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An Optimal Transport View of
Schrödinger’s Equation

Max-K. von Renesse

Abstract. We show that the Schrödinger equation is a lift of Newton’s third law of motion ∇W
µ̇ µ̇ =

−∇WF(µ) on the space of probability measures, where derivatives are taken with respect to the

Wasserstein Riemannian metric. Here the potential µ → F(µ) is the sum of the total classical po-

tential energy 〈V, µ〉 of the extended system and its Fisher information ~
2

8

∫
|∇ lnµ|2 dµ. The precise

relation is established via a well-known (Madelung) transform which is shown to be a symplectic

submersion of the standard symplectic structure of complex valued functions into the canonical sym-

plectic space over the Wasserstein space. All computations are conducted in the framework of Otto’s

formal Riemannian calculus for optimal transportation of probability measures.

1 Introduction and Statement Of Results

Recent applications of optimal transport theory have demonstrated that certain ana-

lytical and geometric problems on finite dimensional Riemannian manifolds (M, g)

or more general metric measure spaces (X, d,m) can nicely be treated in the corre-

sponding (Wasserstein) space of probability measures

P2(X) =
{

µ ∈ P(X)
∣

∣

∫

X

d2(x, o)µ(dx) <∞ for some o ∈ X
}

equipped with the quadratic Wasserstein metric

dW(µ, ν) = inf
Π∈Γ(µ,ν)

{

∫∫

X2

d2(x, y)Π(dx, dy)
} 1/2

,

where Γ(µ, ν) denotes the set of probability measures Π ∈ P(X2) on X2 = X × X

such that Π(X × A) = ν(A) and Π(A × X) = µ(A) for all Borel subsets A ⊂ X. This

metric corresponds to a relaxed version of Monge’s optimal transportation problem

with cost function c(x, y) = d2(x, y)

inf
{

∫

X

c(x,Ty)µ(dx) | T : X → X,T∗µ = ν
}

,

with T∗µ denoting the image (push forward) measure of µ ∈ P(X) under the map T.

The physical relevance of the Wasserstein distance was highlighted by the works of
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An Optimal Transport View of Schrödinger’s Equation 859

Benamou–Brenier [4] and McCann [13] who established, in the case when X is Eu-

clidean, resp. smooth Riemannian, and µ ∈ P2(X) is smooth, that

d2
W(µ, ν) = inf

(φ,µ)∈Φ(µ,ν)

{

∫ 1

0

∫

M

|∇φt (x)|2µt (dx)dt
}

,

with

Φ(µ, ν) =
{

φ ∈ C∞(]0, 1[ × M), µ ∈ C([0, 1],P(M))

µ̇t = − div(∇φtµt ), t ∈]0, 1[, µ0 = µ, µ1 = ν

}

,

showing that dW is associated with a formal Riemannian structure on P(M) given by

TµP(M) = {ψ : M → R,

∫

M

ψ(x)dx = 0},

‖ψ‖2
TµP

=

∫

M

|∇φ|2dµ, for ψ = − div(µ∇φ).

In view of the continuity equation µ̇t = − div(Φ̇tµt ) for a smooth flow (t, x) →
Φt (x) on M, acting on measuresµ through push forwardµt = (Φt )∗µ0, this identifies

the Riemannian energy of a curve t → µt ∈ P(M) with the minimal required kinetic

energy

E0,t (µ) =

∫ t

0

‖µ̇s‖2
TµsP(M) ds =

∫ t

0

∫

M

|Φ̇(x, s)|2µs(dx)ds.

A major reason for the success of this framework is Otto’s interpretation [15] of evo-

lution equations of type ∂t u = div(ut∇F ′(u)), with F ′ being the L2-Frechet deriva-

tive of some smooth functional F on L2(M, dx), as dW-gradient (steepest descent)

flow µ̇ = −∇WF(µ) for the measures µ(dx) = u(x)dx. Properties of the flow may

thus be deduced from the geometry of the funtional F with respect to dW. An im-

portant case is the Boltzmann entropy F(u) =
∫

M
u ln u dx inducing the heat flow.

