa (or Hip, oo, a)) will be the space of analytic functions 
on the open unit disc D satisfying 

ll/1Uoo,a = sup (1 - r)aMpif, r)dr < oo. 
0<r<l 

Let us collect some estimates to be used in the sequel. 

LEMMA A (GENERAL ESTIMATES). Letpx < p2, 7 > 1 and 6 < (3. Then 

(1.1) MP2if,r) < Ci\-r)xlp^xI^Mp,if,r) (see [D, p. 84]), 

(1.2) | o
2 " — ^ — = 0(1/ (1- Iz l ) 7 - 1 ) (see [D, p. 65]), 

(1.3) f ( 1 ~ r ) dr = 0(1/(1 - s)?"6) (see [SW, Lemma 6]). 
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We are going to formulate the results and properties that will be needed later on. We 
start with some very elementary embeddings which follow easily from (1.1). 

LEMMA B (EMBEDDINGS). If 0 < /?, q, a, p\ < p2, q\ < qi and a\ < a2. Then 

(1.4) HPl CH(p2,qual)CH(puq2,a2)CH^ 

(1.5) H(puq,oc) CH(p2,q,a+l/p\ - l/pi), 

(1.6) H(p,q2,a) C H(p,qx, a + l/q] - l/q2). 

Now we shall state two easy results about multipliers with hold in general cases. 

LEMMA C (MULTIPLIERS). Let 0 < pup2,quqi, a,(3 < o o , ^ + ^ > 1, £ = 

± + -1 - 1 and i = -1 + -1. 77ien 
Pi ^2 q q\ m 

(i-7) r*g||M,„+/3<|[/IU,, l,«lkllP2,(?2, /3. 

Let 0 < q, a < oo andfiz) = E ^ 0
 an^1- Then 

( l 8 ) (SSTTM'' '*<*«'*•• 

PROOF. (1.7) follows by applying consecutively Young's and Holder's inequalities. 
To show (1.8) we simply use the trival estimate |a„|r" < M\(f, r). 

, oo r i _ i / ( w + i ) x l /<? 

l l / 1 l u « = ( £ / , / ( l - r r - ' M ^ D r f r ) 

/ °° /-l-l/fa+l) , \ \/q 

> ( E ( ,/ d -rr - '^k l 'dr ) 7 

- V^l (rc + 1 ) ^ 1 n (n+l ) V n7 J 

>c y ^ 

The interest on these spaces appeared from their conection with Hardy spaces and 
mainly from inequalities like the ones we mention in the next lemma. They were shown 
in[HLl,Fl,LP]. 

LEMMA D (INEQUALITIES). Let I < p < 2 < q < oo. Then 

(1.9) ( / Jd -rf-Mp
2(f\r)dr)'P < C\\f\\Hp, 

(1.10) ({ (1 - r)M2
p(f\r)drY < C\\f\\Hp, 

(LID ( /Jd -ry-xM%f9r)dry < C\\f\\Hq. 
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REMARK 1.1. It is easy to see that (1.9) is equivalent to 

d-9') [j\\ - r)?Mp
2(f,r)dry < C\\f\\Hp. 

The two first inequalities are due to Hardy and Littlewood. The case p = 2 follows from 

the PlanchereTs theorem, the case p = 1 from factorization of Hx -functions as product 

of two H2-functions and finally the cases 1 < p < 2 from interpolation (see [D, Theo­

rems 5.11, 5.6]). An alternative much simpler proof of ( 1.9), based upon Marcinkiewich 's 

interpolation, was shown by Flett (see [Fl ]). 

The inequality (1.11) is due to Littlewood and Paley (see [LP]) and it can be obtained 

by means of the operator T(f) — (1 — |z|)/'(z). This operator is bounded from H2 into 

L 2 (^ ,L 2 (J<9)) and from H°° into LTO(^,L°°(d<9)), then we get the other cases using 

interpolation. 

Given/(z) = £ ^ o 0 n z w and /3 > 0 we denote by f® the fractional derivative off 
defined b y / % ) = & I » a n Z » . 

The reader is referred to [HL1, F l , F2, DRS] for different results on fractional deriva­

tives. Let us recall that for 1 < p < oo, 0 < a, /3 < oo we have (see [D, Theorem 5.5] 

fo r / ?= 1) 

(1.12) fefFa if andonly iff® e H^. 

The next result covers other values of q, 0 < q < oo and although it is part of the 

folklore we include a proof here because of the lack of any reference. 

THEOREM A (FRACTIONAL DERIVATIVES). Let I < p < oo, 0 < q, a, /3 < oo. Then 
f belongs to H(p, q, a) if and only iff"® belongs to H(p, q,a + /3). 

PROOF. Let us assume/ G H(p,q,a). Denoting by Kp(z) = 1/(1 — z / + 1 we can 

write f® =f*Kp, therefore 

Mp(f^\ r2) < Mp(f, r)Mx (Kp, r) < C-^—^Mp(f, r). 

From this easily follows that/( /3) G H(p, q,a + ft). 

Conversely, let us a s s u m e / ^ G //(/?, q, a + /?) and f3 > 1. Observe first that 

This gives 

f(z) = £(l-s?-lfW\sz)ds. 

Mp(f, r)< J (1 - sf~xMp(fP\ rs)ds 

= r~0 J\r - sf-xMpif
i(5\ s)ds 

< j \ \ -sf~xMp{f
{(3\s)ds 
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Hence 

\\f\Ua < ( / 0 ' d - rr~] ( /Je! - s?-lMp<fW, s)ds)" J r j " = A. 

To estimate A we consider first the case 0 < q < 1. Then 

Aq < / ' ( ! - r)qa"x T(l - sfq^Mq
p(f

l}\s)dsdr 

< J\l - s^Mp^Ks^il - r)qa-1 dA ds 

=(i/<7«)imu+,. 
Assume now q > 1. From (1.4) we have that/(/3) £ Hip, 1, a+/3) and then integration 

by parts gives 

Aq = (l/qa)£(l - r)qa+P-lMp(fW,r)(£(l - sf~]Mp{f^\s)ds)* dr. 

Now writting (1 - r)qa+^1 = (1 - r ) 0 ^ 1 / ^ ! - r)(<?-i)a-i/y ? Holder's inequality gives 

which is the desired inequality. 
For general value of (5 we now argue as follows: If/^ G Hip, q,a+[3) and 0 < f3 < 1 

then/(/3+1) € Hip, q, a + /? + 1) and now apply the previous case. • 

Let us finish this section with a theorem about duality that we shall use later. The 
reader is referred to [SI, F2, DRS, ACP, SW, Ma] for different duality resuls on several 
cases. 

We denote by Hoip, q, oc) the closure of polynomials in Hip, q, a). It follows from 
standard techniques that the polynomials are dense in Hip, q, a) when p, q < oo, that is 
Hoip, q, a) — Hip, q, a). Next theorem is due to T. M. Flett (see [F2, Theorem 2]). We 
present here a proof by using a pairing which is convinient for our purposes. 

THEOREM B (DUALITY). Let I < p < oo and q e {1, oo}. Then 

(Hoip, q, a))* = Hip', q, a) 

under the pairing 
oo 

(f,g)a='£B(2a,n+l)anbn 
n=0 

where B{a,b) = Jo(l - r ) 0 " 1 ^ - ' dr. 

PROOF. Let/(z) = E™=0 anz" and g(z) = E ~ „ b»z" •Tt i s c l e a r t h a t 

(/>#>« = ^ /o'd - ^2a~l (ff(reie)g(re-ie)de)rdr 
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Therefore using Holder's inequality twice one gets 

\{f,g)a\ < cfo(\ - r)2a-lMp(f,r)Mp,(g,r)rdr < C\[f\\p,q,a\\g\\pW^ 

Assume now <j> G (i/o(p» 1><*)) and define/(z) = <j>(Kz) where A (̂w) = (1_JL2«+i• 
Assume first g = 1. Using duality one can write 

Mp> •tf,r)= sup\[nf(rew)g(e~l9)^-\= sup \</>(hr\ 

where hr(z) = t ^ ^ L g = ffr * g(z). 
Observe that since Mp(hr,s) < \\g\\pM[(Kr,s), a simple computation, using (1.2) 

and(1.3), gives ||/ir||Ai,a < Cnlr\a- This and the previous equality imply that / G 
H(p\ oo, a). 

Assume now q = oo. Let us denote by/(z) = /(sz) for 0 < s < 1. Using the previous 
case one has 

\\fs\\p',\,a= SUp \(fS9g)a\= SUp |<K^)|-
IUIUoo,a = l |klUoo,a = l 

Observe now that ||g,||p,oo,a < IUIUoo,« for all 0 < s < 1. Hence |[£||//,i,a < C||</>||. 
Now apply Lebesgue convergence theorem to get/ G //(// , 1, or). • 

2. The space 7/(2, g, a). A sequence space S is called a 6̂>//J if (an) E: S and |a£ | < 
|AW| implies (an) G 5. It is clear, from Plancherel's theorem, that H(2,q,a) is a solid 
space. In fact, since B(/3, n) ^ n~®, we can identify 7/(2,2, a) with the space of sequences 
(Xn) such that (n~a\n) G /2. Our aim is to get similar identification for other values of 
0 < q < oo (see [MPI, SI]). For such a purpose we shall need the following spaces. 

DEFINITION 2.1. Let 0 < p, q < oo. Denote by /„ = {k G Z : 2n~l <k<2n} and 
/o = {0}. The spaces l(p, q) consist of sequences (an) G C such that 

V « yk£ln
 J J 

< OO, 

(with the obvious modifications for the cases where/? or q = oo.) 
It is very elementary and well known that if an > 0 and a > 0 then 

oo / 1 \ 

(2.1) £ anr» = Ol if and only if £ ak = 0(2*"). 
n=o VU — O 7 *e/„ 

As a simple consequence of (2.1) and Plancherel's Theorem we can obtain, for any 
a > 0 , 

(2.2) H2
a = {(\n):n-a\neK2,œ)}. 