Here we propose an example of a second natural class of dynamical systems asso-

ciated with the Riemannian metric on P(M) which can be written as

(1.1) ∇W

µ̇ µ̇ = −∇WF(µ).

Equation (1.1) describes the Hamiltonian flow on TP(M) induced from the La-

grangian

LF : TP(M) → R; LF(ψ) =
1

2
‖ψ‖2

TµP
− F(µ) for ψ ∈ TµP(M)

with the functional F : P(M) → R now playing the role of a potential field for the

system. Apart from the closely related works [2, 7], it seems that a systematic ap-

proach to such Hamiltonian flows on P(M) is missing in the literature. The example

we want to propose is obtained by choosing

(1.2) F(µ) =

∫

M

V (x)µ(dx) +
~

2

8
I(µ),
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where

I(µ) =

∫

M

|∇ lnµ|2 dµ.

We show that, via an appropriate transform, the flow (1.1) solves the Schrödinger

equation

(1.3) i~∂tΨ = −~
2/2∆Ψ + ΨV.

The functional I is also known as Fisher information. Physically, I(µ) is the energy

dissipation of the unperturbed heat flow at state µ. The prominent role of I for

quantum behaviour was noticed long ago, e.g., in a classical paper by Bohm [5], us-

ing the following well-known system of generalized Hamilton–Jacobi and transport

equations:

(1.4)
∂t S +

1

2
|∇S|2 + V +

~
2

8

(

|∇ lnµ|2 − 2

µ
∆µ

)

= 0

∂tµ + div(µ∇S) = 0.

This system was proposed very early by Madelung [12] as an equivalent description

of the wave function Ψ =
√
µe

i
~

S under the Schrödinger equation. In the sequel it

will be referred to as Madelung flow. Various attempts to derive it from first order

principles can be found in the physics literature, e.g., most recently in [9].

In fact, using Lott’s recently proposed second order calculus on Wasserstein space,

(see [11]) we show that equations (1.4) and (1.1) are essentially the same (Theo-

rem 2.1). A virtue of formula (1.1) is its very intuitive physical interpretation as

Newton’s law for the motion of an extended system with inertia (we have put mass

density equal to one). Acceleration comes from a gradient field of a potential F which

is the total mechanical potential of the extended system plus its ‘dissipative potential’

with respect to the heat flow. (Note that the case of a classical Hamiltonian particle

moving in a potential field ∇F is embedded naturally in (1.1) if one puts ~ = 0 and

µ = δx.)

Secondly we show that the two equations (1.1) and (1.3) are, modulo constant

phase shifts, symplectically equivalent. More precisely, we compute the canonical

symplectic form on the tangent bundle TP(M) induced from the Levi–Civita con-

nection of the Wasserstein metric on P(M) (Proposition 3.2) and show that the map

Ψ = |Ψ|e i
h

S 7→ − div(|Ψ|2∇S), which we shall call Madelung transform, is a sym-

plectic submersion of the standard Hamiltonian structure of the Schrödinger equa-

tion on the space of complex valued functions into the Hamiltonian structure asso-

ciated with (1.1) on the tangent bundle TP(M) (Theorem 4.3).

Except for its curiosity in Wasserstein geometry this result seems to support the

point of view of some authors that the familiar complex valued form (1.3) of the

Schrödinger equation is the consequence of a smart choice of coordinates in which

the intuitive, but unhandy, dynamical system (1.1), resp. (1.4), can be solved very

efficiently.

Much of what is presented below is well known in the literature, in particular in

Nelson’s theory of stochastic mechanics [14] and its follow-ups, e.g., most notably by
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Lafferty [10]. However, the aim here is to demonstrate that the Riemannian formal-

ism of optimal transport yields a simple and compelling picture of the Schrödinger

equation as a lift of Hamiltonian mechanics from point to diffuse systems.

2 Schrödinger Equation and Newton’s Third Law on (P(M), dW)

The computations below are conducted on the formal Riemannian manifold of fully

supported smooth probability measures equipped with the Wasserstein metric ten-

sor, as initiated in [15,16] and extended in [11], ignoring full mathematical generality

or rigor. (The basic background material taken from [11,15] can be found in the ap-

pendix; see also [17].) In the sequel we shall often identify µ ∈ P
∞(M) with its

density µ
∧
= dµ/dx.