To characterize 7/(2, q, oo) for other values of q we shall use the following lemma. 
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LEMMA 2.1. Let 0 < q, /3 < oo and an > 0. Then 

r \ / O O x g OO , x g 

(1 _ r^-i ( £ a^A rfr « £ 2-»<M £ a, . 
yn=0 ; n=0 ykeln 

PROOF. 

A / °° \ <7 °° A — 2~("+1 
„1 / oo x. g oo /«l—2-^"+" / oo x q 

(1 - r)'3"-' ( E a ^ ) dr=^ (1 - r ) ^ ' E <*»'*) dr 

> c E 2 - ^ - " L , (E«v*)* 

>c£2-'^-1)(Ea*),r,T,'2",rfr 
n=0 ykel„ 

>cE2-* E«* • 
n=0 Vfce/„ y 

Let us now show the converse inequality. Assume first 0 < q < 1. 

J° Vn=0 7 J[) \n=0Xk(Eln
 y 7 

J 0 W o V £ G / , ?
 y V 

n = 0 J U Vfce/„ y 

oo , , q 

<Cj2B(j3q,2nq)(j:ak) 
n=0 vfc€/„ 
oo 

w=0 JtG/n 

Assume now 1 < q < oo. Write 

(
OO x 

vn=0 

Clearly (2.1) gives that O is a bounded operator from /(l, oo) to L°°([0,1], -j~) and 
the previous case g = 1 shows that O is also bounded from /(l, 1) into L'([0,1], j^r), 
then an interpolation argument shows 

£ (1 - rf? " ' ( E cCnA dr < C E 2 - " ^ ( E <**) • 
-70 Vn=0 y n=0 VÂ:G/„ 7 

THEOREM 2.1 (SEE [SI, MPI]). Let0 < q < oo, a > 0 andf(z) = E ^ i awzw. 77ié?n 

/ G //(2, g, a) /farcd 6>rc/y ifn~aan G /(2, (7). 
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PROOF. Use Plancherel's theorem together with Lemma 2.1 or (2.1) according to 
q < oo or q — oo respectively. 

REMARK 2.1. Clearly one can formulate Theorem 2.1 by writing 

Mi 
l l f l l2^«(E2-^ | |A, / | | f ) 

V / i=0 J 

where Anf(9) = neinake
ik9. 

This can be extended to 1 < /? < oo, 0 < q < oo and a > 0 (see [SI, MP2]) to get 

(2.3) r i U a « ( E 2^114/112) V* 

Using (2.3) one can easily obtain the following duality result for 1 < /?, q < oo and 
a > 0 (see [SI]) 

(2.4) (H(p,q9a)y = H(p'9q',a), 

under the pairing (/, g)a = £„°°=o 2"2aw jg* A,/(0)A„g(-0)f. 

Given a sequence space X, we denote by s(X) and 5(X) the largest solid subspace 
contained within X and the smallest solid containing X respectively. 

It is not hard to show (see [BST, AS]) the following two characterizations: 

s(X) = {Xn : an\n G X for every (an) G /°°} = (/°°,X), 

S(X) = {A„ : there exists (an) G X such that |A„| < \an\}. 

Let us give S(H(p9 q9 a)) and s(H(p, q, a)) in the cases which are easy to compute. 
Next results follows from either Khintchine's inequality the case/7 < oo or a result by 
Kisliakov (see [Ki]) the case/? = oo. 

LEMMA 2.2. LetO <t <2 <p < oo, 0 <q <oo and a > 0. Then 

(2.5) S(#(oo, q, a)) = H(2, q9 a), 

(2.6) S(H(p,q,aj)=Haq,a), 

(2.7) s(H(t, q9 a)) = 7/(2, ̂ , a). 

REMARK 2.2. We refer the reader to [BST, Theorem 1.8] and [MP2, Theorem 2.4] 
for a proof of (2.5), to [MP2, Theorem 2.5] for a proof of (2.6) and to [AS, Lemma 6] 
for a particular case of (2.7). 
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3. The space H(p,q, a) for 0 < p < 1. Our objective now is to extend (2.3) to 
values 0 < p < 1. This can be achieved by replacing the convolution with Dirichlet 
kernels J2kein

 elke by smooth kernels. 
In [JP] the following functions wn were considered: 

2 n + 1 7 

W0fe)=l+Z, Wn(z)= £ H ^ ) z n 

where (/>(/) = w(t/2)—w(t) and w(r) is any infinitely differentiate function with w(t) = 1 
for t < 1, 0 < w(r) < 1 for 1 < r < 2 and w(r) = 0 for t > 2. 

For such functions they showed that for 0 < p < 1 and any analytic function / one 
has 

oo 

(3.1) f=Y,f*w«> 
«=o 

(3.2) \\f*w«\\P<C\\f\\p. 

THEOREM 3.1. Let 0 < p < 1, 0 < q, a < oo andf an analytic function. Then 

(3-3) riU«^(Z2^a | l /*w„||^) \ 

PROOF. Using (3.1) it easily follows 

(
oo 
£M£(f*w„,r) 

Up 

vn=0 

Using now the fact (see [MP2, S2]) 

(3.4) Mptf*wn,r)f*r2n\\f*wn\\p, 

we can write 

1n\(i/P 
l l /*W n | | ^ 

Applying now Lemma 2.1 we get 

Z ' - H I / - * ^ ; 1 q 

v rc=0 

For the converse inequality we use (3.2) and (3.4) to get 

r\ / oo \ nIp 

U,a<C (l-rr^feWf*^2")' dr. 

we get 

,q.a<c[^2-^\\f*wn\\i)X 

/ (1 - r)qa~lMq
p(f, r)dr=Y, 0 ~ r)qa'XMq{f, r) dr 

JO n=0Jl~2 n 

>CYJ2-n{qa-X) / Mq(f,r)dr 

oo r\—z~{n+X) 

>Cj22-"^-»\\f*Wn\\«p r2"«dr 

oo 

>CYJ2-m>a\\f*wn\\l. 
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REMARK 3.1. A similar argument to the one used above, replacing wn * / by A,/, 
gives an alternative proof of (2.3) (the restriction on 1 < p < oo coming from the use of 
the boundedness of the Riesz transform). 

COROLLARY 3.1. Let 0 < p < 1 and 0 < q, a < oo andf(z) = ££L0
 anZn- Then 

IK(*+'-Vlk, < c|[fiu,a. 

PROOF. Note that if <j>n = wn~\ + wn then \^„(k)\ > C for k e In. Therefore 

sup | ^ | < - | | < M / | | i . 
kei„ c 

This together with (3.3) implies that for any /?, 

||«"^/i||oo^ < C|l/1lu,/?-

The proof is completed taking (3 = a + £ — 1 and using that ||/"||, a + i _ ! < ll/IU^a 
which is given by (1.5). • 

COROLLARY 3.2. L<?r 1 < / ? < 2 < s < o o , 0 < g < o o , 1 < r < oo and 0 < a, 

i8<oo.// /fe) = E ~ o f l ^ ^ w 

(3-4) \\n~aan\\pf,q<C\\f\Ua, 

(3.5) l i / l l ^ < ClI / i -^H^. 

PROOF. Using Corollary 3.1 and Theorem 2.2 we have 

H(l,q,a) C {an : «"%, G l(oo,q)}> 

H(2,q,a) = {a„ : fTatf„ G /(2,$)}. 

Hence an interpolation argument gives 

H(p,q,a) C {an : «~aan E l(p',q)}-

To get (3.5) we apply duality. Since 1 < s', t' < oo applying (2.4) we get 
oo 

«=o kei„ 

Then (3.4) easily gives 

W\\sjj>= sup \Z2-2Pnj:akbk\ 

< sup IKw-^Jll^lKn"^)!! , / 
IUII.,'/.̂ <| 

< C||(n^a„)||^,,. 

Next we shall show that the study of multipliers and, in general, of operators acting on 
H(p, q, a) for 0 < p, q < 1 relies upon the case H( 1,1, a + ^ — 1 ). The reader is referred 
to [Bl] for a more general formulation of the following result and its applications. 
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THEOREM 3.2. Let a > 0, 0 < p, q < 1 and Ebea Banach space. Let T be a linear 
map from the space of polynomials into E. Then the following are equivalent 

(i) T extends to a bounded operator from H(p, q, a) into E. 
(ii) \\T(KW)\\E = 0(ÏÏ4Ç^S) where Kw(z) = 4 ^ r 

(Hi) T extends to a bounded operator from / / ( l , 1, a + - — 1) into E. 

PROOF, (a) => (b). It follows from estimating ||^w||p^,a, since ||r(A:w)||f < 
C\\Kw\\p^a. 

Using (1.2) and (1.3) we have 

V* / r\ , \ \/q ( r\ (\ - r)aq'{ \ , q 1 
( / (1 - rr-{Ml(Kw,r)dr) < C if ,\ , \ ^ dr) < C- -—-. 
\Jo p J {Jo (1 - \w\r)2a(i J ~ (1 - \w\)a 

(b) => (c). Since the polynomials are dense in / /( l , 1, a + - — 1) then it suffices to 
prove ||7XO|U < CWf^ x a+i_{ for all polynomials/. 

' ' p 

It is immediate to show that if /3 > 0 and/ is a polynomial then 

Take /3 = 2a•+ - — 1 and a polynomial/, then we have 

/ ( Z ) = i ) i ) ^ - ^ ^ l 9 ) K r e - > e ( z ) d r — . 

Then, by linearity 

Therefore 

r i r^7r /a i n au 
T(f)= L L (l-rf-lf(re'e)T(Kre-,e)dr—. 