Theorem 2.1 For V ∈ C∞(M) let F : P∞(M) → R defined as in (1.2). Then any

smooth local solution t → µ(t) ∈ P(M) of (1.1) yields a local solution (µt , St ) of the

Madelung flow (1.4), where

S̄(x, t) = S(x, t) +

∫ t

0

LF(Sσ, µσ) dσ

and S(x, t) is the velocity potential of the flow µ, i.e., satisfying
∫

M
S dµ = 0 and µ̇t =

− div(∇Stµ). Conversely, let (µt , St ) be a smooth local solution of (1.4). Then t →
µt ∈ P(M) solves (1.1).

Proof Let µ solve (1.1) where ∇W is the Wasserstein gradient and ∇W
µ̇ µ̇ is the co-

variant derivative associated with the Levi–Civita connection on TP(M). Let (x, t) →
S(x, t) denote the velocity potential of µ̇ (see §5); then according to [11, Lemmas 3

and 4] the left-hand side of (1.1) is computed as

− div
(

µ∇
(

∂t S +
1

2
|∇S|2

))

,

where the right-hand side of (1.1) equals (see §A)

div
(

µ∇
(

V +
~

2

8

(

|∇ lnµ|2 − 2

µ
∆µ

)))

.

Since µt is fully supported on M, this implies

∂t S +
1

2
|∇S|2 + V +

~
2

8

(

|∇ lnµ|2 − 2

µ
∆µ

)

= c(t)

for some function c(t). To compute c(t), note that due to the normalization

〈St , µt〉 = 0,

0 = ∂t〈St , µt〉 = c(t) − 1

2
〈|∇S|2, dµ〉 − F(µ) + 〈S, µ̇〉

= c(t) − 1

2
〈|∇S|2, dµ〉 − F(µ) + 〈|∇S|2, µ〉 = c(t) + LF(St , µt ).

Hence the pair t → (St , µt ) with S̄(x, t) = S(x, t) +
∫ t

0
LF(Sσ, µσ)dσ solves (1.4). The

converse statement is now also obvious.
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Corollary 2.2 For V ∈ C∞(M) let F : P∞(M) → R defined as in (1.2). Then any

smooth local solution t → µ(t) ∈ P(M) of ∇W
µ̇ µ̇ = −∇WF(µ) yields a local solution

of the Schrödinger equation (1.3) via

Ψ(t, x) =
√

µ(t, x)e
i
~

S̄(x,t),

where

S̄(x, t) = S(x, t) +

∫ t

0

LF(Sσ, µσ)dσ

and S(x, t) is the velocity potential of the flow µ, i.e., satisfying
∫

M
Sdµ = 0 and µ̇t =

− div(∇Stµ).

Remark 2.3 The passage from S to S = S + const does not bear any physical rele-

vance, since two wave functions Ψ, Ψ̃ with Ψ̃ = eiκΨ for some κ ∈ R parameterize

the same physical system.

Remark 2.4 The dW-gradient flow on P(M) for F as in (1.2) corresponding to the

overdamped limit of (1.1) gives a nonlinear fourth-order equation which is some-

times called the Derrida–Lebowitz–Speer–Spohn or quantum-drift-diffusion equa-

tion. A rigorous treatment of it can be found in [8].

The usual argument for the derivation of Euler–Lagrange equations yields the fol-

lowing statement.

Corollary 2.5 For V ∈ C∞(M) let F : P∞(M) → R defined as in (1.2). Then any

smooth local Lagrangian flow [0, ǫ] ∋ t → µ̇t ∈ TP∞(M) associated with LF yields a

local solution of the Schrödinger equation i~∂tΨ = −~
2/2∆Ψ + ΨV via

Ψ(t, x) =
√

µ(t, x)e
i
~

S̄(x,t),

where

S̄(x, t) = S(x, t) +

∫ t

0

LF(Sσ, µσ)dσ

and S(x, t) is the velocity potential of the flow µ, i.e., satisfying
∫

M
Sdµ = 0 and µ̇t =

− div(∇Stµ).