Jo Jo 2TT 

\\TV)\\E < /0' j f d - ry - ' ^^ l l ln^ . )^d /± 
Mi(f,r) 

(c) => (a). It follows from (1.5). • 

REMARK 3.2. Note that the previous result essentially shows that the Banach enve­
lope of Hip, q, a) for 0 < p, q < 1 is / / ( l , 1, a + ± - 1) (see [DRS, Sh] for particular 

4. Multipliers (//(p, g, a), / s) . There is a general procedure to deal with multipliers 
from spaces of analytic functions into F spaces (see [BST, AS]) which consists of iden­
tifying the smallest solid containing the space. This approach can be applied for values 
2 <p < oo. 

https://doi.org/10.4153/CJM-1995-003-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-003-5


MULTIPLIERS ON SPACES OF ANALYTIC FUNCTIONS 55 

LEMMA 4.1 (SEE [AS, LEMMA 3]). Let X be a sequence space and S be a solid. Then 

(4.1) (X,S) = (S(X),S), 

(4.2) (S,X) = (S,s(X)). 

LEMMA 4.2 (SEE [K]). Let 0 < puqh p2, q2 < oo. If we write {- = — ^ - jx 

and - = —r~r—: — - then 

(l(p\,qi)J(p2,q2)) = l(p,q)-

As a simple consequence of (4.1 ), Lemmas 2.2 and 4.2 and Theorem 2.1, we can state 
the following 

THEOREM 4.1. Let 2 < p < oo, 0 < q < oo and 0 < a < oo. lf-r = m i i ! 2) — \ 

and 7 = ^ki) - \ then 

(H(p,q,a)Js) = {Xn : na\n G l(r,t)}. 

Now we shall try to study the case H(p, q, a) for p < 1. Our main tool will be the 
Theorem 3.2. 

THEOREM 4.2. Let 0 < p, q < 1 < s < oo 

(H(p,q,a)Js) = {Xn : na+p-lXn G /(J,OO)}. 

PROOF. Apply Theorem 3.2 and observe that condition (ii) says that (Xn) belongs to 
{H{p, q, a), Is ) if and only if 

oo 

E(\»n\\xn\\w\ny = o(\/(\ - \ w \ r ) , 

where (fin) are the Taylor coefficients of 1 / ( l — z)2a+1///\ 

Therefore, estimating jin & n lp~x and using (2.1) we get na+~p~lXn G l(s, oo). • 

REMARK 4.1. The case p = q = 1 of the previous result was already known (see 
[DS1, Theorem 2]), and then, the equivalence between (i) and (iii) in Theorem 3.2 might 
have been used, but we have decided to include here this simple direct proof. 
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THEOREM 4.3. LetO<p<l<q<s and 0 < a < oo. If ± 

(H(p,q,a)Js) = {Xn : ̂
+ ' _ 1 A n G /(r,oo)}. 

PROOF. Let us start with the case s = q. Then also r = q. Assume first that (Xn) G 
(H(p, q, a), f ). Denoting by Vn the de la Vallée Poussin kernel, we consider 

Ut) = Vi«{t + 2n). 

Since ||Vn||i < 3 for all n G N then it follows that M\((j>n,r) < Cr2" and therefore 
M u / 3 < C 2 - ^ f o r a n y i 8 > 0 . 

On the other hand Vn is a polynomial of degree 2n+l having Vn(j) = 1 for [y| < n + 1 
and then the assumption on (Xn) and (1.5) imply 

(E N S ) ' A < (E \UW)1/S < cu\\M,a 

<c||0!|Ua+1/,_1<c2-^+|/"- |). 

Assume now that na+"l\n G l(q, oo) and use Corollary 3.1 to have 

OO OO , \ 

EM'H'^EfEM'kn 
n=0 n=0 Xkeln ' 

oo / , \ , 

< E ( E «^" '^ lAnNfsupn-^-^ la , , ! ' ) 

< ClIn-J-'A^l^lln-K-'kH^ < C||/||^,a. 

Let us now show that the case q < s follows from the previous one. Using duality one 
has that if \ = 1 - f then 

(An) G {Hip, q, a), Is) if and only if (Xn(3n) G (H(p, q, a), p) for all (0n) € /'. 

From the previous case this means (na+p~l\n(3n) G l{q,oo) for all (/?n) G /', that is 
/îa+^-1 Xn G (/(/, 0» J(<7> oo)). Then the proof is completed by invoking Lemma 4.2. • 

REMARK 4.2. For 0 < p < 1 and q — oo the multipliers can be characterized for all 
0 < s < oo. The reader is referred to [M, Theorem 1] for a proof of the following result 

(4.3) (HPaJ
s) = {Xn:n

a+i
P-]Xnels}. 

Let us conclude with a partial result for the values 1 < p < 2. 

min(-
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THEOREM 4.4. Let I < p < 2. Let 0 < q < oo and s < min(//, q). Put i + \ = 1, 

r s p' t s q 

If(naXn) G /(r, 0 fAe/i (A„) 6 (//(/?, ?, a), f ). 

PROOF. Using (3.4) and Holder's inequality for £- and 2 consecutively we have 

w=0 n=l v*e/„ 

A V P ' / - _ . . . \s/r 

OO OO / x 

EiA«rKr<E(EiA«rkr) 
—n n=\\el„ J 

£(E«"vM«r')'s/p(E"ariA„r) 

C\\(n-aan)%,it{j:nar\K\r)"r) II v ' ^ 1 1 / / , t / l Z_^ 

<C\WP«JnttK\\s
rr 

5. Multipliers (//(/?, #, a), / / ( j , /, /?)). 

LEMMA 5.1. Let 0 < /?, q < oo. Letf(z) - E%L0anz
n. Let us denote by fx(z) 

E^o rn(x)anZn where rn stand for the Rademacherfunctions. Then 

Aq(f9r)nJ*Aq(fX9r)dx. 

PROOF. For/? < q we have 

For q <pwt have 

(jT' M«(£, r)<fr) ' ^ < ( /J Wp(fx, r)dx) ''" < ( ^ M>p(fx, r)dxfP. 

Then the proof follows form these estimates together with Khintchine's inequality which 
says 

IQ M\{fx, r) dxj » M2(f, r) « ^ M£(£, r) Jx) . . 

THEOREM 5.1. Let 0 < s < 2 < p < oo, 0 < q, t < oo and a,f3 > 0. Let 

\jr — 1 / min(g, t) — 1 /#. TTẑ /2 

(H(p,q,a),H(s,t,l3J) = {(Xn) : / i " " ^ G /(oo, r)}. 

PROOF. Using Theorem 2.1 and Lemma 4.2 we have 

(H(2,q,a),H(2,t,l3J) = {(AJ : na-0Xn G /(oo,r)}. 
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We shall show that 

(Hip,q,a),His,t,f3)) = (//(2,q, a),//(2, t,(5)). 

It is immediate that (//(2, <?, a), 7/(2, f, /?)) C (Hip, q, a), #(s, t, (5)). 

Take now Xn G (Hip,q,a),His,t,f5)) and/(z) - £ £ L 0 ^ n € Hip,q,oc). Denote by 
O r *A) , ( z ) -E^ 0 ^W^A n z w . 

In the case r < oo an application of Lemma 5.1 and Fubini's Theorem give 

jf *(1 - rf^M^if * A, r) Jr < Cjf'(I - rf~l (jf * Afi((f * A)*, r) dx) dr 

< C | ( 7 (1 - rf'^Mlfc * A, r)dr) JJC 

< CjT1 ( jf 'd - rf^M^, r)dr^j * dx = A. 

Now if t < q then apply Jensen's inequality, Fubini and use Lemma 5.1 again, to get 

A < c j V a - r ) ^ 1 (jf1 Mq
p(fx, r)dx) rfrj 

< c j V V - r)^-xM\(f,r)dr\lq. 

\i t> q put r = x and apply duality and Lemma 5.1 to get 

A<C sup ( [l([\\-r)aq-lMq(fx,r)dr)h(x)dx) 
\\h\\rl=AJo KJo J J 

< c f / V - r)aq-]Mq
2if,r)dr)t \ u 

THEOREM 5.2. Let 1 < s < 2 <p < oo, 1 < f < oo arcd a, /3 > 0. 77^/i 

(Hp
a,His,t,/3)) = {(Xn) : rc^À„ G /(oo,*)}. 

PROOF. Arguing as in the previous theorem we only need to show 

(HPa,H(s,t,pj) c(H2
a,H(2,t,l3J). 

Observe that (X, Y) C (Y*,X*) then Theorem B or (2.4) in Remark 2.1 imply 

(H(p, oo, a), 7/(5, t, /3)) C (//0(p, oo, a), //0(s, f, /?)) C (//(/ , / , /?), / /( / / , 1, a)). 

Now apply Theorem 5.1 and duality again to get 

(//(s', t', f3), H(p', 1, a)) = (//(2, f', /?), / /(2,1, a)) C (//(2, oo, a), //(2, r, /3)). 

The proof is completed by combining both sequences of embeddings. • 

REMARK 5.1. Theorems 5.1 and 5.2 have a natural extension to weights more gen­
eral than power weights wit) = ta (see [B2]). 
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LEMMA 5.2. Let 0 < p, q < oo and 0 < a, f3 < oo. LeJ/ be an analytic function 
on the disc andfr(z) = f(rz). Then 

feH"a+0 ifandonlyif\\fr\\M<a = o i ^ ~ - ^ . 

PROOF. Let us assume q < oo (since q = oo is obvious) and Mp(f, s) = 0((1_L+j3). 
Then it follows from (1.3) that 

rl ... . _ fl (1 - j ) ^ - 1 

Jo(l-sr-lMip(fr,s)ds<cJo 

Conversely observe that 

ds< 
C 

(1 - rs)(a+fti ~ (1 - r ) ^ 

1/^ 
(1 - sfMp(fr,s) < ( / ( ! " tr-lAPp(fF9t)dt) " < \\fr\U,«. 

Therefore if \\fr\\P,q,a = 0(^p) then Mp(f, rs) < (l_s)a(l_r)P which gives/ G Hp
a+0. m 

THEOREM 5.3. Let 0 < p, q < 1, 1 < s, t < oo and a,(3>0.Letl = a+l/p—l. 
Then 

(H(p,q,a)9H(s,t,l3J) = {(A„) : A(7) G Hfi. 