Remark 2.6 An equivalent version of Theorem 2.1 puts Ψ =
√
µ(x, t)e

i
~

S(x,t) where

t → (− div(∇Stµt ), µt ) is a Lagrangian flow for LF and S is chosen to satisfy for all

t ≥ 0

〈St , µt〉 − 〈S0, µ0〉 =
∫ t

0

LF(µ̇s) ds.

3 Hamiltonian Structure of the Madelung Flow on TP(M)

In this section we show that the Madelung flow (1.4) has a Hamiltonian structure

with respect to the canonical symplectic form induced from the Wasserstein metric

tensor on the tangent bundle TP(M). To this aim we use the representation

TP(M) = {− div(∇ fµ) | f ∈ C∞(M), µ ∈ P(M)}.
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Definition 3.1 (Standard Vector Fields on TP(M)) Each pair (ψ, φ) ∈ C∞(M) ×
C∞(M) induces a vector field Vφ,ψ on TP(M) via

Vψ,φ(− div(∇ fµ)) = γ̇

where t → γψ,φ(t) = γ(t) ∈ TP(M) is the curve satisfying

γ(t) = − div(µ(t)∇( f + tφ))

µt = exp(t∇ψ)∗µ

Recall that the standard symplectic form on the tangent bundle of a Riemannian

manifold is given by ω = dΘ, where the canonical 1-form Θ is defined as

Θ(X) = 〈ξ, π∗(X)〉Tπξ , X ∈ Tξ(TM),

and where π denotes the projection map π : TM → M.

Proposition 3.2 Let ωW ∈ Λ2(TP(M)) be the standard symplectic form associated

with the Wasserstein Riemannian structure on P(M). Then

(3.1) ωW(Vψ,φ,Vψ̃,φ̃)(− div(∇ fµ)) = 〈∇ψ,∇φ̃〉µ − 〈∇ψ̃,∇φ〉µ.

Proof We use the formula

(3.2) ωW(Vψ,φ,Vψ̃,φ̃) = Vψ,φΘ(Vψ̃,φ̃) −Vψ̃,φ̃Θ(Vψ,φ) −Θ([Vψ,φ,Vψ̃,φ̃]),

where [Vψ,φ,Vψ̃,φ̃] denotes the Lie-bracket of the vector fields Vψ,φ and Vψ̃,φ̃. From

the definition of Θ we obtain Θ(Vψ̃,φ̃)(− div(∇ fµ)) = 〈∇ f ,∇ψ̃〉µ. Hence

(3.3) Vψ,φ(Θ(Vψ̃,φ̃)) =
d

dt |t=0
Θ(Vψ̃,φ̃)(γψ,φ(t)) =

d

dt |t=0
〈∇( f + tφ),∇ψ̃〉µ(t)

= 〈∇φ,∇ψ̃〉µ −
∫

M

∇ f · ∇ψ̃(− div∇ψµ) dx

= 〈∇φ,∇ψ̃〉µ +

∫

M

∇(∇ f · ∇ψ̃)∇ψ dµ.

Next, since Θ measures tangential variations only, one gets that

(3.4) Θ([Vψ,φ,Vψ̃,φ̃])(− div(∇ fµ)) = 〈∇ f , [∇ψ,∇ψ̃]〉µ.

Finally, it is easy to check that

∫

M

∇(∇ f · ∇ψ̃)∇ψ dµ−
∫

M

∇(∇ f · ∇ψ)∇ψ̃ dµ− 〈∇ f , [∇ψ,∇ψ̃]〉µ = 0,

which together with (3.2), (3.3), and (3.4) establishes the claim.
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Remark 3.3 Proposition 3.2 should be compared to [11, §6], where the lift of the

Poisson bracket from a closed symplectic manifold M to P(M) is studied.

Using the the Riemannian inner product in each fiber of TP(M), the Hamiltonian

associated with LF is

HF : TP(M) → R; HF(− div(∇ fµ)) =
1

2

∫

M

|∇ f |2 dµ + F(µ).