PROOF. From Theorem 3.2 the condition for À to be a multiplier is 

|A* KJ\SJ« = 0' 

where Kw(z) = 1/(1 — zw)2a+]/p. In other words, writing 6 — 2a + 1 /p — 1 and w — r, 

^^ = °iirhr)-
Hence Lemma 5.2 implies that A(<5) G Hs

a+/3 and then (1.12) gives A(7) E Hi. m 

THEOREM 5.4. Let 0 < p < 1, 1 < s, q < oo and a, f3 > 0. Let 7 = a + 1 /p - 1. 

(H(p,q,a\H(s,q,(3)) = {(A,) : A(7) G //£}. 

PROOF. Assume (A„) G (//(/?, g, a), H(s, q, (})) and fix 0 < r < 1. Therefore 

_ Cl|^7,r||p,<7,or» E ̂ S ^ W „t& T(27)n! i,?./3 

where K7,r(z) = ( |_,|)2W 
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Since | |^7 , r | |p^a < jj^pfr then ||A(
r
27)||,,^ < j ^ . Now Lemma5.2 and (1.12) imply 

that A(7) G HJj. 
For the converse first note that since H(p, q, a) C H(l,q,7) then it suffices to show 

that if A7 G //£ then A G (//( 1, q, 7), #(s, ?, pj). 
Assume first that 7 > £ and A(7) G #£. From (1.12) we have A(27) G /f^. 

To show that (Xn) G (//(p, g, oc), H(s, q, /?)) is equivalent, by duality (see Theorem B 
and (2.4), to show that 

(5.1) J2B(2p,n + l)\nanbn\ < C | [ / | | U 7 | | g | | , w , 
n=0 

for all/fe) = E ~ o a^n 6 7/(1, ?, 7) and s(z) = £ ^ 0 * ^ e #o(s', ?', P). 
On the other hand given/ and g as above, ( 1.7) in Lemma C implies that £ ^ 0 anbnz

n G 
Hç)(sf, 1,7 + /3), and duality again gives 

£ 5(2)8, n + l)\nanbn\ = £ #(2£ + 27, n + l)/x„flnfen 
w=0 ' '/i=0 

<C\\h\\Si00,1+p\\f*g\ s',\,l+0' 

W h e r e M« = Bm^T)X" a I l d A<Z> = E ~=0 MnZ"-
Hence the proof of (5.1) will be finished, using (1.7), by showing h G / /^g. 

Now observe that denoting by bn — BnŒ^\n+\y a s imPle computation, under the 
assumption 7 > | , shows that 8n+\ + 8n-\ > 25 n. This allows us to consider K{t) = 
T^OQ5ne

mi which from the convexity condition is integrable (see [Ka, page 22]). There­
fore since h(reie) = K * X(reie) we get \\h\\s^1+p < C\\X(2l%,oo,y+p-

The case 7 < \ follows from the previous case by observing that (1.12) gives that 
A(7) G Hsp is equivalent to A(7+1) G //£+1 and that Theorem A gives that 

( / / ( l ^ , 7 ) , / / ( ^ , ^ / 3 ) ) - ( / / ( l , ^ , 7 + l ) , / / ( ^ ^ / 3 + l ) ) . • 

Let us finish the section with a partial result for 1 < p < 2. 

THEOREM 5.5. Let \ < p < 2 < s < oo. Let 0 < q < oo, 1 < t < oo and 0 < a, 

(3<oo. Put and i _ 
u min{g,f} 

If(na-0Xn) 6 /(r,u) then (A„) 6 (H(p,q,a\H(s,t,(5J). 

PROOF. The proof follows by combining Corollary 3.2 and Lemma 4.2. 

If/(z) = E£L0
 a"z" w e c a n W f i t e 

E A « ^ 1 ^ IKn^Anfl»)!!^ 
n=0 lls''-0 

< IKn^AJH^IKn-"^ )^ . , 

< C||(na-^AB)||^|lf||M,a. 

https://doi.org/10.4153/CJM-1995-003-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-003-5


MULTIPLIERS ON SPACES OF ANALYTIC FUNCTIONS 61 

6. Applications to multipliers on Bergman and Hardy spaces. Since Bp — 
H(p,p, l/p) Theorems 5.1 and 5.2 give 

COROLLARY 6.1 (SEE [W, THEOREMS 7 AND 11]). Let a > 0, 1 < p < 2 < q < oo 

and -r = -q — y Then 

(Bq,Bp) = {Xn : n'hn G /(r, oo)}, 

(H?,BP) = {Xn : na-p\n G /(p,oo)}. 

REMARK 6.1. Assume Àn G (X, Y) can be written as Xn = /x„z/n where //n G (X,S) 
and i/„ G (S, Y) for some solid space S, then it follows from (4.1) and (4.2) that (X, F) = 
(S(X), s(F)). Therefore an alternative proof of Corollary 6.1 consists of showing that 
Xn G (Bq, Bp) can be written as Xn = \invn where \in G (Bq, I

2) and vn G (/2, ^ ) (see [W, 
Proposition 1]). 

Let us recall that an analytic function is said to be a Block function if 

\f'(z)\ = 0(1/(1 -\z\\ 

Hence we have for any a > 0 

Bloch = {f :f(a) G //(oo, oo, a)}. 

With this notation Theorems 5.3 and 5.4 give the following 

COROLLARY 6.2. Let I < p, q < oo, 1 < t < oo and f} > a > 0. 

(6.1) (//(l, l,a),H(oo,t,a)) = Bloch, 

(6.2) (//(l, #, a), //(oo, 4, a)) - Bloch, 

(6.3) (//',//£) = //£_a. 

To get our next applications let us denote by JPA the space of analytic functions/ such 
that/7 G Hip, q, 1). With this notation Bloch corresponds to /QO.OO»

 a nd Lemma D allows 
us to write the following embeddings: 

(6.4) 7 U C / / 1 C/,,2. 

(6.5) / M C f f ( ? > 2 ) . 

Note that for "nice" analytic functions/ and g 

Using this equality a simple duality argument gives 

(6.4') 7oo,2 C BMO C Bloch. 

(6.50 fFcJpj, (p<2). 
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COROLLARY 6.3 (SEE [MP, THEOREM 1]). (Hl, BMO) = Bloch. 

PROOF. Note that we have (JPtq, Jr,s) = (H(p, q, 1), H(r, s, 1)). 
Using (6.4), (6.4') and (6.2) we have 

Bloch = (7/(1,2, l),//(oo,2,1)) = (JU2Joo,2) C (if1,BMO). 

Using (6.4), (6.4') and (6.1) we have 

(771,BMO) C (7i,i,/oo,oo) = (#(1,1, 1),//(oo,oo, 1)) - Bloch. 

Let us now give a different approach to the following result due to MacGregor and 
Zhu. 

COROLLARY 6.4 ([MZ, THEOREM A]). Let 1 < p < 2. Then B{n+\, \/p) e 

PROOF. Observe that to show that for all (an) we have 
^B(n+\A/p)anz

n 

n=0 
<c 

HP n=0 

is equivalent to show that for all (an) we have 

E««z" 
n=0 

<c HP 

°° r(w + l + l/p) h 

BP 

Then the proof is finished by using (6.5') together with Theorem A which implies that 
/(»//>) e H(p,p, 1 Ip) if and only if/ G Jp,p. m 

We shall finish the section with some new results on multipliers on Bergman spaces. 
Let us first show two elementary lemmas. 

LEMMA 6.1. Let \ <p <2 <q < oo. Letf(z) = EZo anZn> 
(i) Iff G Bp then ( n 1 ^ / ^ ) G /(2,p). 

(ii) If{n'l2-2l«an) G 1(2, q) thenf G Bq. 

PROOF. From ( 1.9) one has 

\HP' [)(\-ryl2Mp
2(f',r)dr<C\\f\\''t 

This implies 

Jo /o ' ( 1 - rfl2M\(f',rs)drds < C\[f\\"BP. 

Now applying Plancherel together with Lemma 2.1 one easily gets 

\\(nl/2-2/Pan)\\2,p < CM». 

This gives the proof of (i). 
We can easily get (ii) from (i) using a dual argument from the identity 

£ 4 T * A , = \ / ' [*f(re-°)g(re-'»)rdrf-. . 
^o n + 1 2 Jo Jo 2TT 

REMARK 6.2. Lemma 6.1 might have been shown by using Corollary 3.2 which 
gives better estimates. 
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LEMMA 6.2. Let 2 < q < oo and 0 < a, /? < oo. 
//A, = 0(na-P-lW) then \W e Hq

a. 

PROOF. It is elementary to see that Xn = 0(na~P~llq') implies 

M 2 ( À ( / V ) - 0(1/(1 -r)c*i/«-i/2y 

Now use (1.1) to get A(^ G Hq
a. m 

COROLLARY 6.5 (SEE [V, THEOREM 2]). Let 0 < p < 2 < q < oo. 

//A„ = 0{n2lq~2lp) then Xn G (Bp,Bq) 

PROOF. The case 1 < p < 2 follows trivially combining (i) and (ii). 
For the case 0 < p < 1 we can use Theorem 5.3 to get 

(BP9&) = {(\n):\
(2'r-l)eH«/q}, 

and then apply Lemma 6.2 with a — 1 jq and/? = 2/p— 1 to show that Xn = 0{n2lq~2lp) 
gives A ^ - ^ elf., . • 

In [V] Vukotic showed that for sequences A„ = (9(rc7) the exponent 7 = 2/q — 2/p 
was sharp in the case of multipliers in (Bp,Bq). A better result in the setting of /(/?, q) 
spaces follows from Theorem 5.5. 

COROLLARY 6.6. Let 1 < p < 2 < q < oo. Putl- = x- - L. 

//E*e/B \h\r = 0(2~n) then Xn G (Bp,Bq). 
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