Proposition 3.4 Let XF denote the Hamiltonian vector field XF induced on TP(M)

from HF and ωW. Then

XF(− div(∇ fµ)) = V
f ,−( 1

2
|∇ f |2+V + h2

8
(|∇ ln µ|2−2 ∆µ

µ ))
(− div(∇ fµ)).

Proof Fix ψ, φ ∈ C∞(M) and let Vψ,φ(.) denote the corresponding standard vector

field. Let t → γ(t) = − div((∇ f + tφ)µt ), where µt = exp(t∇ψ)∗µ, denote the

corresponding curve on TP(M). Then

Vψ,φ(HF)(− div(∇ fµ)) = ∂t|t=0HF(γ(t))

= ∂t|t=0

( 1

2

∫

M

|∇( f + tφ)|2dµt + 〈V, µt〉 +
h2

8
I(µt )

)

= I + II + III,

where

I =

∫

M

∇ f∇φdµ +
1

2

∫

M

|∇ f |2(− div(∇ψµ))

= 〈∇ f ,∇φ〉µ+
〈

∇ψ,∇
( 1

2
|∇ f |2

)〉

,

II =

∫

M

V (− div(∇ψµ)) = 〈∇V,∇ψ〉µ,

III =
~

2

8

∫

M

2∇ lnµt∇
( − div(∇ψµ)

µ

)

dµ +
~

2

8

∫

M

|∇ lnµ|2(− div(∇ψµ))

=
~

2

8

(〈

∇ψ,∇
(

−2∆µ

µ

)〉

µ
+ 〈∇ψ,∇|∇ lnµ|2〉µ

)

.

Hence, collecting terms,

Vψ,φ(HF)(− div(∇ fµ)) = 〈∇ f ,∇φ〉µ

−
〈

∇
(

−
( 1

2
|∇ f |2 + V +

~
2

8

(

|∇ lnµ|2 − 2
∆µ

µ

)))

,∇ψ
〉

µ
.

From this and formula (3.1) the claim follows.

Corollary 3.5 The pair t → (St , µt ) ∈ C∞(M) × P(M) solves the Madelung flow

equation (1.4) if and only if t → − div(∇Stµt ) ∈ TP(M) is an integral curve for XF .
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4 The Madelung Transform as a Symplectic Submersion

In this section we prove that the two equations, (1.1) and (1.3), are related via a

symplectic submersion.

Definition 4.1 A smooth map s : (M, ω) → (N, η) between two symplectic man-

ifolds is called a symplectic submersion if its differential s∗ : TM → TN is surjective

and satisfies η(s∗X, s∗Y ) = ω(X,Y ) for all X,Y ∈ TM.

Note that this definition implies in particular that the map s itself is surjective.

The following proposition is easily verified. Its meaning is that in order to solve a

Hamiltonian system on N we may look for solutions for the lifted Hamiltonian g ◦ s

on the larger state space M and project them via s back again to N.

Proposition 4.2 Let s : (M, ω) → (N, η) be a symplectic submersion and let f ∈
C∞(M) and g ∈ C∞(N) with g ◦ s = f . Then s maps Hamiltonian flows associated

with f on (M, ω) to Hamiltonian flows associated with g on (N, η).

Now let C(M) = C∞(M; C) denote the linear space of smooth complex valued

functions on M. Identifying as usual the tangent space over an element Ψ ∈ C with

C, TC is naturally equipped with the symplectic form

ωC(F,G) = −2

∫

M

Im(F · G)(x) dx.

It is a well-known fact that the Schrödinger equation (1.3) is the Hamiltonian flow

induced from the symplectic form ~ · ωC and the Hamiltonian function on C

HS(Ψ) =
~

2

2

∫

M

|∇Ψ|2 dx +

∫

M

|Ψ(x)|2V (x) dx.

Let C∗(M) denote the subset of nowhere vanishing functions from C such that
∫

M
|Ψ(x)|2 dx = 1 and note that C∗(M) is invariant under the Schrödinger flow.

Assuming simple connectedness of M implies (via a standard lifting theorem of

algebraic topology) that each function Ψ ∈ C∗ admits a decomposition Ψ = |Ψ|e i
~

S,

where the smooth field S : M → R is uniquely defined up to an additive constant

~2πk, k ∈ N. Hence we may define the Madelung transform

σ : C∗(M) → TP(M), σ(Ψ) = − div(|Ψ|2∇S).

For the next theorem recall that in our definition of TP(M) we assume that the

supporting measures are smooth and strictly positive on M.

Theorem 4.3 Let M be simply connected. Then the Madelung transform

σ : C∗(M) → TP(M), σ(|Ψ|e i
~

S) = − div(|Ψ|2∇S)

defines a symplectic submersion from (C∗(M), ~ · ωC) to (TP(M), ωW) that preserves

the Hamiltonian, i.e., HS = HF ◦ σ.
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Remark 4.4 Together with Proposition 4.2 this result presents the Schrödinger

equation (1.3) as a symplectic lifting of Newton’s law on Wasserstein space (1.1) to

the larger space C∗(M), and which can be solved much more easily because it is lin-

ear. Projecting the solution down to TP(M) via σ yields the desired solution to (1.1).

Going in inverse direction from (1.1) to (1.3) requires a scalar correction term in the

phase field (see Remark 2.3).

Proof of Theorem 4.3 Clearly, σ(C∗(M)) = TP(M). To see that σ : C∗(M) →
TP(M) is a submersion, fix a reference point 0 ∈ M. Then for each r ∈ [0, 2π~[

the map τ = τ (r)

τ : TP(M) → C∗(M), − div(∇Sµ) → √
µe

i
~

(S−(S(0)−r)),

is a bijection from TP(M) to the subset {Ψ ∈ C∗,
Ψ

|Ψ| (0) = e
i
~

r} which satisfies

σ ◦ τ = IdTP(M). This proves that the differential s∗ of s is surjective.

To prove that σ is symplectic, let Ψ =
√
µe

i
~

f ∈ C∗ with f (0) = r ∈ [0, 2π~[

and let η = − div(µ∇ f ) = σ(Ψ) ∈ TP(M). Again due to the identity σ ◦ τ =

IdTP(M), it suffices to prove that τ∗ωC = 1/~ · ωW on Tη(TP(M)). Since the set

{Vψ,φ(− div(µ∇ f )) | ψ, φ ∈ C∞(M)} spans the full tangent space Tη(TP(M)), it

remains to verify µt := exp(t∇ψ)∗(µ) and c(t) := f (0) + tφ(0) − r

ωC(τ∗Vψ,φ, τ∗Vψ̃,φ̃) =
1

~
ωW(Vψ,φ,Vψ,φ)

for all ψ, φ, ψ̃, φ̃ ∈ C∞(M). By definition of Vψ,φ and τ = τ (r), setting µt :=

exp(t∇ψ)∗(µ) and c(t) := f (0) + tφ(0) − r,

τ∗Vψ,φ = ∂t|t=0

√
µt e

i
~

( f +tφ−c(t))
= e

i
~

f
( 1

2
√
µ

(− div(∇ψµ)) +
√
µ

i

~
(φ− ċ)

)

.

Hence,

ωC(τ∗Vψ,φ, τ∗Vψ̃,φ̃) = −2

∫

M

( 1

2
√
µ

(− div(∇ψµ)) ·
(

−√
µ

1

~
(φ̃ + ˙̃c)

)

+
√
µ

1

~
(φ + ċ) · 1

2
√
µ

(− div(∇ψ̃µ))
)

dx

=
1

~

(

〈∇ψ,∇φ̃〉µ − 〈∇φ,∇ψ̃µ〉
)

=
1

~
ωW(Vψ,φ,Vψ̃,φ̃).

Finally, for Ψ = τ (−( div∇ fµ)), ∇Ψ =
√
µe

i
~

f ( 1
2
∇ lnµ + i

~
∇ f ) such that

~
2

2

∫

M

|∇Ψ|2 = 1

2

∫

M

|∇ f |2dµ +
~

2

8
I(µ)

and
∫

|Ψ(x)|2V (x) dx = 〈V, µ〉 which establishes the third claim HS = HF ◦ σ of the

theorem.
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A Formal Riemannian Calculus on P(M)

Let P2(M) denote the set of Borel probability measures µ on a smooth closed finite

dimensional Riemannian manifold (M, g) having finite second moment

∫

M

d2(o, x)µ(dx) <∞.

As argued in [11], the subsequent calculations make strict mathematical sense on the

dW-dense subset of smooth fully supported probabilities P∞(M) ⊂ P2(M) that shall

often be identified with their corresponding density µ
∧
= dµ/dx.

A.1 Vector Fields on P(M) and Velocity Potentials.

A function φ ∈ C
∞
c (M) induces a flow on P(M) via push forward

t → µt = (Φ
∇φ
t )∗µ0,

where t → Φt is the local flow of diffeormorphisms on M induced from the vec-

tor field ∇φ ∈ Γ(M) starting from Φ0 = IdM. The continuity equation yields the

infinitesimal variation of µ ∈ P(M) as

µ̇ = ∂t |t=0µt = − div(∇φµ) ∈ Tµ(P).

Hence the function φ induces a vector field Vφ ∈ Γ(P(M)) by

Vφ(µ) = − div(∇φµ),

acting on smooth functionals F : P(M) → R via

Vφ(F)(µ) = ∂ǫ|ǫ=0F(µ− ǫ div(∇φµ)) = ∂t |t=0F((Φ
∇φ
t )∗µ)

with Riemannian norm

‖Vφ(µ)‖2

TµP
=

∫

M

|∇φ|2(x)µ(dx).

Conversely, each smooth variation ψ ∈ Tµ(P) can be identified with

ψ = −Vφ(µ) with φ = Gµψ,

where Gµ is the Green operator for ∆µ : φ→ − div(µ∇φ) on

L2
0(M, dx) = L2

0(M, dx) ∩ {〈 f , dx〉 = 0}.

Hence, for each ψ ∈ TµP there exists a unique φ ∈ C
∞ ∩ L2(M, dx) such that

ψ = − div(µ∇φ) and 〈φ, µ〉 = 0,

which we call velocity potential for ψ ∈ TµP(M).
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A.2 Riemannian Gradient on P(M).

The Riemannian gradient of a smooth functional F : Dom(F) ⊂ P(M) → R is com-

puted to be ∇WF|µ = −∆µ(DF|µ), where x → DF|µ(x) is the L2(M, dx)-Frechet-

derivative of F in µ, which is defined through the relation

∂ǫ|ǫ=0F(µ + ǫξ) =

∫

M

DFµ(x)ξ(x) dx,

for all ξ chosen from a suitable dense set of test functions in L2(M, dx). The following

examples are easily obtained.

F(µ) =

∫

M

φ(x)µ(dx), ∇WF|µ = Vφ(µ) = − div(∇φµ)

F(µ) =

∫

M

µ logµdx, ∇WF|µ = − div(µ∇ logµ) = −∆µ

F(µ) =

∫

M

|∇ lnµ|2dµ, ∇WF|µ = − div
(

µ∇
(

|∇ lnµ|2 − 2

µ
∆µ

))

.

Here ∆ denotes the Laplace–Beltrami operator on (M, g). As a consequence, the

Boltzmann entropy induces the heat equation as gradient flow on P(M), and the

information functional is the norm-square of its gradient, i.e.,

∥

∥∇WEnt|µ
∥

∥

2

TµP
= ‖− div(µ∇ logµ)‖2

TµP
=

∫

M

|∇ logµ|2 dµ = I(µ).

A.3 Covariant Derivative.

The Koszul identity for the Levi–Civita connection and a straightforward computa-

tion of commutators show ([11]) for the covariant derivative ∇W associtated with

dW that

〈∇W

Vφ1
Vφ2

,Vφ3
〉Tµ =

∫

M

Hessφ2(∇φ1,∇φ2) dµ.

For a smooth curve t → µ(t) with µ̇t = Vφt
, this yields ∇W

µ̇ µ̇ = V∂tφ+ 1
2
|∇φ|2 .

Acknowledgements I thank E. Nelson for his kind remarks and for bringing Laf-

ferty’s work [10] to my attention.
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